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Contour Salience Descriptors for Effective Image Retrieval and

Analysis

Ricardo da S. Torres∗ Alexandre Xavier Falcão∗

Abstract

This work exploits the resemblance between content-based image retrieval and image
analysis with respect to the design of image descriptors and their effectiveness. In this
context, two shape descriptors are proposed: contour saliences and segment saliences.
Contour saliences revisits its original definition, where the location of concave points was
a problem, and provides a robust approach to incorporate concave saliences. Segment
saliences introduces salience values for contour segments, making it possible to use
an optimal matching algorithm as distance function. The proposed descriptors are
compared with convex contour saliences, curvature scale space, and beam angle statistics
using a fish database with 11,000 images organized in 1,100 distinct classes. The results
indicate segment saliences as the most effective descriptor for this particular application
and confirm the improvement of the contour salience descriptor in comparison with
convex contour saliences.

1 Introduction

Recent technological improvements in image acquisition and storage have supported the
dissemination of large databases, where the design of information retrieval systems based
on image properties becomes a challenge [34]. In these Content-Based Image Retrieval
(CBIR) systems, image properties are usually represented by shape, color, and texture of
objects/regions within the image. A CBIR system essentially consists of an image database,
a descriptor, and a data structure for image indexation. The descriptor is a pair, feature
vector and distance metric, used for image indexation by similarity. The feature vector
subsumes the image properties and the distance function measures the dissimilarity between
two images with respect to their properties. Each image can be interpreted as a “point” in
the underlying metric space, where similar images form groups of points. For given user-
defined specification or pattern (e.g., shape sketch, query image), the CBIR system aims
at retrieving groups of similar images which are relevant to the query (effectiveness) as
fast as possible (efficiency). Clearly, the efficiency of the system depends on the indexing
structure (e.g., a Metric Access Method [7, 35]) and on the complexity of the distance
function, while its effectiveness is solely related to the ability of the descriptor in representing

∗Institute of Computing, University of Campinas, Av. Albert Einstein, 1251, CEP 13084-851, Campinas,
SP, Brasil
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2 Torres et. al

distinct groups of relevant images as far as possible in the metric space. That is, different
descriptors define different CBIR systems with distinct degrees of effectiveness, where the
goal of research is to find the descriptor with maximum effectiveness for given application.
The descriptors are also important in image analysis, where the groups of relevant images
form classes or patterns for recognition [15]. The present paper is mainly concerned with
shape descriptors and their effectiveness for image retrieval and analysis.

Costa et al. [8] proposed the use of shape saliences for object representation. The
saliences of a shape are defined as the maximum influence areas of its higher curvature
points, considering a narrow band in both sides of the curve and the Voronoi regions of
its points. A contour point, for example, is considered convex when its influence area
is greater outside than inside the contour, and concave otherwise. The narrow band is
used to reduce as much as possible cross-influence of opposite parts of the curve, which
come close to each other. Torres et al. [10] presented a more efficient way to compute shape
saliences using the image foresting transform [20] and a contour salience descriptor for image
retrieval [12] and analysis [11]. In both works, the contour salience descriptor was compared
with several other shape descriptors, including the popular curvature scale space [1, 31] and
the recently proposed beam angle statistics [2, 3]. However, the contour salience descriptor
never considered concave salience points, because its effectiveness was very sensitive to the
precise location of these points. This work solves the problem, incorporating concave points
to the contour salience descriptor. In addition, it proposes another shape descriptor based
on the salience values of contour segments.

The methods use the image foresting transform to compute the salience values of contour
pixels and to locate salience points along the contour by exploiting the relation between a
contour and its internal and external skeletons [26]. The contour salience descriptor consists
of the salience values of salient pixels and their location along the contour, and on a heuristic
matching algorithm as distance function. The contour is also divided into a fixed number of
segments and the influence areas of their pixels inside and outside the contour are used to
compute segment saliences. The segment salience descriptor consists of the salience values
of contour segments and an optimal matching algorithm as distance function.

The article describes the computation of shape saliences using the image foresting trans-
form in Section 2. Section 3 provides a detailed description of the algorithm to locate salient
contour pixels via multiscale skeletonization. The new contour and segment salience descrip-
tors are presented in Section 4 and compared with the convex contour saliences, curvature
scale space, and beam angle statistics in Section 5. Section 6 states the conclusion and
discusses the current research on CBIR systems.

2 Shape saliences

The algorithm proposed by Costa et al. [8] to determine shape saliences is based on the
concept of Exact Dilation with Label Propagation (EDLP). The EDLP of a given labeled seed
set S assigns to each image pixel t a value C(t) and a label L(t), which are the minimum
Euclidean distance between t and S (Euclidean distance transform) and the label of its
closest pixel in S (discrete Voronoi regions), respectively.
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The EDLP algorithm can take contour pixels as seeds and determine the influence areas
of each seed as the areas of its discrete Voronoi regions inside and outside the contour.
The influence areas of higher curvature points, namely salience points, are expected to be
greater than the influence areas of other contour pixels. Moreover, the influence area of a
convex point (points A, B, D, and E in Figure 1) is greater outside than inside the contour,
and the other way around is true for a concave point (point C in Figure 1). The influence
area of each salience point relates to the aperture angle θ, illustrated in Figure 1, by the
formula:

Area =
θ × r2

2
, (1)

where r is a dilation radius. Costa et al. [8] proposed to use as salience value of a
contour point the maximum influence area between the areas computed outside and inside
the contour for a low value of r (e.g., 10), in order to avoid cross-influence of opposite parts
of the contour which come close to each other. They also suggested to locate the salience
points along the contour by thresholding their salience values (i.e. Area ≥ θ×r2

2 , for some
value of θ).
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Figure 1: Internal and external influence areas of convex (A, B, D, and E) and concave (C)
points.

2.1 Shape saliences by image foresting transform

Costa’s algorithm [8] can be more efficiently implemented (in time proportional to the
number of pixels) by using the Image Foresting Transform (IFT) [10]— a graph-based
approach to the design of image processing operators based on connectivity [18–20, 28].

The IFT reduces image partition problems based on a given seed set to the computation
of a minimum-cost path forest in a directed graph, whose nodes are the pixels and whose
arcs are defined by an adjacency relation between pixels. The cost of a path in this graph
is determined by an application-dependent path-cost function, which usually depends on
local image properties along the path — such as color, gradient, and pixel position. For
suitable path-cost functions, the IFT assigns to each image pixel a minimum-cost path from
the seed set, such that the union of those optimum paths form an oriented forest spanning
the whole image. The nodes of each rooted tree in the forest are composed by pixels that



4 Torres et. al

are “more closely connected” to its root pixel than to any other seed, in some appropriate
sense. The IFT assigns to each pixel three attributes: its predecessor in the optimum path
(predecessor map P ), the cost of that path (cost map C), and the corresponding root (root
map R) or some label associated with it (label map L).

For given set S of seed pixels, the IFT can provide the simultaneous computation of the
Euclidean distance transform in the cost map C and of the discrete Voronoi regions in the
root map R [20]. This operator asks for an Euclidean adjacency relation A and a path-cost
function feuc defined for any path π =< p1, p2, ..., pn > in the graph as:

q ∈ A(p) =⇒ (xq − xp)
2 + (yq − yp)

2 ≤ ρ2, (2)

feuc(π) =

{

(xpn
− xp1

)2 + (ypn
− yp1

)2, if p1 ∈ S,
+∞, otherwise,

(3)

where ρ is the adjacency radius and (xpi
, ypi

) are the (x, y) coordinates of a pixel pi in
the image. Note that, the main idea is to find for every image pixel pn a path P ∗(pn) from
a seed pixel p1 ∈ S, such that feuc(P

∗(pn)) is minimum. The exact Euclidean distance
transform will depend on the appropriate choice of ρ, as demonstrated in [20]. However,
for most practical situations involving 8-connected curves, such as contours and skeletons,
ρ =
√

2 is enough [19]. Algorithm 1 below presents the IFT procedures for feuc.

Algorithm 1:
Input: An image I, a set S of seed pixels in I, and an Euclidean adjacency relation A;
Output: An optimum-path forest P , and the corresponding cost map C and root map R.
Auxiliary Data structures: A priority queue Q.

1. For every pixel p of the image I, set C(p)← +∞;

2. For every p ∈ S, set P (p)← nil, R(p)← p, C(p)← 0, and insert p in Q;

3. While Q is not empty, do

3.1. Remove from Q a pixel p = (xp, yp) such that C(p) is minimum;

3.2. For each pixel q = (xq, yq) such that q ∈ A(p) and C(q) > C(p), do

3.2.1. Set C ′ ← (xq−xR(p))
2 +(yq−yR(p))

2, where R(p) = (xR(p), yR(p)) is the root
pixel of p;

3.2.2. If C ′ < C(q), then

3.2.2.1. If C(q) 6= +∞, then remove q from Q.

3.2.2.2. Set P (q)← p, C(q)← C ′, R(q)← R(p), and insert q in Q.

Note that, the IFT algorithm is essentially Dijkstra’s shortest-path algorithm [14],
slightly modified to multiple sources and general path-cost functions. Its correctness for
weaker conditions that are applied to only optimum paths in the graph is presented in [20].
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A natural extension of this algorithm to compute contour saliences consists of obtaining
one histogram of the resulting root map for each side of the contour, restricted to a small
neighborhood of the curve in order to eliminate the cross-influence of its opposite parts.
Each bin of the histograms indicates the area of influence of the respective root inside (or
outside) the contour. The root is classified as convex, when the external area is greater than
the internal area, and otherwise as concave.

As in the original approach [8], a point of the curve is classified as salient by thresholding
its maximum influence area [10]. This approach, however, may miss important salience
points when opposite parts of the contour come too close to each other, even for a small
radius r in Equation 1. It has otherwise been particularly effective for skeletons and for
simple contours, such as polygons, but it fails in finding the salience points of more complex
and intricate curves. Torres et al. [11, 12] have proposed a partial solution for this problem,
which is described next.

3 The use of skeletons for contour saliences

First, multiscale skeletons [19] are computed for the contour (Section 3.1), and one internal
skeleton and one external skeleton are chosen by thresholding the multiscale skeletons.
Second, the internal and external skeleton saliences are found similarly to as described in
the previous section (Section 3.2). The location of the contour saliences are determined
by relating the salience points of the internal skeleton to convex contour points and the
salience points of the external skeleton to concave contour points (Section 3.3).

3.1 Multiscale skeletonization

Given a contour with N pixels, its internal skeleton is defined as the geometric location of
the centers of maximal disks contained in the contour [24]. A similar definition is valid for
the external skeleton.

Algorithm 1 applied to the contour creates a root map R. Multiscale skeletons [19] can
be computed from R if each contour pixel p (root) is assigned to a subsequent label value
λ(p), varying from 1 to N , while circumscribing the contour (Figure 2a). A label map L can
be created by computing L(R(p)) to each image pixel p (Figure 2b). A more efficient way,
however, is to propagate the labels of the contour pixels during Algorithm 1. In this case,
the labeling function λ is used in step (2), when the contour pixels are inserted in Q, and
the label map L is created similarly and simultaneously to the root map R. A difference
image D results from the label map L by computing the following for each pixel p inside
and outside the contour (Figure 2c):

D(p) = max
∀q∈A4(p)

{min{δ(p, q),N − δ(p, q)}}, (4)

where δ(p, q) = L(q) − L(p) and A4(p) is the set of pixels q that are 4-neighbors of p.
The difference image represents the multiscale internal and external skeletons by label
propagation [9, 19]. One-pixel wide and connected skeletons can be obtained by thresholding
the difference image at subsequent integer values (Figures 2d-f). The higher the threshold
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value, the more simplified the skeletons become, with smaller details being progressively
removed as the threshold increases.

(a) (b) (c)

(d) (e) (f)

Figure 2: Multiscale skeletonization by label propagation inside a contour. (a) Labeled
contour, (b) label map, (c) difference image, and (d-f) internal skeletons at three different
scales.

3.2 Skeleton saliences

For small scales (low thresholds – e.g., 5% of the number N of contour pixels), each salience
point of the internal skeleton corresponds to one convex point of the contour and each
salience point of the external skeleton corresponds to one concave point of the contour (see
Figure 3). The salience points of the skeletons are determined similarly to as described
in Section 2.1 by taking the skeleton points as seed pixels and executing Algorithm 1 for
each skeleton separately. For a small dilation radius (r = 10), the histogram of the root
map gives the influence areas of each skeleton point. The salience points of the skeletons
are those with influence area greater than the area threshold obtained by setting θ = 70 in
Equation 1.
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(a) (b) (c)

Figure 3: (a) Salience points of the contour of a fish and (b-c) salience points of its internal
and external skeletons.

3.3 Contour saliences via skeletons

The relation between the contour and its internal and external skeletons [26] is directly
obtained by applying Algorithm 1 to the contour [11, 12]. Equation 4 assigns to each
pixel inside and outside the contour the maximum length of the shortest contour segment
between two roots equidistant to that pixel according to the cost map. Figure 4a illustrates
this situation for a salience point c of the skeleton, which is related to a salience point
a of the contour. The difference value D(c) is the length of the segment dab. Suppose
b is the root pixel of c, point a can be reached from point c by skipping dab/2 pixels in
the anti-clockwise orientation along the contour, starting from b. Similarly, point a could
be found from c through d following the clockwise orientation, when d is the root pixel
of c. The method only needs to determine which is the root pixel, either b or d. If the
contour pixels are labeled in clockwise orientation, the root pixel of c will be b whenever
δ(p, q) > N − δ(p, q) in Equation 4 for L(q) = L(d) and L(p) = L(b). Otherwise, the root
pixel of c will be d for L(q) = L(b) and L(p) = L(d). The same rule is applied for the
external skeleton. Figures 4b-c illustrate the same concept applied to a real shape.

The correct orientation (clockwise or anti-clockwise) can be encoded in the difference
image D by signaling it. Equation 4 must be substituted by the following algorithm applied
to all pixels p in image D:

Algorithm 2:
Input: A root label map L.
Output: A signed difference image D.

1. For every pixel p of the image D, do

1.1. Set δmax ← −∞.

1.2. For each pixel q ∈ A4(p), do

1.2.1. Set ∆← min{δ(p, q),N − δ(p, q)} and s← 1.
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c

b

d

a

(a) (b) (c)

Figure 4: (a) Relation between skeleton and contour saliences. (b) The same concept applied
to a contour. (c) A zoomed region of the figure in (b).

1.2.2. If ∆ = N − δ(p, q), then

1.2.2.1. Set s← −1.

1.2.3. If ∆ > δmax, then

1.2.3.1. Set δmax ← ∆ and sign← s.

1.3. Set D(p)← sign × δmax.

The pixels of D with absolute values greater than 5% of N are chosen to represent the
internal and external skeletons. The salience points of the skeletons can be obtained by the
area thresholding method described in Section 2. Finally, the signaled values of the skeleton
salience points in D and their roots on the contour are used to locate the corresponding
contour salience points, as illustrated in Figure 4.

Although the method works fine for convex contour points, it adds non-relevant concave
points, because the external skeleton may present spurious branches due to contour rotation
and scaling. Unfortunately, these non-relevant concave saliences reduce the performance of
the contour salience descriptor [11, 12]. Also, if the threshold of 5% is increased to eliminate
the spurious branches of the external skeleton, the method misses relevant concave points of
the contour. In this paper, the spurious branches are eliminated by an alternative skeleton
labeling process and the problem is solved as follows.

The branches of the external skeleton are labeled with both, the label of their related
root pixel on the contour and the length of the branch. The length-labeled skeleton image is
thresholded and the resulting binary image is multiplied by the root-labeled skeleton image.
These last steps remove concave contour saliences related to small branches and preserve
the relevant concave saliences.
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4 Contour Salience Descriptors

Although the salience values along the contour can not be used to locate salience points
in the case of intricate and complex contours, they encode important local and global
information about the contour which can be exploited to create effective shape descriptors.

An example is the descriptor based on the convex contour saliences presented in [11, 12].
Since, the problem of estimating concave points is solved now, this paper proposes the
same contour salience descriptor including the concave points (Section 4.1) and a new
shape salience descriptor for contour segments (Section 4.2).

4.1 Contour Saliences (CS)

After determining the salience points along the contour (Section 3), concave points have
their salience values signed negative and the salience values of convex points remain positive.
One arbitrary salience point on the contour is taken as reference and the method computes
the relative position of each salience point with respect to the reference point. Thus, the
signed salience values and the relative position of the points form two feature vectors of
the same size, which are used in the contour salience descriptor. Figure 5 illustrates these
feature vectors for a polygon. The contour of the polygon, its reference point, the internal
and external skeletons, and the respective salience points are indicated in Figure 5a. The
plot shown in Figure 5b indicates the salience values versus the relative position of the
points along the contour.
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Figure 5: (a) Contour and skeletons of a polygon, where salience points are indicated by
dots. (b) The salience values of the polygon in (a).

Whenever two contours of the same object appear in different positions (e.g., rotations
and scales), they should be represented by the same salience points. However, the point
taken as reference may not be the same in both. Also, the feature vectors of distinct objects
may have different sizes. Therefore, the contour salience descriptor uses a heuristic matching
algorithm between contours which registers their feature vectors using the reference points
and computes their similarity taking into account their difference in size. This matching
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algorithm is based on the algorithm proposed by Abbasi and Mokhtarian [1, 31] to match
Curvature Scale Space (CSS) images, and it is described in [11, 12].

4.2 Segment Saliences (SS)

The segment salience descriptor is a variation of the contour salience descriptor which
incorporates two improvements: the salience values of contour segments, in the place of
salience values of isolated points, and another matching algorithm that replaces the heuristic
matching by an optimum approach.

The salience values along the contour are computed as described in Section 2.1 and the
contour is divided into a predefined number s of segments of the same size. The internal and
external influence areas of each segment are computed by summing up the influence areas
of its corresponding pixels. A contour segment is considered convex, when its accumulated
external area is greater than its accumulated internal area, and it is concave otherwise. The
difference between them is defined as the salience value of the contour segment, which is
positive when it is convex, and negative when it is concave. These signed salience values
form the feature vector of the segment salience descriptor. Algorithm 3 below presents the
procedures to compute this feature vector for a given contour.

Algorithm 3:
Input: A contour ζ in an image I; number s of segments.
Output: A feature vector SS encoding the contour segment saliences.

1. Apply Algorithm 1 using the pixels in ζ as seeds and create a label map L as described
in Section 3.1.

2. For each t ∈ ζ, compute its internal (Hint(t)) and external (Hext(t)) influence areas.

3. Split the contour ζ into a set S = {Seg1, Seg2, ..., Segs} with s segments of the same
size.

4. For each segment in S, compute its internal (Aint(Segi)) and external (Aext(Segi))
influence areas as follows:

4.1. Aint(Segi) =
∑

t∈Segi
Hint(t)

4.2. Aext(Segi) =
∑

t∈Segi
Hext(t)

5. Compute the feature vector SS of size s as:

5.1. SS(i) = Aext(Segi)−Aint(Segi), for 1 ≤ i ≤ s

Figure 6 illustrates this feature vector for a contour, which is divided into 10 segments
(Figure 6a). The curve shown in Figure 6b indicates the salience value of each segment
along the contour.
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Figure 6: (a) A contour with 10 segments. (b) The salience values of the segments.

The fixed number of segments per contour allows the use of the optimal correspondent
subsequence (OCS) algorithm [36] to match feature vectors between contours. This match-
ing algorithm is the same used in the Beam Angle Statistics (BAS) descriptor [3]. Feature
vectors of the same size also simplify the storage and access methods of the image database.

5 Evaluation

The evaluation process consists of defining a shape database, an effectiveness measure and
a set of shape descriptors for comparison.

5.1 Shape database

The shape database is a set with one thousand and one hundred fish contours obtained
from [33]. Since there is no semantic definition of relevant images (classes of contours) for
this database, each group of relevant images is defined as one fish contour and 9 different
manifestations of rotation and scaling applied to it. Therefore, the problem consists of 1100
classes with 10 shapes each.

5.2 Effectiveness measure

The experiments adopted the query-by-example (QBE) [4] paradigm. In the CBIR context,
an image is given as an input and two types of searches are possible: similarity range and
similarity rank. The search by similarity range returns the images of the database whose
distance from the query image is less than a given search radius. The search by similarity
rank returns a specified number of images in the increasing order of distance with respect
to the query image. In both cases, the effectiveness of the system is related to the relevance
of the retrieved images. It is expected that the relevant images return before non-relevant
images in the second case and the non-relevant images do not return in the first case. In
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Classes Descriptor 1

class 1 {(1.50, 2.50), (1.50, 2.00), (2.00, 2.00), (1.00, 2.00), (1.50, 1.50)}

class 2 {(1.00, 1.00), (1.00, 2.00), (1.00, 3.00), (1.00, 4.00), (1.00, 5.00)}

Classes Descriptor 2

class 1 {(2.00, 1.00), (2.00, 2.00), (2.00, 3.00), (2.00, 4.00), (2.00, 5.00)}

class 2 {(1.40, 1.40), (1.60, 1.40), (1.60, 1.20), (1.40, 1.20), (1.50, 1.30)}

Classes Descriptor 3

class 1 {(1.50, 2.50), (1.50, 2.00), (1.75, 2.25), (1.25, 2.00), (1.50, 1.50)}

class 2 {(1.50, 5.50), (1.25, 5.00), (1.50, 5.00), (1.15, 5.00), (1.50, 4.50)}

Table 1: Coordinates of each image in classes 1 and 2 for the three hypothetical descriptors.

some applications, the relevance of the retrieved images depends on the user’s opinion.
However, there are several other applications where predefined classes determine groups
of relevant images independent of user. Any query image in a given class should return
the images of the database belonging to this class first. In such a case, it makes sense to
compare descriptors based on objective measures.

The experiments of this paper evaluate the ability of shape descriptors to distinguish
between different fish contours and to identify a fish contour independent of possible rotation
and scaling transformations. Note that the effectiveness of the shape descriptors apply for
image retrieval and image analysis, considering the resemblance between both problems.
Since each shape descriptor represents a contour as a “point” in the corresponding metric
space, its effectiveness will be higher as more separate the clusters of relevant contours are
in the metric space; and as more compact the clusters are in the metric space, higher will be
the robustness of the shape descriptor with respect to an increase in the number of classes.
Therefore, a “good” effectiveness measure should capture the concept of separability, and
perhaps the concept of compact-ability for sake of robustness. More formally, the compact-
ability of a descriptor indicates its invariance to the object characteristics that belong to
a same class, while the separability indicates its discriminatory ability between objects
that belong to distinct classes. While these concepts are commonly used to define validity
measures in cluster analysis [13, 17], they seem to not have caught much attention in the
literature of CBIR systems, where one of the most used effectiveness measures is Precision
× Recall [32].

A simple example can be used to illustrate that Precision × Recall does not capture
the separability and compact-ability concepts, and therefore, it should not be used as effec-
tiveness measure. Consider the existence of two classes (class 1 and class 2) composed by 5
images each and three different image descriptors (descriptor 1, descriptor 2, and descriptor
3), whose extraction algorithms create feature vectors belonging to R

2 space. Table 1 shows
the coordinates of each image in each class for these three hypothetical descriptors.

Figures 7, 8, and 9 show the classes 1 and 2 in the Cartesian plane for descriptors 1, 2
and 3, respectively.

Note that, it is reasonable to expect that the descriptor 3 will be more effective than the
descriptor 2, which will be more effective than the descriptor 1. However, Figure 10 shows
the Precision ×Recall graph for these descriptors, and even though descriptor 3 presents



Contour Salience Descriptors 13

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2  2.5  3

Y

X

Descriptor 1

class 1
class 2

Figure 7: Descriptor 1

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2  2.5  3

Y

X

Descriptor 2

class 1
class 2

Figure 8: Descriptor 2

the best Precision×Recall curve, descriptor 1 outperforms descriptor 2.

On the other hand, the concepts of separability and compact-ability seem to be better



14 Torres et. al

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2  2.5  3

Y

X

Descriptor 3

class 1
class 2

Figure 9: Descriptor 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Precision x Recall

Descriptor 1
Descriptor 2
Descriptor 3

Figure 10: Precision vs Recall: as higher is the curve, as better is the descriptor.

represented by the measures proposed in [11]. Figure 11 shows, for example, the multiscale
separability curves for the three descriptors. Note that, descriptor 3 presents the best curve
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again. However, curves of descriptors 1 and 2 have the opposite behavior when compared
to the Precision ×Recall graph. Now, descriptor 2 is more effective than descriptor 1, as
expected.
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Figure 11: Multiscale separability: as higher is the curve, as better is the descriptor

Due to these observations, the present paper uses the concepts of compact-ability and
multiscale separability proposed in [11] to evaluate the shape descriptors. The Segment
Saliences (SS) implementation considered in this experiment used 30 segments.

5.3 Evaluated descriptors

The proposed shape descriptors, contour saliences (CS) and segment saliences (SS), are
compared with the following shape descriptors.

Curvature Scale Space (CSS) [1, 31]:. The CSS descriptor is used in the MPEG-7
standard and represents a multiscale organization of the curvature zero-crossing points of a
planar curve. In this sense, the dimension of its feature vectors varies for different contours,
thus a special matching algorithm is necessary to compare two CSS descriptors (e.g., [11]).
The implementation of the CSS descriptor is a C version of the Matlab prototype presented
in [30].

Beam Angle Statistics (BAS) [2, 3]: The BAS descriptor has been compared with
several others [5, 6, 23, 25, 27, 31], including the CSS descriptor. In [3], it was shown that
the BAS functions with 40 and 60 samples outperform all of them. The experiments of the
present paper use the BAS descriptor with 60 samples. Basically, the BAS descriptor is
based on the beams originated from a contour pixel. A beam is defined as the set of lines
connecting a contour pixel to the rest of the pixels along the contour. At each contour pixel,
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Descriptor Id Descriptor Name

SS Segment Saliences

CS Contour Saliences

CCS Convex Contour Saliences

CSS Curvature Scale Space

BAS Beam Angle Statistics

Table 2: List of evaluated descriptors.

Descriptor Id Compact-ability

SS 0.93

CS 0.73

CCS 0.70

CSS 0.73

BAS 0.95

Table 3: Compact-ability values of the evaluated descriptors.

the angle between a pair of lines is calculated, and the shape descriptor is defined by using
the third-order statistics of all the beam angles in a set of neighborhoods. The similarity
between two BAS moment functions is measured by an optimal correspondent subsequence
(OCS) algorithm, as shown in [3].

Convex Contour Saliences (CCS) [11, 12]: The CCS is the same descriptor de-
scribed in Section 4.1, without the concave saliences. The CCS has outperformed Multiscale
Fractal Dimension [11], Fourier Descriptors [21, 29], Moment Invariants [16, 22], CSS [1, 31]
and BAS [3] with respect to the multiscale separability measure [11]. Experiments with
Precision × Recall have also showed better results with the CCS as compared to CSS,
Fourier Descriptors, and Moment Invariants [12]. Since the fish database is the same used
in these experiments, only BAS and CSS were maintained for comparison.

Table 2 summarizes the set of evaluated shape descriptors.

5.4 Experimental results

Figure 12 shows the separability curves of the evaluated descriptors. Observe that the Con-
tour Saliences (CS) presents a better separability curve than the Convex Contour Saliences
(CCS) for search radii less than 80% of their maximum distance. This indicates that the
CS descriptor encodes more information (due to the concave points) than the CCS. The
most relevant result is certainly the best separability curve of the Segment Saliences (SS)
for almost all search radii.

Table 3 presents the compact-ability values of the evaluated shape descriptors. The
higher values were found for Beam Angle Statistic (BAS) and SS, while CCS presented
the lowest value. According to these experiments, the SS descriptor is more effective than
the others, since it provides the best separability, and the second most robust (due to its
compact-ability). This is certainly a very relevant result.
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6 Conclusion

This paper has presented a more robust approach to incorporate concave saliences into the
contour salience descriptor and a new shape descriptor based on salience values of contour
segments. They both make use of the image foresting transform as a general tool for the
design of image processing operators. The results indicate segment saliences as the most
effective descriptor among contour saliences, convex contour saliences [11, 12], curvature
scale space [1, 31], and beam angle statistics [2, 3], using a fish database with 11,000 images
organized in 1,100 classes. They also confirm the improvement of incorporating concave
saliences into the contour salience descriptor. It is important to notice that the segment
salience descriptor does not require the location of salient points along the contour. In this
sense, it is much simpler than the contour salience descriptor, which together with its high
compact-ability make the results even more relevant.

The effectiveness in image retrieval was discussed with respect to the Precision×Recall
measure and the multiscale separability [11] was proposed as a more appropriate effective-
ness measure.

Ongoing developments consider the creation of shape descriptors, which combine the
salience features with color- and texture-based descriptors, and applications in CBIR that
use the proposed shape descriptors as effective indexing vectors.
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