
Database descriptors: laying the path to commodity web data services

Rodrigo Dias Arruda Senra Claudia Bauzer Medeiros

Institute of Computing, University of Campinas, UNICAMP
Caixa Postal 6176 – 13084-971 – Campinas – SP – Brazil

E-mail: rsenra@acm.org, cmbm@ic.unicamp.br

Abstract

The growth of the Internet has dramatically changed
the way information is accessed and managed. The Web
contains an ever growing amount of distributed, semi-
structured and uncontrolled data. In this new context, we
should rethink how applications couple with DBMSs. Cor-
porate intranets allowed a tiered coupling between applica-
tions and databases. However, that model is still too con-
strained, and unable to accommodate the hostility, unsafety
and fast pace of the Web environment.

Web Applications soon, if not already, will seek to
dynamically negotiate their relationship to distributed
database services. Prior to accomplishing autonomous ap-
plication to DBMS binding and seamless data migration,
we need to devise a ”lingua franca” to request and describe
DBMS and database services and capabilities.

Database descriptors (DBDs) are a step towards this vi-
sion. This paper presents the motivation for DBDs, their
structure and architecture, examples and a use case sce-
nario.

1. Introduction

We are interested in supporting seamless switching be-
tween applications and DBMSs. In the context of this paper,
applications are any software artifact, and databases refer to
Database Management Systems (DBMS). When an applica-
tion switches from using a DBMS to another, data may also
have to be migrated and transformed. We attack the prob-
lem in two stages. This paper is concerned with the first
stage - mechanisms to support dynamic coupling - and as-
sumes that, once this is achieved, appropriate mechanisms
will be devised to migrate data, when needed (the second
stage).

Today, applications are still conceived to be tightly cou-
pled to a given DBMS instance. Such a tight coupling is
the most feasible solution to implement, since such systems

differ in terms of model, operations and interface. For in-
stance, an application written to use a relational database
must be refactored to use a different DBMS. When the un-
derlying data models are different, the way data is structured
and handled is radically different, such as an XML stor-
age or an Object-oriented database. Even if two DBMSs
support the same model, they may differ on the capabili-
ties supported, such as temporal or spatial facilities, and the
DBMSs may offer a different feature set.

The term feature set, in this paper, refers to a set of pro-
perties that include: data model, functional capabilities, ac-
cess methods and API, performance and configuration set-
tings. Applications can only switch from one DBMS to an-
other if the target DBMS offers a feature set compatible to
what is required by the application.

Relational DBMS already achieved a good degree of in-
terchangeability through successful standardization efforts
such as Open Data Base Connectivity (ODBC) from the
X/Open consortium, or ISO’s ANSI-SQL proposed in 1989
(and revised in 1992). However, there is room for im-
provement. The software industry continuously improves
its products with extensions that transcend the relational
model and fall out of the standardization efforts. As a con-
sequence, applications that depend on non-standard exten-
sions become enslaved to a particular product.

Success in designing and building DBMS database pro-
ducts will certainly introduce additional interoperability is-
sues. For example, given a Web application in the emergent
cloud computing scenario [4], as the user base demands
scalability, the solution may be to switch from a single
multi-purpose database to several special-purpose database-
as-a-service (DaaS) approaches.

Several research efforts have been undertaken towards
more flexible coupling between application requests for
data and DBMS. Examples of such efforts include: n-tiered
architectures, database federations, Web services and cloud
computing. Each such initiative is based on some set of
standards that determine, for example, how to invoke oper-
ations or how to encapsulate data.

2010 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4005-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ECBS.2010.57

386

There are two basic scenarios to be considered. In the
first scenario, an application requests data from several
DBMS, and may need further data from another DBMS of
a different nature, i.e. with a widely different feature set.
In the second scenario, the application wants to switch from
the initial set of DBMS to another (potentially different) set
of DBMS. Here, it may have to depend on additional pre-
processing operations – e.g., data conversion and migration
from the original set to a new one.

These two scenarios introduce many research chal-
lenges. For instance, how to choose an adequate DBMS
amongst several vendors? If changes in DBMS involves
data migration, what is the effort and schedule involved?
Would there be any collateral effects due to compatibility
mismatches? And the bottom line – could all of these ques-
tions be answered and the migration be carried out automat-
ically and seamlessly?

In order to attack this problem we propose the use of
database descriptors (DBDs), which are data structures that
describe the feature set of a DBMS and the requirements
applications have in terms of DBMS support. From a high
level point of view, an application A can switch from DBMS
X to DBMS Y if, DBDA is compatible with DBDY .

In more detail, this paper proposes DBDs as a mecha-
nism to describe the nature and capabilities of DBMS and
application requirements. DBDs could be used to verify and
validate the matching between application requirements and
database capabilities, and ultimately be used as the founda-
tion for dynamic negotiation and autonomous binding be-
tween applications and databases.

This paper is organized as follows. Section 2 introduces
DBDs. Section 3 discusses situations in which they are
needed. Section 4 provides a use case. Section 5 discusses
a few major trends in related work. Section 6 concludes the
paper.

2. Database Descriptors

The concept of database descriptors was originally pre-
sented by Madnick and Wang [14] in 1988 to describe
something similar to a (relational) DBMS feature set. We
extend this concept for new kinds of DBMS and applica-
tions, moreover accomodating it to the Web scenario.

The main goal behind constructing DBDs is to enforce a
loose coupling between Applications and DBMS, that could
help to: (i) ensure DBMS product/vendor independence, (ii)
provide seamless cross-database migration, and (iii) sup-
port Applications and DaaS in the Cloud. Some of these
goals depend on strategies to solve the schema integration
problem. In this paper we are not focused on the data inte-
gration issue. Our main interest is to explore a mechanism
that allows capability verification, validation and negotia-
tion amongst applications and DBMS.

2.1 Basic Definitions and Architecture

We devise two types of database descriptors: desiderata
descriptor and feature descriptor. The desiderata descrip-
tor specifies what a client application needs (requirements)
from a DBMS. The feature descriptor specifies the DBMS
feature set. As we pointed out earlier, it refers to a set of pro-
perties that include: data model, functional capabilities, ac-
cess methods and API, performance and configuration set-
tings.

Figure 1. Database Descriptor Architecture

Assuming that DBDs are already available, there are
many possible interaction patterns between applications and
DBMSs. Figure 1 presents a generic architecture that serves
as a reference for discussing interaction patterns.

The first step is taken when a given DBMS reifies its fea-
ture set as a feature descriptor. Considering that the feature
descriptor is in digital form, it could be stored anywhere: as
a file in the filesystem, as data in some DBMS or published
in a Web page. We advocate the creation of registries in the
Web. A descriptor registry consists of a publicly accessi-
ble repository specialized in storing DBDs. For instance, a
minimal registry could be materialized as a Web page with
links to pure-XML pages describing DBDs. Step 1 in Fig-
ure 1 illustrates DBMSs X and Y registering DBDX and
DBDY in a given registry.

The second step is taken when an application produces
a desiderata descriptor that reflects its expectations in terms
of a DBMS. The purpose of the desiderata descriptor is to be
matched against the feature descriptors found in a registry.
One possible approach is to make applications themselves
responsible for discovering registries and carrying out the
descriptor matching process.

We have chosen to introduce another element in the ar-
chitecture called the negotiator, who is responsible for me-
diating the negotiation process, in which applications ”ne-

387

gotiate” switching across DBMSs. Therefore, the nego-
tiator can be an independent software artifact (such as a
server), dwelling on the Web, and shared by potentially
many applications. On the other hand, the negotiator can
be a software module (such as a code library) embedded in
the application or in the descriptor registry. Although we
will refer to negotiator as an entity independent from the
application to highlight its role, the architecture proposed is
generic and accommodates different implementations.

We will not explore in this paper the trade-offs among
the options to implement negotiators, either embedded in
the application, in the registry or as an independent external
mediator. We leave this topic to be explored in the future.

Step 2 in Figure 1 depicts application App presenting its
desiderata descriptor DBDApp to the negotiator. The nego-
tiator should discover the available registries and run the de-
scriptor matching algorithm (see Section 2.4) against them.
This is represented by step 3. After the matching process,
the resulting collection of feature descriptors is ranked by
similarity with the desiderata descriptor and returned back
to App in step 4. The process concludes with dynamically
binding application and DBMS.

2.2 DBD Structure

The desiderata and the feature descriptors both share a
common structure, composed by three distinct parts: meta-
data, dimensions, dimensional values.

The metadata part describes the descriptor itself, and we
propose the adoption of a Dublin Core (DC) [1] subset. The
following DC fields should be mandatory: identifier, for-
mat, date, creator, title and type.

The dimensions part are the DBMS properties described
by the DBD, such as: connectivity, data model, type system,
indexing resources, DDL/DML support, security, prove-
nance, versioning, replication, scalability, etc. For each di-
mension mentioned in the DBD, there should be an associ-
ated dimensional value, which composes the third part.

The desiderata DBDs could have additional dimensions
that express limitations or trade-offs from the application
perspective, for example: prioritize up-to-date information,
prioritize low latency for data delivery, enforce size con-
straints for result sets, determine quality of data (e.g., accu-
racy or completeness). Other (non-functional) requirements
include privacy, security, costs, legal issues.

Desiderata descriptors could also include a fourth algo-
rithmic part that specifies criteria for matching against fea-
ture descriptors. This algorithmic part can be represented
by code embedded in the DBD, or it could be just a textual
reference to some algorithm well known by the negotiators
(further explained in Section 2.4). Once more, the trade-
offs derived from these implementation choices are left for
the future.

2.3 DBD Representation

The wide spectrum of the dimensions exemplified in
Section 2.2 suggests that the DBD representation format
should be extensible. We assume that distinct DBD in-
stances will have a different collection of dimensions. As
a result, the representation format and the matching algo-
rithms should cope with partial information and heteroge-
neous structures. Given these constraints, XML might be a
sound technological choice for representing DBDs. XML
satisfies the heterogeneity condition but it is not sufficient
for DBD representation, as explained by Wilde et al [20].

We propose, therefore, that DBDs be represented by the
semantic annotations of [15, 13].

Annotation Units. An annotation unit a is a triple <
s, m, v >, where s is the subject being described, m is the
label of a metadata field and v is its value or description.

Annotation. An annotation A is a set of one or more
annotation units.

Semantic Annotation Units. A semantic annotation
unit sa is a triple < s, m, o >, where s is the subject be-
ing described, m is the label of a metadata field and o is a
term from a domain ontology.

Semantic Annotation. A semantic annotation SA is a
set of one or more semantic annotation units.

In fact, annotation units describe data using natural lan-
guage; semantic annotations use ontology classes and can
be processed by a machine. Since semantic annotations rely
on ontologies, they provide the necessary interoperability
basis to accommodate the needs of DBDs. However, there
still remains the need to define the notion of compatibility,
which is discussed next.

2.4 Matching DBDs

An application can couple to a DBMS if the former’s
desiderata descriptor matches the latter’s feature descriptor.
In an ideal world, both DBDs should be the same (i.e., iden-
tical metadata, dimensions and values). However, this re-
stricts application-DBMS coupling. Thus, we have to look
for more flexible matching criteria – e.g., borrowing notions
from (i) programming languages or from (ii) content-based
retrieval mechanisms in image databases.

In the first case (i), we can use an analogy from inter-
face matching, where a subroutine invocation (message in
object-oriented jargon) should match one function or pro-
cedure (resp., method) considering its context (i.e., names-
pace) and signature (i.e., name and parameters). Similarly,
we can consider DBDs to represent signatures, where the
dimension values are ontology terms.

Moreover, if we use semantic annotations, then match-
ing can be performed using ontological relations. Borrow-
ing from Santanche [18], two DBD values (A and B) are

388

considered equivalent if they refer to the same concept in
an ontology (equal URIs), or if they point to two concepts
related by OWL equality relationships (equivalentClass or
sameAs). Moreover, A is said to be more general than B if
A subsumes B and conversely B is more specific than A. For
instance, if B is OWL subClass of A, or B is related with A
through the partOf property (B partOf A), then A subsumes
B. Consider A and B vertices of a graph, whose edges are
properties. The subsumption relationship between A and
B is a path formed by one or more edges. Therefore, the
similarity rank value between A and B is inversely propor-
tional to the number of edges which connect A and B in a
subsumption relationship.

In the second case (ii), one can consider an analogy be-
tween DBDs and descriptors of images. From a high-level
perspective, image similarity mechanisms are based on the
notions of feature descriptor and distance function [19]. A
feature descriptor is typically a set of values, organized ac-
cording to some structure, that summarizes a given object
(here, an image). Vectors are the most common structure
used, and feature descriptors are therefore often called fea-
ture vectors. Two objects are considered similar if the dis-
tance between their descriptors is below some threshold.
Similarity depends on the features selected – thus, distance
functions are intimately associated with the algorithms used
to create the vectors. Examples of distance functions in-
volve Manhattan (also known as L1) and Euclidean – L2. If
we borrow from this second kind of domain, then DBDs are
our image feature descriptors and we can devise different
distance functions (e.g., edit distance for each string in an
annotation unit) to compare two DBDs.

We propose the adoption of the first definition, which
borrows from interface matching in programming lan-
guages. Nevertheless, we point out that other matching
mechanisms can be used.

3. DBD Example

Figure 2 exemplifies, from a high level point of view, a
hypothetical DBD for an RDF DBMS. This example rep-
resents the feature DBD whose identifier is DBD1 (created
in Dec 18, 2009 by Claudia). The dimensions and values
indicate that the 2PL concurrency protocol is used, there is
no versioning, storage uses RDF format, and the query lan-
guage supported is RDQL. In order to represent DBD1 we
have chosen the RDF data model rendered in XML markup
language, which is acceptable in such a simple example.
Posterior and more complete versions of DBD1 could be
rendered in more expressive semantic languages, e.g. an
OWL dialect (FULL/DL/Lite), depending on the need to
express more accurately the identities, relationships and re-
strictions on the DBD dimensions.

Figure 3 presents a desiderata descriptor that matches

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dbd="http://www.lis.ic.unicamp.br/purl/DBD">

<rdf:Description rdf:about="http://www.lis.ic.unicamp.br/purl/DBD/DBD1">
<!-- metadata -->
<dc:creator>Claudia Bauzer Medeiros</dc:creator>
<dc:description>Hypothetical DBD for an RDF DBMS</dc:description>
<dc:identifier>DBD1</dc:identifier>
<dc:format>application/rdf+xml</dc:format>
<dc:type>

<rdf:Description>
<dbd:Type>Feature DBD</dbd:Type>

</rdf:Description>
</dc:type>
<dc:title>Descriptor of an RDF DBMS</dc:title>
<dc:date>2009-12-18</dc:date>
<dc:language>EN</dc:language>
<!-- dimensions and values -->
<dbd:concurrency>Two phase lock</dbd:concurrency>
<dbd:versioning>unsupported</dbd:versioning>
<dbd:storage>RDF triples</dbd:storage>
<dbd:DML>

<rdf:Bag>
<rdf:li>RDQL</rdf:li>
<rdf:li>SPARQL</rdf:li>

</rdf:Bag>
</dbd:DML>

</rdf:Description>
</rdf:RDF>

Figure 2. Feature DBD Example using anno-
tations

with the feature DBD exemplified in Figure 2. We point out
that these examples are artificial, in the sense that feature
and desiderata descriptors were both created by the same
people. However, they serve the purpose of illustrating the
look-and-feel of DBDs.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dbd="http://www.lis.ic.unicamp.br/purl/DBD">

<rdf:Description rdf:about="http://www.lis.ic.unicamp.br/purl/DBD/DBD1">
<!-- metadata -->
<dc:creator>Rodrigo Dias Arruda Senra</dc:creator>
<dc:description>Desiderata DBD for an hypothetical application</dc:description>
<dc:identifier>DBD2</dc:identifier>
<dc:format>application/rdf+xml</dc:format>
<dc:type>

<rdf:Description>
<dbd:Type>Desiderata DBD</dbd:Type>

</rdf:Description>
</dc:type>
<dc:title>Desiderata descriptor of an hypothetical application</dc:title>
<dc:date>2010-01-05</dc:date>
<dc:language>EN</dc:language>
<!-- dimensions and values -->
<dbd:concurrency>Two phase lock</dbd:concurrency>
<dbd:storage>RDF triple store</dbd:storage>
<dbd:DML>RDQL</dbd:DML>

</rdf:Description>
</rdf:RDF>

Figure 3. Desiderata DBD Example

There are many other domains where DBDs are appli-
cable. We just point out a few examples, to illustrate their
utility. In Online Transaction Processing Systems (OLPTs)
applications should require support for lots of small con-
current transactional workloads (e.g. debit/credit). In Dig-
ital Libraries, applications may demand for corpora text-
indexing and, for more sophisticated libraries, multimedia
indexing. In Web Portals there is an increasing demand
for multimedia delivery (audio, image and video streaming)
and the basic operation is to serve pages. Scientific Grid ap-
plications are interested in accessing voluminous data cubes
and in number crunching.

In each of these situations, applications frequently may

389

have to migrate from one DBMS to another, and in all cases
DBDs have to capture and express the applications’ require-
ments and the DBMS capabilities in each of those domains.

4. Use Case

This section presents a hypothetical use case for DBDs.
It is based on two real life projects in agro-environmental
planning - the WebMAPS [16, 17] and the eFarms [13]
projects, both conducted at the Laboratory of Information
Systems of the Institute of Computing at UNICAMP.

The task to accurately create feature and desiderata
DBDs is far from trivial. However, manually performing
a compatibility analysis between an application and cloud
DBMS services, and designing and executing a migration
plan is not trivial either, not to mention time consuming.
The purpose of this use case is to illustrate a concrete sce-
nario where DBDs are useful, and show some of the diffi-
culties involved in devising and applying DBDs. The DBD
negotiation process presents its own set of relevant research
challenges that fall out the scope of this use case discussion.

Consider a web application designed to support crop
monitoring. This application handles three types of data:
satellite images, farm/county geometries (coordinate sets),
and time series of temperature and pluviosity measure-
ments. Suppose the images and geometries are stored in the
filesystem (as NetCDF and Shapefiles respectively), while
the temporal series are stored in a relational database. The
first prototype has been tested, and the application must
now be released on the Web to end-users (farmers and
agronomers). User demand is expected to scale from dozens
to thousands of active sessions within a month’s period.

Consider furthermore that we decided to adapt this ap-
plication to use Internet-scale computing platforms, but we
must choose from the available cloud computing storage
services such as: Amazon’s SimpleDB, S3 and Relational;
Microsoft SQL Azure; or Google Data Services: Docs,
Base and DataStore/BigTable.

The first challenge in this use case is to convey feature
DBDs for these storage services – one just needs to com-
pare such services to see that there are countless factors
to take into account. There are, in fact, many dimensions
to consider to properly describe each service – e.g., vol-
ume restrictions, pricing, scalability, data model, security.
Comparing Amazon’s SimpleDB and S3, both services pro-
vide: high availability, low latency, a key-value data model,
a REST-based API and an access control lists (ACLs) secu-
rity model. On the other hand, these two services differ in
terms of volume restrictions and pricing. For example, S3
focuses on large raw data items (i.e. BLOBs), while Sim-
pleDB focuses on small textual items (described by textual
attributes) with implicit indexing. Considering that the pric-
ing model mimics the data model and the latter is different

amongst services, then the pricing model becomes harder to
be compared automatically amongst services.

All of Google’s Data Services provide: high availabil-
ity, low latency and a REST-based API, though they dif-
fer in terms of data model, access restrictions and specific
APIs. Google Docs is adequate to store textual documents
and spreadsheets. Google Base is similar to Amazon’s S3
– it is a web storage service for structured content as a set
of descriptive attributes. Differently from S3, Google Base
has no access restriction mechanisms, all items published
are always publicly available. Google DataStore is a non-
relational key-value-based web service DBMS that is part of
the App Engine development stack, and it is more adequate
for request-oriented applications (optimized for read oper-
ations). BigTable is a sparse, distributed, persistent multi-
dimensional sorted map. It is the technology that lies un-
derneath the DataStore service, and was built with access
restrictions that prevent careless or malicious users from
causing a query overload. For instance, no query can use
an inequality operator (<, <=, >=, >, ! =) on more than
one property (a.k.a field) and the result sets are limited to
1000 entries.

Microsoft SQL Azure Database is a cloud-based rela-
tional database service built on SQL Server technologies. It
provides a highly available, fault tolerant, scalable, multi-
tenant database service. Amazon Relational Database Ser-
vice (Amazon RDS) is a similar service, based on MySQL
technology. These relational DBMS in the cloud are cost-
efficient, resizable (in capacity), managed by the respective
service providers (for time-consuming database administra-
tion tasks).

Another challenge in this use case is to materialize the
desiderata DBD that describes our hypothetical crop mon-
itoring web application’s DBMS needs. There are two op-
tions: build a single desiderata DBD, or build three separate
DBDs – one for each type of data handled by the appli-
cation, assuming that it will be easier to find DBMSs that
will handle some, but not all data types. In the former op-
tion, a single DBD would be expressing the wish to inte-
grate different data sources in a single DBMS. In the lat-
ter option, three separate desiderata DBDs might suggest
that data sources will be kept within isolated repositories.
Moreover, it is important to reify several application re-
quirements, such as access patterns (read and write) and in-
dexing needs, relationships between its data types, and data
model used by the data structures to be persisted.

5. Related Work

As pointed out in the introduction there are several
initiatives to foster interoperability between applications
and DBMS, from n-tiered architectures, passing through
database federations, and reaching web services and cloud

390

computing.
DBDs provide a basis for self-describing DBMS, and

as such can be seen as a means of structuring (un-
structured) facilities of these DBMS. As such, they can
be used within the so called UIMA (Unstructured In-
formation Management Architecture) – http://docs.oasis-
open.org/uima/v1.0/os/uima-spec-os.html. Unstructured
information may be contrasted with the information in clas-
sic relational databases where the intended interpretation
for every data field is explicitly encoded in the database
by column headings – similar to a schema. Unstructured
information represents the largest, most current and fastest
growing source of knowledge available to businesses and
governments worldwide. For unstructured information to
be processed by applications that rely on specific seman-
tics, it must be first analyzed to assign application-specific
semantics to the unstructured content. The added headings
structure provides an initial support to deriving such seman-
tics. By the same token, DBDs provide a high level descrip-
tion of a DBMS (and of application requirements), in which
attributes (dimensions) can be used to derive semantics.

We believe that DBDs are specially well suited to the
cloud computing scenario [21]. The Open Cloud Mani-
festo [2] states that: (i) The challenges to cloud adoption
are addressed through open collaboration and the appro-
priate use of standards. (ii) Cloud providers must not use
their market position to lock customers into their particular
platform. (iii) Cloud providers must use and adopt existing
standards. In this scenario, DBMS can be seen as a special
kind of provider within the cloud, and DBDs can describe
their features, thereby enabling applications to look for the
appropriate databases, with help from the repositories.

The Claremont Report on Database Research [3] states
that a significant long-term research goal is to transition
from managing schemata-based structured data to the man-
aging of structured, semi-structured and unstructured data
spread over many repositories in the enterprise and on the
Web. This is referred to as the challenge of managing datas-
paces. Again, DBDs can be seen as a kind of high level
descriptor of dataspaces.

Federations and integration are two facets of the problem
of enabling applications to access heterogeneous data sets.
Federations [5, 11, 10] allow applications to access distinct
DBMS via some kind of mediation layer, which concen-
trates the ”intelligence” needed to transform an application
request into a sequence of requests to federation members.
The integration approach, on the other hand, assumes that
data or schemata have to be adapted, in order to provide a
unifying view to all applications. In the same vein, Haas
has introduced a model for information integration [8, 9]
that consists of four phases: Understanding, Standardiza-
tion, Specification, Execution. The Execution phase is di-
vided in: Materialization (ETL, replication), Virtualization

(Federation), and Search. We believe that DBDs are orthog-
onal to all of these phases, meaning that they could be used
to describe them as a whole or separately. Our initial fo-
cus is not on schema integration, nor data cleansing, nor
self-tuning [12] DBMS – rather, DBDs offer a means for
DBMS self-description. In this sense, they can be used by
mediators in a federation.

Last but not least, web services [6, 7] are another means
to allow flexibility in application execution. Web services
can encapsulate a DBMS, and serve as a layer that receives
requests for data and returns the appropriate data. In this
sense, instead of looking for the appropriate feature DBD,
an application could look for appropriate services, and re-
quest for data invoking these services, according to stan-
dard protocols (e.g., SOAP). Finding the appropriate ser-
vices would also require looking for service directories (as
opposed to looking for matching DBDs in a DBD registry).
This offers the advantage of not requiring the specification
of feature and desiderata DBDs, nor requires negotiation;
on the other hand, this demands extending web service ca-
pabilities beyond those normally found – e.g., to accomo-
date versioning or concurrency requests.

6. Conclusions and future directions

This paper presented the concept of database descriptors
(DBDs). DBDs could be the foundational bricks to build
dataspaces, becoming an indispensable tool to allow appli-
cations to switch across DBMSs, in a loosely coupled sce-
nario.

DBDs can thus contribute to help to commoditize data
services in the cloud, by supporting dynamic switching be-
tween DBMSs and applications. Moreover, they can also be
seen as a different way of tackling the information integra-
tion problem, from a connectivity point of view, in which
applications and DBMSs can negotiate their coupling.

This work is part of our initiatives towards interoperabil-
ity in an eScience context. Future directions include: to
create a catalog of concrete feature descriptors, to design a
descriptor negotiation framework, to do a proof-of-concept
implementation, with real DBMS products and services.

Acknowledgments

We would like to thank the Brazilian National Institute
of Science and Technology INCT de Ciência na Web (Web
Science), and the support from Brazilian financing agencies
CNPq, CAPES and FAPESP. This research was partially fi-
nanced by the BioCORE project, and the Fapesp-Microsoft
Research Virtual Institute (eFarms project). We would also
like to thank Karin Breitman and Roy Sterritt for pointing
out relevant references related to this work.

391

References

[1] Dublin core metadata initiative. http://dublincore.org/, 2009.
[2] http://www.opencloudmanifesto.org/openWeb, 2009.
[3] R. Agrawal, A. Ailamaki, P. A. Bernstein, E. A. Brewer,

M. J. Carey, S. Chaudhuri, A. Doan, D. Florescu, M. J.
Franklin, H. Garcia-Molina, J. Gehrke, L. Gruenwald, L. M.
Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. F.
Korth, D. Kossmann, S. Madden, R. Magoulas, B. C. Ooi,
T. O’Reilly, R. Ramakrishnan, S. Sarawagi, M. Stonebraker,
A. S. Szalay, and G. Weikum. The claremont report on
database research. SIGMOD Rec., 37(3):9–19, 2008.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
et al. Above the clouds: A berkeley view of cloud comput-
ing. EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-28, 2009.

[5] S. Berger and M. Schrefl. From federated databases to a fed-
erated data warehouse system. Hawaii International Confer-
ence on System Sciences, 0:394, 2008.

[6] E. Cerami. Web Services Essentials. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2002.

[7] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the web services web: An in-
troduction to soap, wsdl, and uddi. IEEE Internet Comput-
ing, 6:86–93, 2002.

[8] L. Haas. Beauty and the beast: The theory and practice of
information integration. ICDT, 2007:28–43, 2007.

[9] L. M. Haas, M. Hentschel, D. Kossmann, and R. J. Miller.
Schema and data: A holistic approach to mapping, resolu-
tion and fusion in information integration. In ER, pages 27–
40, 2009.

[10] D. Heimbigner and D. McLeod. A federated architecture for
information management. ACM Trans. Inf. Syst., 3(3):253–
278, 1985.

[11] D. Jonscher and K. R. Dittrich. An approach for building se-
cure database federations. In VLDB ’94: Proceedings of the
20th International Conference on Very Large Data Bases,
pages 24–35, San Francisco, CA, USA, 1994. Morgan Kauf-
mann Publishers Inc.

[12] V. Kriakov, G. Kollios, and A. Delis. Self-tuning manage-
ment of update-intensive multidimensional data in clusters
of workstations. The VLDB Journal, 18(3):739–764, 2009.

[13] C. G. N. Macário and C. B. Medeiros. Specification of a
framework for semantic annotation of geospatial data on the
web. SIGSPATIAL Special, 1(1):27–32, 2009.

[14] S. E. Madnick and Y. R. Wang. Evolution towards strate-
gic applications of databases through composite information
systems. J. Manage. Inf. Syst., 5(2):5–22, 1988.

[15] G. Z. Pastorello, Jr, J. Daltio, and C. B. Medeiros. A mecha-
nism for propagation of semantic annotations of multimedia
content. Journal of Multimedia, 2010. Accepted for publi-
cation.

[16] G. Z. Pastorello, Jr, R. D. A. Senra, and C. B. Medeiros.
Bridging the gap between geospatial resource providers and
model developers. In GIS ’08: Proceedings of the 16th ACM
SIGSPATIAL international conference on Advances in ge-
ographic information systems, pages 1–4, New York, NY,
USA, 2008. ACM.

[17] G. Z. Pastorello, Jr, R. D. A. Senra, and C. B. Medeiros.
A standards-based framework to foster geospatial data and
process interoperability. Journal of the Brazilian Computer
Society, 15(1):13–26, March 2009.

[18] A. Santanchè. The Fluid Web and Digital Content Compo-
nents: from a document-centered to a content-centered view.
PhD thesis, Institute of Computing - Unicamp, August 2006.

[19] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and
R. Jain. Content-based image retrieval at the end of the early
years. Transactions on Pattern Analysis and Machine Intel-
ligence, 22:1349–1380, December 2000.

[20] E. Wilde and R. J. Glushko. Xml fever. Commun. ACM,
51(7):40–46, 2008.

[21] L. Youseff, M. Butrico, and D. D. Silva. Toward a unified
ontology of cloud computing. In Grid Computing Environ-
ments Workshop, 2008. GCE ’08, pages 1–10, 2008.

392

