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Abstract. Bioinformatics activities present new challenges, such@s to ex-
change and reuse successful experimental procedures,dadldata, and how
to understand and provide interoperability among data ayalg across different
sites, for distinct user profiles. This thesis is an effowaads these directions.
It is based on combining research on databases, Al and sitentorkflows,
on the Semantic Web, to design, reuse, annotate and documoarformatics
experiments. The resulting framework allows the integratibheterogeneous
data and tools and the design of experiments as scientificflarg, which are
stored in databases. Moreover, it takes advantage of themof planning in Al
to support automatic or interactive composition of tasksede ideas are being
implemented in a prototype and validated on real bioinfotiosdata.

1. Introduction

Scientific workflows [19] are being increasingly adopted aseans to specify and co-
ordinate the execution of experiments that involve payéinis in distinct sites. Such
workflows allow the representation and support of complekgdhat use heterogeneous
data and software [2]. They differ from business workflowsewneral points. In particu-
lar, in bioinformatics they are characterized by a high degf human intervention and
variability in workflow design for the same task. Becauserdmimatics is still a new
area, there is not a well-defined consensus about how thenasst be executed and how
the results must be annotated [9].

Scientific workflows are usually designed manually. Manuahposition is a
hard work and susceptible to errors. Furthermore, in bosmétics, due to the constant
evolution of the area and the combinatorial explosion cdrakitives, there are just too
many alternatives for workflow construction. Thus, thera essing need for means to
help scientists to design appropriate workflows.

The main idea behind this thesis is that the problem of auticroa semi- auto-
matic composition of workflow tasks can be seen as an Atrtiflailligence planning
problem. Moreover, our use of annotations based on onesddgrms the basis for track-
ing data provenance [6].

The thesis attacks the problem of constructing and anngtatientific work-
flows, under the assumption that they are the basis for gjiegidnd executing tasks in a



distributed laboratory environment. Each activity witsuch a workflow can be executed
either by invocation of a Web service or of another (sub-kflow.

Our main contributions are thus: (i) proposing a solutiothi problem of com-
position of services, combining results from Al and databsgstems, thereby helping
design scientific workflows, while at the same time docunmegntiesign alternatives; (ii)
using ontology repositories to enhance the semantics onaattc workflow construction
and facilitate tracking data and procedure provenancg;véiidating the proposal by
means of a prototype for genome assembly and annotation.

Our implementation takes advantage of WOODSS (WOrk-flOgelapatial De-
cision Support System) [11], a scientific workflow infrastiure developed at the Univer-
sity of Campinas, Brazil. Originally conceived for decisiampport in environmental
planning, it has evolved to an extensible database-ceh&meironment that supports
specification, reuse and annotation of scientific workfloms #heir components.

This paper is organized as follows. Section 2 describesecklaork. Section 3
presents our approach for workflow design and executiontided outlines our case
study in bioinformatics. Sections 5 and 6 contain conchsiand future work.

2. Related work and concepts

2.1. Workflows and Web services in bioinformatics

Bioinformatics activities are typically complex, involgrinteractions among several ba-
sic tasks, human intervention and access to heterogenatausalirces. Bioinformatics
laboratories often use pipelines or scripts to help autertias process. Each experiment
can be seen as a workflow designed by scientists to help thdyrattivities [14]. How-
ever, this practice has little flexibility, hampering thetexh and reuse of these workflows.
One solution is to use Web services, invoked by workflow &, to execute some
bioinformatics task. Even then, there are several problestdved in the construction
of such workflows. Among them, this thesis is concerned w(ih:data and tool prove-
nance; (2) tool/task composition, translated into a prolbdé Web service composition;
and (3) mechanisms for finding the appropriate tools to exegtiask.

2.2. Planning and Composition of Web services

Automatic composition of Web services is a recent trend tetraeme of the challenges
and problems mentioned in the previous section. Users dhmmubble to specify “what”
they desire from the composition (high level goals and asfipand the system supplies
the “how” - the Web services to be used, how to interact withséhservices, etc. The
process of composing the services must be transparent teséne, and the detailed de-
scriptions of the composed services must be generated atitathy by the system from
the users’ specifications.

The task of presenting a sequence of actions to achieve aotngj is called in
Artificial Intelligenceplan synthesisor planning[16]. Such techniques are currently used
in mobile robots, manufacturing processes, satelliterogramong others [1, 13].

Recent research efforts have investigated the use of plgtmsolve the problem
of automatic composition of Web services [7]. According1@]} in order to use planning
in the automatic composition of Web services, Al planningaapts must be extended to



consider the following characteristics: plans need cormpmtrol structures with loops,
non-determinism and conditionals; plans must support ap®aobject structure; and
plans can produce new objects at execution time.

We highlight other important characteristics, not usuétiynd in Al planning,
such as: the use of non-functional attributes, like costuality, which can facilitate
the choice of the plan most adequate to the user’s needs;toegegport semantic con-
structions such as hierarchies (abstractions), as welbagpatibility with the different
Semantic Web service description standards, such as OWLwa.glaml.org/services);
concurrency in service access and scalability.

Many planning systems and algorithms can be considerednpase Web ser-
vices. For instance, there are solutions based on situedicnlus, formal languages, rule
based planning, symbolic model checking and hierarchiealnpng [10, 16, 18]

For a detailed comparison of these and other techniquegetter is referred
to [4], where we justify our choice dfierarchical planningto support (semi-)automatic
specification of scientific workflows. Hierarchical plangiis an Al planning method-
ology that creates plans by task decomposition. One wellwknhierarchical planner
is SHOP2 (Simple Hierarchical Ordered Planner 2) [12] whéchased on Hierarchical
Task Network(HTN) [16].

Our approach extends the current planners by treating @noplects and objects
created dynamically, two very important characteristighiv Web services. Moreover,
planning algorithms do not consider the existence of @hstips among objects which
might result in plan improvement. We solve these issues lbgneting SHOP2 to take
advantage of ontology repositories [4].

3. Our approach to workflow management

This section outlines our general architecture for composdf workflows and Web ser-
vices. It relies heavily in the notion of repositories thttre workflows, ontologies and
an extended UDDI catalog. Part of this architecture hasdliréeen implemented.

3.1. Repositories

Our workflow design and execution process is based on conthidl planning tech-
nigues with information stored in three repositori€stology RepositoryService Cata-
log andWorkflow RepositoryWhile the Ontology Repository contains information about
domains and service types, the Service Catalog stores iafamabout service instances.

In more detail, thé®ntology Repositorgontains two ontologies (Domain and Ser-
vice) that will be used to support automatic composition andotation of services and
workflows — in our case study, information about genome ableand annotation. The
concepts in the Domain Ontology describe a given applinatiomain. The concepts
in the Service Ontology describe the different kinds of sy and their relationships.
It is used in automatic composition to help check compatypdmong composed tasks
(e.g., interface matching). The Service Ontology does tweglescriptions of the ser-
vices themselves. Rather, it contains what we choose tosmiite type”- i.e., a generic
description of each kind of service, its generic interfgua,ameters, etc. Thus, it will
contain a description of a “printer” service, but no instaimbn of printers. Service in-
stantiation is left to the Service Catalog.
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Figure 1. System Architecture

TheService Cataloglays the role of a UDDI (Universal Description Discovery &
Integration) registry, enhanced with extended functiiesl Standard UDDI structures
store information about service providers, the Web sesvibey make available, and the
technical interfaces which may be used to access thosecesrvOur Service Catalog,
besides, stores a service’s non-functional attributesh) s13 execution time, quality, re-
liability and availability, used to rank composition sotuts. Each service entry in the
Catalog is annotated with the ontologic concepts of the Ser@intology.

TheWorkflow Repositoryadopted from WOODSS, stores annotated (sub)workflows
at different abstraction levels. The two main levels aretralbs and concrete work-
flows [11]. The abstract level corresponds to a workflow dpation (i.e., the result
of a workflow design activity). Each specification can copeesd to several concrete
workflows. The concrete level corresponds to an instande#mabe executed, and where
each activity is instantiated with the indication of the agppiate Web service, and all of
its input and output parameters. The Workflow Repository siees all annotations and
information on data needed to run a given concrete workflos includes pointers to
files that store intermediate execution results and medadasociated with each execution
(e.g., timestamps, actors involved).

The repositories are interrelated as follows. Workflows dat in the Workflow
Repository are annotated with terms from both ontologies;siérvices invoked within
concrete workflows come from the Service Catalog. Moreowarcepts of the Service
Ontology are used to annotate terms in the Service Catalagg@mcepts in the Domain
Ontology annotate types stored in the Service OntologyaRaxample of these interre-
lationships, the reader is referred to [4].

3.2. The composition architecture

Our architecture is able to deal with automatic compositbworkflows based in Web
services. Figure 1 shows this architecture, highlightimgrhain modules and their inter-
actions. It combines basic features of a planning framewWey., such as that in [15])
with the scientific workflow framework of WOODSS [11], addicgtalog and user in-
teraction facilities. Whereas WOODSS is based on manual ositign, our architecture
supports automatic and semi-automatic composition viarhey.



The Interface Layer allows the user to design, search, edieaecute a workflow.
It also allows a user to register services and workflows, @stjthe execution of a work-
flow and interact with this execution. It also supports synrification and suggestions
of activities; automatic specification through Al planniagd iterative composition.

The Service/Workflow Discovery module is responsible f@ skearch of services
and workflows that meet user requests. Search can be basedatiofhality, context and
syntax. Search for functionality is based on keywords, aamdlwe local (Repositories)
and global (on the Web). Whenever the global search returessae that is not already
registered in the Service Catalog, the user is required totatenand register it in the
local Repository, thus vouching for its quality. Search fontext is based on ontologic
annotations of services. Search on syntactic compayilidibased on the parameters of
the services’ interfaces. When no stored service or workfl@etsithe requests, this
module will ask the Design module to create new workflows.

The Design module is responsible for constructing a workflelich at any time
can be edited by a scientist (the Editor box). The Automatim@aser encapsulates the
Translator-Planner-Evaluator modules of Al planning.elteives a plan request from
the interface and generates workflows automatically or sertomatically. To generate
these workflows, the Translator needs first to convert theagqto the planner’s lan-
guage. Next, the Planner interacts with the Workflow and theology Repositories to
obtain information for plan generation, and with the Seziidorkflow Discovery facility
to check for existing available services.

Rather than generating concrete executable workflows, amnplr produces ab-
stract workflow specifications. The reason is that plansr nefeservice typegdefined
in the Ontology Repository), rather than the services therasdwhose specification is
stored in the Service Catalog). This choice was made mainiypoove efficiency and
scalability in the planner. The Evaluator converts thesrabt workflows into concrete
(executable) workflows and chooses among them the workflatnbist suits the request
R. This selection is based on non-functional attributescetien time, quality, reliability,
etc) and can be guided by the user.

The Editor module has two main roles: workflow design and logipupdate. It
accesses the workflow repository and lets the user manuaiiypose, reuse and annotate
workflows. Annotations include free text and referencesiédntology repository.

The user interacts with the Service Register module in omlelefine new ser-
vices. These services are described in WSDL and OWL-S, andiittkesl to the On-
tology Repository. These services can be those developedvaidble locally, or those
which are available elsewhere, but whose provenance hasckeetfied by the user.

3.3. Execution environment

Execution is supported by the Workflow Engine, and allows ugeraction, e.g., to val-
idate or interrupt execution flow. The Engine module follawe specification of [3]. It
is responsible for controlling the execution of all workflaetivities. An activity can be
a simple Web service or a complex workflow. The operationsigeal by the Workflow
Engine are: interpretation of the complex process defmsti@reation and management
of the process instances; and supervisor and managemetiohs)3]. The module sends
the requests (and parameters) for service invocation c@eRequest.



The Service Request module is responsible for the managerheath Web ser-
vice request, communicating with the Web server providerdag input data and receiv-
ing the results. This module also detects service faults,(ron-availability). There are
three alternatives to try to solve a fault. The first is tryaeexecute the service that pre-
sented the fault. Since references to all data producedebgxbcution of a workflow are
stored in the Workflow Repository, the system can try to rezetethe workflow start-
ing from the point where the fault appeared. This is usefudnva service is unavailable
during a short period of time. The second alternative is pdaee the faulty service by an
equivalent service (of the same type), and to continue teewion of the workflow. In
this case, the Workflow Engine module can ask the Automaticgoser module for the
generation of an alternative plan that replaces the faeltyise by an equivalent service
or by a new workflow. If these alternatives do not work, the kflow Engine can request
new plans to solve the problem. These plans will be produocedidering that all data
already generated can be used to facilitate or optimizergtion of new workflows.

This architecture supports the three main kinds of comjgositmanual, iterative
and automatic. In manual composition, the system will oetyaluser combine two activ-
ities if their inputs and outputs are ontologically compkgi Ontological compatibility is
based on subsumption properties (see [5]). In iterativepomition, for each iteration, the
system suggests to the user activities or sub-workflowddnzg been previously stored in
the repository and that can be used for an already defineditagktomatic composition,
it designs a set of workflows (solutions) that satisfy theusssq provided by the user.

3.4. User interaction

Users can interact with the architecture to annotate anigmegrkflows, monitor and
change their execution, edit ontologies and register sesviAn important user interac-
tion is the request for a plan (i.e., the construction of a m@nkflow). This process starts
when a user (human or software agent) makes a request forieeserhis request can be
the description of a goal or task. Starting from it, the PlEmgenerates alternative plans
to meet the request. The planner accesses the domain amgesmriologies to obtain the
necessary information for the planning process. Once thespare generated, they are
passed on to the Evaluator, which chooses the best plan tousereneeds.

Domain and service ontologies, stored in the ontology heameskey concepts
to this process. Initially, they are used by the Translatogénerate a request to the
planner, disambiguating the user’'s demand for a servicet, Neese bases are used by
the Planner to generate the appropriate service compasitithe Planner accesses them
to obtain the functionalities of the services and generatesbstract scientific workflow.
The Planner uses the domain ontology to improve the effigiefthe planning process
and to facilitate the modeling and the management of complgects. The planner’s
output contains several workflows (the plans) with equivate similar functionalities.

4. Case study: bioinformatics problems

We implemented a prototype of our architecture to solve twpdrtant bioinformatics

problems: genome assembly and annotation. Both problemfeaolved by invok-

ing a sequence of specialized tools, already availablevatralesites, in distinct flavors.
The issue is to construct the appropriate workflow whichegia set of input files, e.g.,
containing DNA sequences, produces annotated alignments.



This requires expert knowledge (e.g., to choose tools amtiaghatives) and do-
main knowledge (captured by ontologies). We have specifiett &n ontology which
extends TAMBIS (www.tambis.org). We have also created am&@tad service catalog,
containing information about the most common bioinforcatools on the Web. Given
all this information, the planner (constructed by extegddtHOP2) supports automatic or
manual workflow design. For more details on our case studyethaer is referred to [4].

5. Concluding Remarks

This thesis presents a solution to the problem of specifgisgientific workflow to exe-
cute on the Web. Our main contributions lie in proposing aratqtyping a framework
that takes advantage of Al planning techniques, combindd evitologies and Semantic
Web standards to support workflow design. The solution idhas repositories that
store information on services and their characteristioseayvice and domain ontologies,
and on workflows. In particular, ontology repositories axeenasively used in enhancing
plan generation with semantics and in helping users desgerscientific workflows.

Our architecture is generic, and can be instantiated faraédomains. It helps
the user in the three kinds of composition: manual, iteesdind automatic. Manual com-
position is useful when the user knows exactly what acgésitie/she desires to compose.
Iterative composition is advisable when the user has a gekeowledge of the process
that he/she wants to execute, but does not know what tonlgdes execute this process.
In this case, the system suggests the activities. Autornatigposition is advisable when
the user knows pre- and post-conditions, but does not knovs (@t interested in) how
to design a workflow that satisfies these conditions.

We have built a first prototype to verify and validate our e, for bioinformat-
ics problems, specifically for genome assembly and anwotatseveral bioinformatics
laboratories have reported the use of scientific workflows @ina. workflow infrastruc-
ture to support their experiments (e.g. [8],[14]). Our wertends these approaches in
three main directions: first, use of Al planning techniqueisdlp find the “best” workflow
for a task; second, the use of ontologies to semanticallpatipvorkflow construction;
third, the use of these ontologies in annotation and thystneteability.

6. Present stage of the work

Architecture and workflow model have been specified. Presgriementation supports
manual and automatic workflow design, where the plannendst&SHOP2. Ontologies
were specified in OWL using Piege. Ongoing work concerns mechanisms for improving
provenance and traceability support. The next steps atecio workflow execution. For
that, we intend to use some existing workflow engine.
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