O conteddo do presente relatério é de (nica responsabilidade do(s) autore(s).
(The contents of this report are the sole responsibility of the author(s).)

Implementing Integrity Control in Active
Databases

Claudia Bauzer Medeiros
Marcia Jacobina Andrade

Relatério Técnico DCC—-06/92

Julho de 1992



Implementing Integrity Control in Active
Databases

Claudia Bauzer Medeiros Mércia Jacobina Andrade

Abstract

This paper presents an integrity maintenance system that has
been developed for maintaining static constraints in databases, us-
ing the active database paradigm. This system has been added to
the Os object oriented database system, and is fully functional.
Constraints are specified by the user in a first order logic lan-
guage, and transformed in production rules, which are stored in
the database. The rules are then used to maintain the correspond-
ing set of constraints, for all applications that use the database,
and which no longer need to worry about integrity control. We
extend previous work on constraint maintenance in two ways: our
system can be used as a constraint maintenance layer on top of
object-oriented, relational and nested relational databases; in the
case of object-oriented systems, we provide constraint support not
only in the case of object composition, but also consider inheritance
and methods.

Keywords: Active databases, object-oriented databases, in-
tegrity constraint maintenance

1 Introduction

An integrity constraint, in a database environment, is a statement of
a condition that must be met in order to maintain data consistency
[JMSS90]. Constraints can be classified in several ways. One of these
many classifications relies on distinguishing static constraints —i.e., those



that define a valid database state and are usually stated using first order
logic — and dynamic constraints — that specify valid database state transi-
tions, and are specified using modal logic. The same kinds of constraints
exist in the object-oriented framework, where one can still use first order
logic to define static constraints, using classes, objects and object compo-
nents as variable ranges (instead of relations, tuples and attributes). The
new element is the appearance of constraints over methods, for which no
study has yet been made.

The problem of automatic maintenance of integrity constraints in a
database management system (DBMS) has been extensively considered
in the literature. Since database systems have limited support for such
a facility, application developers are forced to embed code in each ap-
plication, in order to verify constraints. This has also the inconvenient
of making all applications very sensitive to any modification in the con-
straint set, besides leaving to programmers the burden of having to know
and check all relevant constraints at each step.

A solution to this problem presented by several researchers is to em-
bed a trigger or a production rule system into the DBMS, to be activated
upon update requests. If this solution is applied, constraint specification
and maintenance can be kept independent from application development.

This paper analyzes the problem of maintaining static integrity con-
straints in databases, using production rules and the active database
paradigm. The main results presented are the following:

o ageneral algorithm for automatically transforming constraints stated
in first order logic into a set of production rules, using the active
database paradigm. Unlike previous work, this algorithm provides
support for constraint inheritance and composition, and for con-
straints over methods;

o the description of a constraint management system, which uses the
algorithm, and has been added on top of a version of the O object-
oriented database system [Da90] that supports rule management
([MP91a]). The constraint management system is fully functional,
and can be also used for constraint maintenance in relational or



nested relational systems, which are shown to be special cases of
the object-oriented data model adopted.

Our work uses the object-oriented data model of [Bee89] which consid-
ers a class to be a collection of objects. Objects are characterized by
their structure (class type) and behavior (class methods). Classes are
subject to inheritance and composition properties. An object-oriented
database schema is a description of the properties of the database classes
(described by composition and inheritance graphs) and object behavior
(methods).

This paper is organized as follows. Section 2 discusses the role of
active database systems on constraint maintenance. Section 3 presents
the algorithm for transforming static constraints into production rules,
for relational and object-oriented systems. Section 4 presents the algo-
rithm’s implementation and its use as a constraint transformation layer
on top of the Oy DBMS. Section 5 gives some examples of automated
rule generation for object-oriented systems. Finally, section 6 presents
conclusions and directions for future work.

2 Active Database Systems and Constraint Sup-
port

Active databases are systems that respond to events generated internally
or externally to the system itself without user intervention. The term
active appeared in [Mor83] to describe a database that supports auto-
matic view modifications to reflect updates to the underlying database.
Nowadays, the active dimension is usually supported by production rule
mechanisms, provided by the DBMS. The term rule is associated with
the notion of production rules which are usually defined as clauses If
X then Y, where X is a predicate to be tested, and Y is an action
to be performed if the predicate is true. In [DBMS88] the execution of
a production rule was described as being triggered by an event (e.g.,
transaction commit). This notion is now adopted by most researchers in
active databases.



Rules have thus become triples
<E,C,A>

where I stands for the Event upon which the rule is triggered, C the
Condition (predicate) to be tested, and A the Action to be performed
if the condition is met. From now on, the term rule in this paper will
denote this triple.

An active system should support not only the declarative specifica-
tion of rules but also their manipulation (query, update, activation and
deactivation of rules). The paradigm of active databases is useful for im-
plementing or extending several database functions. Some examples are
integrity control, handling of derived data, processing of view updates,
and monitoring of events (e.g., [Mor83, Mor84, Ris89, RCBB89, MD&9]).

Most of the published research on active databases discusses the
support of static integrity constraints using <E.C,A> rules. In such
a framework, rule components have the following meaning: the Event
is an update request; the Condition is the constraint’s predicate; and
the Action, optional, is provided by the database designer, and can be
corrective or preventative. Preventative actions block an update if it
violates the constraint. Corrective actions correspond to sequence of op-
erations to be executed that restore the database’s consistency after the
update is performed.

A typical example of the advantage of such systems over traditional
systems is that of engineering database applications. As remarked in
[Mor89], these applications require a large number of constraints, whose
verification is usually coded within the application itself. Any modifica-
tion in the set of constraints does therefore require intensive recoding.
The active database approach, on the other hand, has the following ad-
vantages:

e it supports specification and maintenance of constraints by the
DBMS itself, regardless of the application code, allowing indepen-
dent evolution of both;



o it provides use of the same underlying database for all applications
that have the same view of the world (i.e., supports constraint and
data sharing);

o it allows the possibility of different applications having different
views of the same database, by enabling and disabling different
sets of rules (e.g., [CBB*89)]).

Examples of research on constraints and active relational databases
are: [Mor84] (where some of the characteristics of active databases are
discussed, and a semantic constraint language is proposed); [CW91,
WIF90] (where SQL is extended to incorporate constraint specification,
and constraints generate production rules that check updates over tuples
or sets of tuples); [SPAM91] (where it is shown how to extend a relational
system with a layer that manages special — active — relations, which con-
trol events and allow trigger execution); [SZ91] (where the problem of
optimizing the execution of large sets of rules by materializing specific
relations is considered).

[SHP88, SIGPI0] present a mechanism for managing rules in the ex-
tensible system POSTGRES, and how these rules can be used to support
views, procedures, and integrity constraints.

Research on constraints using active object-oriented databases in-
cludes: [KDM88] (where an extended trigger mechanism is described for
the DAMASCUS system); [DBM&8, CBB*89] (introducing <E,C,A>
rules in the HIPAC system); [DHL90, DHLI1] (where rules are studied
in the context of long-running activities, where the action may be post-
poned); [NQZ90] (using rules to help semantic modelling on GemStone);
[UD89, UD90, UKNO92] (where rules are used to maintain constraints,
and an algorithm is proposed to detect rule cycles); [MP91a, MP91b]
(where a rule mechanism implemented on top of the O2 database is dis-
cussed, as well as its consequences on constraint maintenance); [DPG91]
(where it is shown how to specify rules to maintain constraints in the
ADAM system).

In all the above cases, the solutions proposed are particular to a given
data model or subsystem. We now discuss how to generalize the solution.



3 Transforming Constraints into Rules

3.1 Introduction

Given that active databases are an adequate and flexible solution for
maintaining constraints, there remains the problem of automatically de-
termining a set of rules that, for a given constraint, will ensure its en-
forcement by an active database. Some solutions for this problem have
already been proposed, but they are usually not integrated into any
database system. Exceptions are [WF90], for an extended relational sys-
tem, and [UKNO92], for an object-oriented system. In both cases, the
solutions proposed are specific to a system, and cannot be applied to
active databases in general.

[WF90] show how to transform a constraint specified in first order
logic into rules, which are triggered by updates in the extended rela-
tional system Starburst. [UKN92] describe automatic transformation of
constraints into rules in an object-oriented database, but constraints are
limited to schema (composition) integrity, and only some restricted types
of data integrity. Inheritance, methods, or more general constraints over
specific database states are not considered.

This section extends and generalizes previous proposals for automat-
ically transforming general static constraints into < E,C,A > rules. Our
transformation algorithms use ideas from both [Mor84] and [WF90]’s
static analysis of constraints, and incorporate [MP91b]’s rule creation
proposal. The constraints handled can be defined over schema (extend-
ing [UKN92]) or data (as in most of the references named in Section 2).
Furthermore, in case of object-oriented databases, constraints can also
apply to method execution (e.g., order). This extends previous work by
considering not only the usual constraints over schema or state, but also
over behavior.

3.2 Extracting C,A components from constraints

In non-active systems, programmers predict which updates violate which
constraints, and add the proper verification procedures to the code. In



active databases, the problem lies in establishing beforehand and inde-
pendent from any application which updates (i.e., events) will be sources
of constraint violation.

Let a constraint be specified as a first order logic predicate P over a
database state, and A some user-defined action to be performed if P is
not true (i.e., if =P then A). The same predicate P has to be checked at
several different events (updates) which may violate the corresponding
constraint. An active database must thus provide a set of rules <{E},—
P, A > to maintain this constraint. Whereas the = P and A components
can be derived straight from the constraint specification, event determi-
nation depends on additional information. Thus, the most complex part
of automatic rule derivation is that of determining events (i.e., updates)
which may violate a constraint. The objective of event derivation is thus
to avoid unnecessarily checking constraints at every update, and thus
save processing time.

In relational systems, updates (events) that may violate a given con-
straint can be usually determined by static analysis of the constraint, and
have a limited range of action (i.e., constraints are generally restricted to
at most two relations). In an object-oriented system, however, updates
are performed by methods to obey encapsulation. This complicates enor-
mously the definition of all events which may be associated with integrity
violation, mainly for the following motives:

¢ overloading and polymorphism associated with message sending,
which does not allow static determination of a message receiver,
nor supports unique method implementation;

e multiplicity of functions and methods associated with an applica-
tion;
¢ inheritance mechanisms, whereby constraints which refer to a given

class may be valid for its subclasses;

e composition mechanisms, whereby constraints stated for one class
may have to be checked when other (apparently unrelated) classes
are updated.



In relational systems, events consist of applying the insert, delete, update
operations over a tuple or relation. In object oriented systems, however,
a given object may react to several methods, whose names are defined by
the user, and whose implementation depends on the method’s receiver
and cannot be fathomed unless additional context-sensitive information
is provided. Thus, algorithms for transforming constraints into rules such
as proposed by [Mor84, WF90] do not apply to object-oriented systems.
Furthermore, analysis of the constraint statement alone (e.g., [Mor84])
is not sufficient, since additional (method) semantic information must be
provided.

3.3 Event detection algorithm

We now describe the algorithm that determines all events that can vio-
late a given constraint. The set of events determined is a superset of the
actual set of events, since specifying the exact set of events is computa-
tionally unfeasible. Constraints over method execution are assumed to
be pre or post-conditions to methods.

Events produced by the algorithm are expressed as < Class, Method>
pairs (or < Object,Method> for constraints that refer to a specific ob-
ject )'). This notation means that < method M is being executed on
some object of class C, or on object @ >. Analogously, for relational
and nested relational systems, events are stated as < relation_name, up-
date_operation >, where the update operation may be insert, delete or
update.

Consider, for instance, the schema on Figure 1, where Money, Ad-
dress and Date are classes declared elsewhere. Client and Employee are
subclasses of Person, and Client-Employee is a subclass of both. Let
CN1 be the constraint below, which states that a manager’s salary is
greater than 10,000,000.00

CN1 = V¥ x € Department, x.manager.salary > 1,000,000.00
CN1 has to be checked when a manager’s salary is updated. Since field
manageris of class Employee, this means checking CN1 when the method

! Certain systems, like 02, allow specifying names for chosen objects



update-salary is activated on any object of class Employee. The algo-
rithm would in this case indicate that <Employee,update-salary> is one
of the events that may violate CN1. In other words, if update-salary is
executed on an Employee, the rule has to check at run time if this Em-
ployee is a manager, since in this schema one cannot determine statically
if an employee is a manager).

In order to understand the algorithm, the following terms are defined:

o Method attributes are all fields that can be updated by a method,
and which are not necessarily restricted to the parameters specified
in the signature (e.g., method hire updates several Employee fields,
but has no parameters). These fields are provided by the designer
and may vary with the receiver’s class.

o (Class components are the fields that are the components of a class
type (e.g., name, birth, address in class Person);

o Prefir fields are the (compound) prefixes of a field in a constraint.
For instance, the expression "x.manager.address.city” denotes: the
city field of the address field of the manager field of (an object) x.
Its prefix fields are: x.manager and x.manager.address.

3.3.1 Central ideas

The algorithm uses three sources of input: the integrity constraint itself;
data from the schema; and method execution information. Schema in-
formation consists of data about class composition (composition graphs),
inheritance (inheritance graphs) and methods defined for a class. Method
execution information consists of all method attributes for each method
in a database (i.e., all fields updated by a given method, as defined pre-
viously), and must therefore be provided by the user. The output of the
event detection algorithm is the set of events that may violate the input
constraint.
The main steps for event detection are the following;:

1. Identify all classes and objects directly referenced in the constraint
(e.g.,in CN1, class Department is identified), all class components



Structural Information

Class Person type
tuple (name: String, birth: Date, address: Address)

Class Employee inherits Person type
tuple (salary: Money, dep: Department, child:set(Person) )

Class Client inherits Person type
tuple (credit: Money, status: String)

Class Department type
tuple (name: String, personnel: set(Employee), manager: Employee)

Class Client-Employee inherits (Client, Employee)

Class Vehicle type
tuple (chassis: Integer, price: Money)

Class Car inherits Vehicle type
tuple (model: String, owner: Employee)

Class Boat inherits Vehicle type
tuple (tonnage: Integer)

Behavioral Information

method update-birth(newbirth: Date)in class Person

method hire () in class Employee

method add_child (child:Person) in class Employee

method update-salary(newsalary:Money) in class Employee

method update-dep (olddep, newdep: Department) in class Employee
method update-manager (newmanager: Employee) in class Department
method update-price (newprice: Money) in class Vehicle

method update-chassis (newchassis: Integer) in class Car

method assign-owner (chassis: Integer, newowner: Employee} in class Car
method insure (tonnage: Integer, newprice: Money) in class Boat

Figure 1: Da{&base Schema



referenced, and their respective class types, by analysis of prefix
fields (e.g., in CN1, manager is a component of class Department
and belongs to class Employee, and salary is a component of class
Employee). This identification is done by querying the schema
composition graph.

. (Constraint propagation across the composition graphs ) Once the
classes and class components referenced are identified, determine
all methods that can violate the constraint. This means verifying
which methods update some of the components identified in (1).
For CN1, methods hire and update-salary update component salary
which was identified in (1), and may therefore violate CN1. All
such methods and the classes of the components to which they
apply constitute events, which are stored in an event list.

. (Constraint propagation along the inheritance graphs) The database
inheritance graphs are traversed, to determine other events that
may violate the constraint by inheritance of components or of
methods. This is equivalent to performing inheritance of con-
straints. These new events are added to the event list, which
constitutes the output. Inheritance of constraints is of two types:
the component and the method are inherited; or the component is
inherited, but the method is local. For instance, suppose class
Employee had a subclass Bad_Emp with component salary af-
fected by a local method decrease-salary. Other events would be
< Bad_Emp,update-salary >, < Bad_Emp, hire > (both by inher-
itance of component and of method), and <Bad_Emp, decrease-
salary > (inheritance of component only).

This algorithm also applies to nested and relational models, where

only the two first steps are necessary. In these cases, methods are re-
placed by relational database update operations, and there is no inheri-
tance graph. For relational systems, the composition graph is simplified
to relation names and attribute atomic domains. For nested relational
systems, the composition graph allows relations as attribute domains,

11



and is a special case of object-oriented composition graphs when the
only constructors allowed are relation and tuple. Thus, instead of com-
ponent information we simplify all structures to contain only relation
schemas. Given these structures, the algorithm subsumes those pre-
sented in [WF90] for relational databases and in [UKN92] for object-
oriented systems.

3.3.2 Algorithm

Input: Static constraint specified declaratively using a first order lan-
guage, with components stated in prefix form
Output: Set of events

1. Step 1: Parse the constraint, and identify the classes and compo-
nents involved. Initialize an empty list of events, L_event.

2. Step 2: Determine the class of each component and component
prefix identified in Step 1.

Store these classes in table Tclass (contains classes where updates
may violate the constraint), and the attributes in table Tclass_attribute
(which indicates class components that may be sources of con-
straint violation). Initialize an auxiliary empty class table, T old.

3. Step 3: While (Tclass - T_old) not empty do

e 3.1 For each class ¢ in (Tclass - T_old) do

— 3.1.1 Identify the methods m that can affect ¢ (defined
locally or inherited)

— 3.1.2 For each method m identified in 3.1.1, check if at
least one of its attributes appears in table Tclass_attribute
(i.e., if the method updates a component mentioned in
the constraint). If positive, then add event <e,m> to
L_event.

— 3.1.3 Add ¢ to T_old (i.e., the class has been processed)

12



e 3.2 For each class ¢ in T_old, identify its immediate descen-
dants in the inheritance graph, and add them to Tclass

This algorithm is simplified in the case of constraints over methods.
These constraints are declared as pre or post-conditions to method exe-
cution (i.e., to a set of events). In such a case, the events are determined
directly at parse time, and subsequent steps are not executed. One ex-
ample is

CN2 =V e € Employee: precond(e,update_salary) :: e.salary > 0.0

(i.e., a precondition to event < Employee, update-salary > is that
the employee’s salary must be positive)

4 Implementation of the Constraint Transfor-
mation Layer

The constraint subsystem was implemented in C on top of the active
version of the Oy object-oriented DBMS, and runs in an Unix SPARC
workstation environment.

The rule generation algorithm needs different types of information
from the database schema, as well as semantic information about meth-
ods. If many constraints have to be processed at once, this requires re-
peatedly executing the same set of queries over the database schema, and
constant interaction with the database designer. We solved this problem
by dividing the implemented system into two modules: a schema extrac-
tion module and a rule generation module. The first module extracts all
schema and method information needed for rule generation, and loads it
into temporary structures in main memory. The second module is the
rule generator, and uses these structures directly, instead of querying the
database.

This decomposition presents the further advantage of allowing the
rule generation module to be database independent, and even model in-
dependent. The rule generation module can be attached as a layer on top
of any database system, for different (system-tailored) schema extraction
modules. We developed the modules separately and added them to the

13



Constraint

DBMS

A4 . User-Defined
Analysis and Schema / Method

Compilation| Extractior Information

Compiled

Constraint

Identification of A
Potential Sources

: k Intermediate
of Violation Structures
Components
A 4
FEvent
Generation
Rules
DBMS

Rule Manager

Figure 2: Constraint Transformation System

14



version of the Oy object-oriented DBMS described in [MP91al. Given
these interface modules, our implementation will work for any object-
oriented system that uses a class-based model as described in [ABD*89],
and for relational and nested relational databases.

In order to completely implement a constraint handling layer for a
database system, we also developed a declarative constraint specification
language. This language is based on first order logic, and allows defining
constraints over schema components (or relations), objects or classes. It
also allows defining relationship constraints involving instances of differ-
ent classes, and constraints that check pre or post-conditions for method
execution. More details can be found in [And92].

Figure 2 shows the general structure of the constraint system, where
the Schema Extraction module is system-dependent, and the remain-
der is system and model independent. The Schema Extraction module
collects information from the schema and from the user and stores it
in the intermediate data structures, especially designed for fast access.
These structures are passed on to the Rule Generation subsystem: mod-
ule Analysis and Compilation parses the constraint using a recursive
descendent analysis and builds the C and A fields of the < E,C,A >
rule; it passes the result on to the module that performs Identification of
Potential Sources of constraint Violation (which are classes, components
and prefixes); finally, Event Generation determines the set of events. The
rules are then handed to the database rule manager.

5 Examples

Let us consider some examples of rule derivation based on the database
schema of Figure 1. Since we obtain the same results as other authors in
the case of relational systems, we only show cases of constraints in object-
oriented systems. All examples, except for the first one, correspond to
situations not considered in the literature. User method information has
been ommitted for brevity’s sake and will be mentioned when needed.
The constraint in figure 3 is an example of a unique key specification
(no two Cars can have the same chassis number). The only class named

15



in the constraint is Car, and the only component is chassis, of type
Integer. Notice that this component is inherited from Car’s superclass,
Vehicle. This information is stored in tables Tclass and Tclass_attribute.
Method information given by the user shows that two methods (update-
chassis, assign-owner) may affect the chassis component. Both methods
are defined for class Car, though they modify an inherited component.
These two methods are used in setting up the list of events L_event.
Class Car has no subclasses in the inheritance graph, so the algorithm
terminates. Two rules are generated (one for each event) of the form <
E, C, FORBID> | where

the events are <Car, update-chassis> and <Car, assign-owner>,
taken from L _event;

C is the violation of the constraint’s predicate, i.e., C = Jel, 2 €
Car : cl.chassis=c2.chassis;

keyword FORBID in the action field is the default when no action
is provided.?
This is an example of a constraint that is checked locally over the class
for which it is declared, and is similar to examples of rule generation
for key maintenance in [UKN92] or [WF90]. Condition and action are
derived in a similar way in the examples that follow, and will thus not
be shown again.

Figure 4 shows a simple example of constraint inheritance. The con-
straint is specified over class Employee, and affects component salary,
and therefore potentially class Money. Both classes are stored in Tclass,
and salary is stored in Tclass_attribute. The methods that affect this
component are hire and update-salary, and the corresponding events are
placed in L_event. The information about hire cannot be derived from
the method’s signature, and has to be provided by the user. Finally,
class Client-Employee is a subclass of Employee, and thus the constraint

?In the active version of 02, the rule manager will transform this input into two
rule objects, where the condition becomes an O2 query, and FORBID becomes a rule
manager predefined action. In this system, it stores the rule as having to be triggered
as post-condition to method execution. When the event is signalled, the query is
performed, and the update is not committed if the query result is not empty

16



Tclass Levent

Car Class Method
Car update-chassis
Tclass_attribute Car assign-owner

chassis: Integer ] ]
V cl,c2 € Car cl.chassis <> c2.chassis

Figure 3: Unique key constraint - no propagation

is propagated to it, the final set of events being composed by the meth-
ods defined for class Employee, and inherited by class Client-Employee.
Notice that it is not every method in Employee or Client-Fmployee that
triggers constraint verification, but only the methods that affect the field
salary (which is in Tclass-attribute). Inheritance of constraints has not
been considered by other authors.

Figure 5 extends the previous example showing propagation of con-
straints using information about composition (taken from prefix fields of
the constraint). The constraint specifies a single class - Car - but refers
to other classes (since a Car’s owner is an Employee, and price, salary
are of class Money). Therefore, events that may violate the constraint
are not restricted to the class named in the constraint, but propagate to
the component’s classes. As in the previous example, the constraint is
inherited by Client-Employee.

The list of events is a superset of the actual event list. For instance,
method hire is included, even though in this case it does not violate the
constraint (though it affects Employee’s salaries). In order to eliminate
superfluous events, additional information would have to be known (e.g.,
that execution of hire precedes any owner assignation, and thus does not

17



Tclass

Levent
Employee
Money Class Method
Client-Employee
Employee update-salary
Tclass-attribute Employee hire
Client-Employee update-salary
salary: Money Client-Employee hire

VY e € Employee : e.salary > 10,000

Figure 4: Constraint propagation by inheritance of methods

affect Car objects). However, the information needed will vary from
constraint to constraint and cannot be determined beforehand for all
cases. (Our implementation lets the user examine the rules generated,
and exclude or disable the ones which are not of interest).

Figure 6 is another example of constraint inheritance, but of another
nature. This is a domain constraint, for the price of a Vehicle. The
classes affected are Vehicle (named in the constraint), and Boat and Car
(subclasses). The only method that affects a Vehicle’s price is update-
price, which is inherited by Boat and Car, thus updating L_event (similar
to the previous examples). However, Boat has a local method (insure)
that also affects the price and <Boat, insure> is thus added to L _event.
This example therefore shows a case where a constraint may be violated
by a (local) method modifying an inherited attribute, and where again
constraint analysis is not sufficient to derive all rules.

18



Levent

Tclass
Car Class Method
Money Car update-price
Employee Car assign-owner
Client-Employee Employee up date—.salary
Employee hire

Tclass-attribute

price: Money
owner: Employee

salary: Money

Client-Employee
Client-Employee

update-salary

hire

Figure 5: Constraint propagation by inheritance of methods and com-

position

Tclass

Vehicle
Car
Boat

Tclass_attribute

price: Money

VY ¢ € Car, c.owner.salary > c.price

Levent
Class Method
Vehicle update-price
Car update-price
Boat update-price
Boat insure

Y v € Vehicle: v.price > 0

Figure 6: Influence of local methods on constraint inheritance

19




6 Conclusions

This paper analyzed the problem of maintaining static integrity con-
straints in database systems and presented an algorithm for automati-
cally transforming an integrity constraint into a set of <k,C,A> rules.
This algorithm generalizes previous work in the area of constraint main-
tenance in active databases. Among the main contributions presented
we can cite:

o the algorithm was implemented into a constraint management sys-
tem that is fully functional, and takes advantage of the rule facili-
ties implemented for an object-oriented DBMS (0O3);

e the system supports constraints over schema, over data and over
method execution order, and automatically performs constraint
propagation along inheritance and composition graphs;

e the system can be used as a layer over different active database
systems that have rule support systems. It was designed to be
model independent, and to be employed for constraint maintenance
in active relational, nested relational or object-oriented DBMS.

Several extensions are under consideration. The first concerns taking
schema evolution into account. If the schema is modified, previously de-
fined constraints may cease to hold, and the corresponding rules have to
be deleted, or new rules may have to be added (e.g., when a class is added
in a hierarchy whose root is subject to an already existing constraint). In
the present version, every schema update requires reprocessing all con-
straints in order to determine a new set of rules, which is very costly.
One possible improvement we are studying is that of maintaining ad-
ditional classes (or relations) in the database, to record association of
constraints with the corresponding rules, and relationships of rules and
the classes (relations) whose integrity they check. Thus, when the schema
is modified, only a subset of constraints and rules need be checked. This
however brings the inconvenient of burdening the database with addi-

20



tional information (relating rules and constraints) which may never be
used.

The system described in this paper assumes that all constraints that
refer to a given class are inherited by its subclasses. This may not be
always the case, since in certain cases the user may want to specify excep-
tions to constraints, as in [Bor85]. We are also analyzing this problem,
and its implications in the rule determination process.

Another extension concerns restricting the set of events, given ad-
ditional semantic information about a database. For instance, when a
constraint refers to an aggregate field (e.g., average) then not necessarily
all methods that affect the field’s components may violate the constraint.
A constraint that imposes that a given average may never decrease will
not be affected by a method that will increase the fields that compose
this average. We are analyzing how to increase the input semantic in-
formation to the constraint system, in order to reduce the set of rules
produced in those and other special cases.

Finally, no consideration was made in the direction of detecting cycles
in rule execution. In our case, this would imply analysis of the rules’ ac-
tions, to determine rule activation graphs, and from these graphs deduct
the existence of rule loops (since actions may themselves require execu-
tion of methods, which will in turn trigger other rules). One possible
solution is to adapt the study that appears in [AWHO92] for rules in an
extensible relational DBMS, extending it to include information about
inheritance and composition.

Acknowledgements The authors thank Frederico Sidney Cox Jr.
for his insightful comments and careful reading of this paper.

References

[ABDT89] A. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier,
and S. Zdonik. The Object-oriented Database System Man-
ifesto. In Proc. First Conference on Deductive and Object-
Oriented Databases, pages 40-57, 1989.

21



[And92]

[AWH92]

[Bee89]

[Bor85]

[CBB*89]

[CWO1]

[Da90]

[DBMSS]

M. J. Andrade. Manutencdo de Restricoes de Integridade
em Bancos de Dados Orientados a Objetos. Master’s thesis,
Dept. Computer Science, UNICAMP, March 1992.

A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of
Database Production Rules: Termination, Confluence and
Observable Determinism. Technical Report RJ8562, IBM Al-
maden, 1992.

C. Beeri. Formal Models for Object-oriented Databases. In
Proc. 1st International Conference on Deductive and Object-
oriented Databases, pages 370-395, 1989.

A. Borgida. Language Features For Flexible Handling of Ex-
ceptions in Information Systems. ACM TODS, 10(4):565-
603, 1985.

S. Chakravarthy, B. Blaustein, A. Buchmann, M. Carey,
U. Dayal, D. Goldhirsch, M. Hsu, R. Jauhari, R. Ladin,
M. Livny, D. MacCarthy, R. McKee, and A. Rosenthal.
HiPAC: a Research Project in Active, Time-constrained
Database Management. Technical Report XAIT-89-02, Xe-
rox Advanced Information Technology, 1989. Final Technical
Report.

S. Ceri and J. Widom. Deriving Production Rules for In-
cremental View Maintenance. In Proc. 17th VLDB, pages
B77-589, 1991.

O. Deux and al. The Story of O,. IFEF Transactions on
Knowledge Bases and Data Engineering, 2(1), 1990.

U. Dayal, A. Buchmann, and D. McCarthy. Rules are ob-
jects too: a knowledge model for an active, object oriented
database system. In Lecture Notes in Computer Science, vol-
ume 334, pages 129-143. Springer Verlag, 1988. 2nd Work-
shop in OODBS.

22



[DHLI0]

[DHLO1]

[DPGI1]

[TMSS90]

[KDMSS]

[MDS9]

[Mor83]

[Mor84]

[Mor89]

[MP91a]

U. Dayal, M. Hsu, and R. Ladin. Organizing long-running
activities with triggers and transactions. In Proc. ACM SIG-
MOD, pages 36-58, 1990.

U. Dayal, M. Hsu, and R. Ladin. A Transactional Model for
Long-Running Activities. In Proceedings 17th VLDB, pages
113-122, 1991.

O. Diaz, N. Paton, and P. Gray. Rule Management in Ob ject-
Oriented Databases: A Uniform Approach. In Proceedings
17th VLDB, pages 317-326, 1991.

M. Jarke, S. Mazumdar, E. Simon, and D. Stemple. Assuring
Database Integrity. .J. Database Admin., 1(1):391-400, 1990.

A. Kotz, K. Dittrich, and J. Mulle. Supporting Semantic
Rules by a Generalized Event/trigger Mechanism. In Proc.
1st FDBT, pages 76-91, 1988.

D. McCarthy and U. Dayal. The architecture of an active
database management system. In Proc. ACM SIGMOD,
pages 215224, 1989.

M. Morgenstern. Active databases as a paradigm for en-
hanced computing environments. In Proc. 9th VLDB, pages
34-42, 1983.

M. Morgenstern. Constraint equations: Declarative expres-

sion of constraints with automatic enforcement. In Proc. 10th
VLDB, pages 291-300, 1984.

M. Morgenstern. Constraint-Based Systems: Knowledge
About Data. In Proceedings of 2nd International Conference
on Fzpert Database Systems, pages 23-43, 1989.

C. Medeiros and P. Pfeffer. A Mechanism for Managing
Rules in an Object-oriented Database. Technical report, GIP-
ALTAIR, 1991.

23



[MPO1b]

[INQZ90]

[RCBBS9)]

[Ris89)]

[SHPSS]

[SIGP90]

[SPAMO1]

[S791]

[UDSY]

[UD90]

C. Medeiros and P. Pfeffer. Object Integrity Using Rules.
In Proceedings Furopean Conference on Object-Oriented Pro-
gramming, pages 219-230, 1991.

R. Nassif, Y. Qiu, and J. Zhu. Extending the Object-oriented
Paradigm to Support Relationships and Constraints. In Proc.
IFIP Conference Object Oriented Database Systems - analy-
sis, Design and Construction, 1990.

A. Rosenthal, 5. Chakravarthy, B. Blaustein, and J. Blake-
ley. Situation monitoring for active databases. In Proc. 15th

VLDB, 1989.

T. Risch. Monitoring database objects. In Proc. 15th VLDB,
pages 445-453, 1989.

M. Stonebraker, E. Hanson, and S. Potamianos. The POST-
GRES rule manager. IFFFE Transactions on Software Engi-
neering, 14(7), 1988.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On
rules, procedures, caching and views in database systems. In
Proc. ACM SIGMOD, pages 281-290, 1990.

U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan. Alert:
An Architecture for Transforming a Passive DBMS into an
Active DBMS. In Proceedings 17th VLDB, pages 469-478,
1991.

A. Segev and J. Zhao. Data Management for Large Rule
Systems. In Proceedings 17th VLDB, pages 297-307, 1991.

S. Urban and L. Delcambre. Constraint Analysis for Speci-
fying Perspectives of Class Objects. In Proc. 5th IFEE Con-
ference on Data Engineering, pages 10-17, 1989.

S. Urban and M. Desiderio. Translating Constraints to Rules
in CONTEXT: a CONstrainT EXplanation Tool. In Proc.

24



[UKN92]

[WE90]

IFIP Conference Object Oriented Database Systems - analy-
sis, Design and Construction, 1990.

S. Urban, A. Karadimce, and R. Nannapaneni. The Imple-
mentation and Evaluation of Integrity Maintenance Rules in
an Object-Oriented Database. In Proc. IEFE Data Fngineer-
ing Conference, pages 565-572, 1992.

J. Widom and S. Finkelstein. Set Oriented Production Rules
in Relational Database Systems. In Proc. ACM SIGMOD,
pages 259-270, 1990.

25



01/92

02/92

03/92

04/92

05/92

Relatorios Técnicos

Applications of Finite Automata Representing Large Vo-
cabularies, C. L. Lucchesi, T. Kowaltowski

Point Set Pattern Matching in d-Dimensions, P. J.
de Rezende, D. T. Lee

On the Irrelevance of Edge Orientations on the Acyclic
Directed Two Disjoint Paths Problem, C. L. Lucchesi,
M. C. M. T. Giglio

A Note on Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi Diagrams,
W. Jacometti

An (l,u)-Transversal Theorem for Bipartite Graphs,
C. L. Lucchesi, D. H. Younger

Departamento de Ciéncia da Computacdo — IMECC
Caiza Postal 6065

Universidade Fstadual de Campinas

13081-970 — Campinas — SP

BRASIL

reltec@dcc.unicamp.br

26



