
O conte�udo do presente relat�orio �e de �unica responsabilidade do(s) autore(s).(The contents of this report are the sole responsibility of the author(s).)
Implementing Integrity Control in ActiveDatabasesClaudia Bauzer MedeirosM�arcia Jacobina AndradeRelat�orio T�ecnico DCC{06/92Julho de 1992



Implementing Integrity Control in ActiveDatabasesClaudia Bauzer Medeiros M�arcia Jacobina AndradeAbstractThis paper presents an integrity maintenance system that hasbeen developed for maintaining static constraints in databases, us-ing the active database paradigm. This system has been added tothe O2 object oriented database system, and is fully functional.Constraints are speci�ed by the user in a �rst order logic lan-guage, and transformed in production rules, which are stored inthe database. The rules are then used to maintain the correspond-ing set of constraints, for all applications that use the database,and which no longer need to worry about integrity control. Weextend previous work on constraint maintenance in two ways: oursystem can be used as a constraint maintenance layer on top ofobject-oriented, relational and nested relational databases; in thecase of object-oriented systems, we provide constraint support notonly in the case of object composition, but also consider inheritanceand methods.Keywords: Active databases, object-oriented databases, in-tegrity constraint maintenance1 IntroductionAn integrity constraint, in a database environment, is a statement ofa condition that must be met in order to maintain data consistency[JMSS90]. Constraints can be classi�ed in several ways. One of thesemany classi�cations relies on distinguishing static constraints { i.e., those1



that de�ne a valid database state and are usually stated using �rst orderlogic { and dynamic constraints { that specify valid database state transi-tions, and are speci�ed using modal logic. The same kinds of constraintsexist in the object-oriented framework, where one can still use �rst orderlogic to de�ne static constraints, using classes, objects and object compo-nents as variable ranges (instead of relations, tuples and attributes). Thenew element is the appearance of constraints over methods, for which nostudy has yet been made.The problem of automatic maintenance of integrity constraints in adatabase management system (DBMS) has been extensively consideredin the literature. Since database systems have limited support for sucha facility, application developers are forced to embed code in each ap-plication, in order to verify constraints. This has also the inconvenientof making all applications very sensitive to any modi�cation in the con-straint set, besides leaving to programmers the burden of having to knowand check all relevant constraints at each step.A solution to this problem presented by several researchers is to em-bed a trigger or a production rule system into the DBMS, to be activatedupon update requests. If this solution is applied, constraint speci�cationand maintenance can be kept independent from application development.This paper analyzes the problem of maintaining static integrity con-straints in databases, using production rules and the active databaseparadigm. The main results presented are the following:� a general algorithm for automatically transforming constraints statedin �rst order logic into a set of production rules, using the activedatabase paradigm. Unlike previous work, this algorithm providessupport for constraint inheritance and composition, and for con-straints over methods;� the description of a constraint management system, which uses thealgorithm, and has been added on top of a version of the O2 object-oriented database system [Da90] that supports rule management([MP91a]). The constraint management system is fully functional,and can be also used for constraint maintenance in relational or2



nested relational systems, which are shown to be special cases ofthe object-oriented data model adopted.Our work uses the object-oriented data model of [Bee89] which consid-ers a class to be a collection of objects. Objects are characterized bytheir structure (class type) and behavior (class methods). Classes aresubject to inheritance and composition properties. An object-orienteddatabase schema is a description of the properties of the database classes(described by composition and inheritance graphs) and object behavior(methods).This paper is organized as follows. Section 2 discusses the role ofactive database systems on constraint maintenance. Section 3 presentsthe algorithm for transforming static constraints into production rules,for relational and object-oriented systems. Section 4 presents the algo-rithm's implementation and its use as a constraint transformation layeron top of the O2 DBMS. Section 5 gives some examples of automatedrule generation for object-oriented systems. Finally, section 6 presentsconclusions and directions for future work.2 Active Database Systems and Constraint Sup-portActive databases are systems that respond to events generated internallyor externally to the system itself without user intervention. The termactive appeared in [Mor83] to describe a database that supports auto-matic view modi�cations to re
ect updates to the underlying database.Nowadays, the active dimension is usually supported by production rulemechanisms, provided by the DBMS. The term rule is associated withthe notion of production rules which are usually de�ned as clauses IfX then Y, where X is a predicate to be tested, and Y is an actionto be performed if the predicate is true. In [DBM88] the execution ofa production rule was described as being triggered by an event (e.g.,transaction commit). This notion is now adopted by most researchers inactive databases. 3



Rules have thus become triples<E,C,A>where E stands for the Event upon which the rule is triggered, C theCondition (predicate) to be tested, and A the Action to be performedif the condition is met. From now on, the term rule in this paper willdenote this triple.An active system should support not only the declarative speci�ca-tion of rules but also their manipulation (query, update, activation anddeactivation of rules). The paradigm of active databases is useful for im-plementing or extending several database functions. Some examples areintegrity control, handling of derived data, processing of view updates,and monitoring of events (e.g., [Mor83, Mor84, Ris89, RCBB89, MD89]).Most of the published research on active databases discusses thesupport of static integrity constraints using <E,C,A> rules. In sucha framework, rule components have the following meaning: the Eventis an update request; the Condition is the constraint's predicate; andthe Action, optional, is provided by the database designer, and can becorrective or preventative. Preventative actions block an update if itviolates the constraint. Corrective actions correspond to sequence of op-erations to be executed that restore the database's consistency after theupdate is performed.A typical example of the advantage of such systems over traditionalsystems is that of engineering database applications. As remarked in[Mor89], these applications require a large number of constraints, whoseveri�cation is usually coded within the application itself. Any modi�ca-tion in the set of constraints does therefore require intensive recoding.The active database approach, on the other hand, has the following ad-vantages:� it supports speci�cation and maintenance of constraints by theDBMS itself, regardless of the application code, allowing indepen-dent evolution of both; 4



� it provides use of the same underlying database for all applicationsthat have the same view of the world (i.e., supports constraint anddata sharing);� it allows the possibility of di�erent applications having di�erentviews of the same database, by enabling and disabling di�erentsets of rules (e.g., [CBB+89]).Examples of research on constraints and active relational databasesare: [Mor84] (where some of the characteristics of active databases arediscussed, and a semantic constraint language is proposed); [CW91,WF90] (where SQL is extended to incorporate constraint speci�cation,and constraints generate production rules that check updates over tuplesor sets of tuples); [SPAM91] (where it is shown how to extend a relationalsystem with a layer that manages special { active { relations, which con-trol events and allow trigger execution); [SZ91] (where the problem ofoptimizing the execution of large sets of rules by materializing speci�crelations is considered).[SHP88, SJGP90] present a mechanism for managing rules in the ex-tensible system POSTGRES, and how these rules can be used to supportviews, procedures, and integrity constraints.Research on constraints using active object-oriented databases in-cludes: [KDM88] (where an extended trigger mechanism is described forthe DAMASCUS system); [DBM88, CBB+89] (introducing <E,C,A>rules in the HIPAC system); [DHL90, DHL91] (where rules are studiedin the context of long-running activities, where the action may be post-poned); [NQZ90] (using rules to help semantic modelling on GemStone);[UD89, UD90, UKN92] (where rules are used to maintain constraints,and an algorithm is proposed to detect rule cycles); [MP91a, MP91b](where a rule mechanism implemented on top of the O2 database is dis-cussed, as well as its consequences on constraint maintenance); [DPG91](where it is shown how to specify rules to maintain constraints in theADAM system).In all the above cases, the solutions proposed are particular to a givendata model or subsystem. We now discuss how to generalize the solution.5



3 Transforming Constraints into Rules3.1 IntroductionGiven that active databases are an adequate and 
exible solution formaintaining constraints, there remains the problem of automatically de-termining a set of rules that, for a given constraint, will ensure its en-forcement by an active database. Some solutions for this problem havealready been proposed, but they are usually not integrated into anydatabase system. Exceptions are [WF90], for an extended relational sys-tem, and [UKN92], for an object-oriented system. In both cases, thesolutions proposed are speci�c to a system, and cannot be applied toactive databases in general.[WF90] show how to transform a constraint speci�ed in �rst orderlogic into rules, which are triggered by updates in the extended rela-tional system Starburst. [UKN92] describe automatic transformation ofconstraints into rules in an object-oriented database, but constraints arelimited to schema (composition) integrity, and only some restricted typesof data integrity. Inheritance, methods, or more general constraints overspeci�c database states are not considered.This section extends and generalizes previous proposals for automat-ically transforming general static constraints into < E,C,A > rules. Ourtransformation algorithms use ideas from both [Mor84] and [WF90]'sstatic analysis of constraints, and incorporate [MP91b]'s rule creationproposal. The constraints handled can be de�ned over schema (extend-ing [UKN92]) or data (as in most of the references named in Section 2).Furthermore, in case of object-oriented databases, constraints can alsoapply to method execution (e.g., order). This extends previous work byconsidering not only the usual constraints over schema or state, but alsoover behavior.3.2 Extracting C,A components from constraintsIn non-active systems, programmers predict which updates violate whichconstraints, and add the proper veri�cation procedures to the code. In6



active databases, the problem lies in establishing beforehand and inde-pendent from any application which updates (i.e., events) will be sourcesof constraint violation.Let a constraint be speci�ed as a �rst order logic predicate P over adatabase state, and A some user-de�ned action to be performed if P isnot true (i.e., if :P then A). The same predicate P has to be checked atseveral di�erent events (updates) which may violate the correspondingconstraint. An active database must thus provide a set of rules <fEg,:P ,A > to maintain this constraint. Whereas the : P and A componentscan be derived straight from the constraint speci�cation, event determi-nation depends on additional information. Thus, the most complex partof automatic rule derivation is that of determining events (i.e., updates)which may violate a constraint. The objective of event derivation is thusto avoid unnecessarily checking constraints at every update, and thussave processing time.In relational systems, updates (events) that may violate a given con-straint can be usually determined by static analysis of the constraint, andhave a limited range of action (i.e., constraints are generally restricted toat most two relations). In an object-oriented system, however, updatesare performed by methods to obey encapsulation. This complicates enor-mously the de�nition of all events which may be associated with integrityviolation, mainly for the following motives:� overloading and polymorphism associated with message sending,which does not allow static determination of a message receiver,nor supports unique method implementation;� multiplicity of functions and methods associated with an applica-tion;� inheritance mechanisms, whereby constraints which refer to a givenclass may be valid for its subclasses;� composition mechanisms, whereby constraints stated for one classmay have to be checked when other (apparently unrelated) classesare updated. 7



In relational systems, events consist of applying the insert, delete, updateoperations over a tuple or relation. In object oriented systems, however,a given object may react to several methods, whose names are de�ned bythe user, and whose implementation depends on the method's receiverand cannot be fathomed unless additional context-sensitive informationis provided. Thus, algorithms for transforming constraints into rules suchas proposed by [Mor84, WF90] do not apply to object-oriented systems.Furthermore, analysis of the constraint statement alone (e.g., [Mor84])is not su�cient, since additional (method) semantic information must beprovided.3.3 Event detection algorithmWe now describe the algorithm that determines all events that can vio-late a given constraint. The set of events determined is a superset of theactual set of events, since specifying the exact set of events is computa-tionally unfeasible. Constraints over method execution are assumed tobe pre or post-conditions to methods.Events produced by the algorithm are expressed as < Class,Method>pairs (or < Object,Method> for constraints that refer to a speci�c ob-ject )1). This notation means that < method M is being executed onsome object of class C, or on object O >. Analogously, for relationaland nested relational systems, events are stated as < relation name, up-date operation >, where the update operation may be insert, delete orupdate.Consider, for instance, the schema on Figure 1, where Money, Ad-dress and Date are classes declared elsewhere. Client and Employee aresubclasses of Person, and Client-Employee is a subclass of both. LetCN1 be the constraint below, which states that a manager's salary isgreater than 10,000,000.00CN1 = 8 x 2 Department, x.manager.salary > 1,000,000.00CN1 has to be checked when a manager's salary is updated. Since �eldmanager is of class Employee, this means checking CN1 when the method1Certain systems, like O2, allow specifying names for chosen objects8



update-salary is activated on any object of class Employee. The algo-rithm would in this case indicate that <Employee,update-salary> is oneof the events that may violate CN1. In other words, if update-salary isexecuted on an Employee, the rule has to check at run time if this Em-ployee is a manager, since in this schema one cannot determine staticallyif an employee is a manager).In order to understand the algorithm, the following terms are de�ned:� Method attributes are all �elds that can be updated by a method,and which are not necessarily restricted to the parameters speci�edin the signature (e.g., method hire updates several Employee �elds,but has no parameters). These �elds are provided by the designerand may vary with the receiver's class.� Class components are the �elds that are the components of a classtype (e.g., name, birth, address in class Person);� Pre�x �elds are the (compound) pre�xes of a �eld in a constraint.For instance, the expression "x.manager.address.city" denotes: thecity �eld of the address �eld of the manager �eld of (an object) x.Its pre�x �elds are: x.manager and x.manager.address.3.3.1 Central ideasThe algorithm uses three sources of input: the integrity constraint itself;data from the schema; and method execution information. Schema in-formation consists of data about class composition (composition graphs),inheritance (inheritance graphs) and methods de�ned for a class. Methodexecution information consists of all method attributes for each methodin a database (i.e., all �elds updated by a given method, as de�ned pre-viously), and must therefore be provided by the user. The output of theevent detection algorithm is the set of events that may violate the inputconstraint.The main steps for event detection are the following:1. Identify all classes and objects directly referenced in the constraint(e.g., in CN1, class Department is identi�ed), all class components9



Structural InformationClass Person typetuple (name: String, birth: Date, address: Address)Class Employee inherits Person typetuple (salary: Money, dep: Department, child:set(Person) )Class Client inherits Person typetuple (credit: Money, status: String)Class Department typetuple (name: String, personnel: set(Employee), manager: Employee)Class Client-Employee inherits (Client, Employee)Class Vehicle typetuple (chassis: Integer, price: Money)Class Car inherits Vehicle typetuple (model: String, owner: Employee)Class Boat inherits Vehicle typetuple (tonnage: Integer) Behavioral Informationmethod update-birth(newbirth: Date) in class Personmethod hire () in class Employeemethod add child (child:Person) in class Employeemethod update-salary(newsalary:Money) in class Employeemethod update-dep (olddep, newdep: Department) in class Employeemethod update-manager (newmanager: Employee) in class Departmentmethod update-price (newprice: Money) in class Vehiclemethod update-chassis (newchassis: Integer) in class Carmethod assign-owner (chassis: Integer, newowner: Employee) in class Carmethod insure (tonnage: Integer, newprice: Money) in class BoatFigure 1: Database Schema10



referenced, and their respective class types, by analysis of pre�x�elds (e.g., in CN1, manager is a component of class Departmentand belongs to class Employee, and salary is a component of classEmployee). This identi�cation is done by querying the schemacomposition graph.2. (Constraint propagation across the composition graphs ) Once theclasses and class components referenced are identi�ed, determineall methods that can violate the constraint. This means verifyingwhich methods update some of the components identi�ed in (1).For CN1, methods hire and update-salary update component salarywhich was identi�ed in (1), and may therefore violate CN1. Allsuch methods and the classes of the components to which theyapply constitute events, which are stored in an event list.3. (Constraint propagation along the inheritance graphs) The databaseinheritance graphs are traversed, to determine other events thatmay violate the constraint by inheritance of components or ofmethods. This is equivalent to performing inheritance of con-straints. These new events are added to the event list, whichconstitutes the output. Inheritance of constraints is of two types:the component and the method are inherited; or the component isinherited, but the method is local. For instance, suppose classEmployee had a subclass Bad Emp with component salary af-fected by a local method decrease-salary. Other events would be< Bad Emp,update-salary >, < Bad Emp, hire > (both by inher-itance of component and of method), and <Bad Emp, decrease-salary > (inheritance of component only).This algorithm also applies to nested and relational models, whereonly the two �rst steps are necessary. In these cases, methods are re-placed by relational database update operations, and there is no inheri-tance graph. For relational systems, the composition graph is simpli�edto relation names and attribute atomic domains. For nested relationalsystems, the composition graph allows relations as attribute domains,11



and is a special case of object-oriented composition graphs when theonly constructors allowed are relation and tuple. Thus, instead of com-ponent information we simplify all structures to contain only relationschemas. Given these structures, the algorithm subsumes those pre-sented in [WF90] for relational databases and in [UKN92] for object-oriented systems.3.3.2 AlgorithmInput: Static constraint speci�ed declaratively using a �rst order lan-guage, with components stated in pre�x formOutput: Set of events1. Step 1: Parse the constraint, and identify the classes and compo-nents involved. Initialize an empty list of events, L event.2. Step 2: Determine the class of each component and componentpre�x identi�ed in Step 1.Store these classes in table Tclass (contains classes where updatesmay violate the constraint), and the attributes in table Tclass attribute(which indicates class components that may be sources of con-straint violation). Initialize an auxiliary empty class table, T old.3. Step 3: While (Tclass - T old) not empty do� 3.1 For each class c in (Tclass - T old) do{ 3.1.1 Identify the methods m that can a�ect c (de�nedlocally or inherited){ 3.1.2 For each method m identi�ed in 3.1.1, check if atleast one of its attributes appears in table Tclass attribute(i.e., if the method updates a component mentioned inthe constraint). If positive, then add event <c,m> toL event.{ 3.1.3 Add c to T old (i.e., the class has been processed)12



� 3.2 For each class c in T old, identify its immediate descen-dants in the inheritance graph, and add them to TclassThis algorithm is simpli�ed in the case of constraints over methods.These constraints are declared as pre or post-conditions to method exe-cution (i.e., to a set of events). In such a case, the events are determineddirectly at parse time, and subsequent steps are not executed. One ex-ample isCN2 = 8 e 2 Employee: precond(e,update salary) :: e.salary > 0.0(i.e., a precondition to event < Employee, update-salary > is thatthe employee's salary must be positive)4 Implementation of the Constraint Transfor-mation LayerThe constraint subsystem was implemented in C on top of the activeversion of the O2 object-oriented DBMS, and runs in an Unix SPARCworkstation environment.The rule generation algorithm needs di�erent types of informationfrom the database schema, as well as semantic information about meth-ods. If many constraints have to be processed at once, this requires re-peatedly executing the same set of queries over the database schema, andconstant interaction with the database designer. We solved this problemby dividing the implemented system into two modules: a schema extrac-tion module and a rule generation module. The �rst module extracts allschema and method information needed for rule generation, and loads itinto temporary structures in main memory. The second module is therule generator, and uses these structures directly, instead of querying thedatabase.This decomposition presents the further advantage of allowing therule generation module to be database independent, and even model in-dependent. The rule generation module can be attached as a layer on topof any database system, for di�erent (system-tailored) schema extractionmodules. We developed the modules separately and added them to the13



�
 �	������? ?��������	
���=?

??
? User-De�nedDBMS

ComponentsPotential SourcesCompilationof ViolationIdenti�cation ofAnalysis and
Rule ManagerDBMSGenerationEvent

ExtractionSchema
Rules StructuresCompiled InformationMethodIntermediateConstraintConstraint

Figure 2: Constraint Transformation System14



version of the O2 object-oriented DBMS described in [MP91a]. Giventhese interface modules, our implementation will work for any object-oriented system that uses a class-based model as described in [ABD+89],and for relational and nested relational databases.In order to completely implement a constraint handling layer for adatabase system, we also developed a declarative constraint speci�cationlanguage. This language is based on �rst order logic, and allows de�ningconstraints over schema components (or relations), objects or classes. Italso allows de�ning relationship constraints involving instances of di�er-ent classes, and constraints that check pre or post-conditions for methodexecution. More details can be found in [And92].Figure 2 shows the general structure of the constraint system, wherethe Schema Extraction module is system-dependent, and the remain-der is system and model independent. The Schema Extraction modulecollects information from the schema and from the user and stores itin the intermediate data structures, especially designed for fast access.These structures are passed on to the Rule Generation subsystem: mod-ule Analysis and Compilation parses the constraint using a recursivedescendent analysis and builds the C and A �elds of the < E,C,A >rule; it passes the result on to the module that performs Identi�cation ofPotential Sources of constraint Violation (which are classes, componentsand pre�xes); �nally, Event Generation determines the set of events. Therules are then handed to the database rule manager.5 ExamplesLet us consider some examples of rule derivation based on the databaseschema of Figure 1. Since we obtain the same results as other authors inthe case of relational systems, we only show cases of constraints in object-oriented systems. All examples, except for the �rst one, correspond tosituations not considered in the literature. User method information hasbeen ommitted for brevity's sake and will be mentioned when needed.The constraint in �gure 3 is an example of a unique key speci�cation(no two Cars can have the same chassis number). The only class named15



in the constraint is Car, and the only component is chassis, of typeInteger. Notice that this component is inherited from Car's superclass,Vehicle. This information is stored in tables Tclass and Tclass attribute.Method information given by the user shows that two methods (update-chassis, assign-owner) may a�ect the chassis component. Both methodsare de�ned for class Car, though they modify an inherited component.These two methods are used in setting up the list of events L event.Class Car has no subclasses in the inheritance graph, so the algorithmterminates. Two rules are generated (one for each event) of the form <E, C, FORBID> , wherethe events are <Car, update-chassis> and <Car, assign-owner>,taken from L event;C is the violation of the constraint's predicate, i.e., C � 9c1; c2 2Car : c1.chassis=c2.chassis;keyword FORBID in the action �eld is the default when no actionis provided.2This is an example of a constraint that is checked locally over the classfor which it is declared, and is similar to examples of rule generationfor key maintenance in [UKN92] or [WF90]. Condition and action arederived in a similar way in the examples that follow, and will thus notbe shown again.Figure 4 shows a simple example of constraint inheritance. The con-straint is speci�ed over class Employee, and a�ects component salary,and therefore potentially class Money. Both classes are stored in Tclass,and salary is stored in Tclass attribute. The methods that a�ect thiscomponent are hire and update-salary, and the corresponding events areplaced in L event. The information about hire cannot be derived fromthe method's signature, and has to be provided by the user. Finally,class Client-Employee is a subclass of Employee, and thus the constraint2In the active version of O2, the rule manager will transform this input into tworule objects, where the condition becomes an O2 query, and FORBID becomes a rulemanager prede�ned action. In this system, it stores the rule as having to be triggeredas post-condition to method execution. When the event is signalled, the query isperformed, and the update is not committed if the query result is not empty16



Tclass attribute Car update-chassisClass MethodCar assign-owner8 c1,c2 2 Car c1.chassis <> c2.chassischassis: IntegerCar LeventTclassTclass
Figure 3: Unique key constraint - no propagationis propagated to it, the �nal set of events being composed by the meth-ods de�ned for class Employee, and inherited by class Client-Employee.Notice that it is not every method in Employee or Client-Employee thattriggers constraint veri�cation, but only the methods that a�ect the �eldsalary (which is in Tclass-attribute). Inheritance of constraints has notbeen considered by other authors.Figure 5 extends the previous example showing propagation of con-straints using information about composition (taken from pre�x �elds ofthe constraint). The constraint speci�es a single class - Car - but refersto other classes (since a Car's owner is an Employee, and price, salaryare of class Money). Therefore, events that may violate the constraintare not restricted to the class named in the constraint, but propagate tothe component's classes. As in the previous example, the constraint isinherited by Client-Employee.The list of events is a superset of the actual event list. For instance,method hire is included, even though in this case it does not violate theconstraint (though it a�ects Employee's salaries). In order to eliminatesuper
uous events, additional information would have to be known (e.g.,that execution of hire precedes any owner assignation, and thus does not17



Client-Employee8 e 2 Employee : e.salary > 10,000MoneyEmployee Client-Employee hireClient-Employee update-salaryEmployee hireEmployee update-salaryLeventTclass-attributeTclass MethodClasssalary: MoneyFigure 4: Constraint propagation by inheritance of methodsa�ect Car objects). However, the information needed will vary fromconstraint to constraint and cannot be determined beforehand for allcases. (Our implementation lets the user examine the rules generated,and exclude or disable the ones which are not of interest).Figure 6 is another example of constraint inheritance, but of anothernature. This is a domain constraint, for the price of a Vehicle. Theclasses a�ected are Vehicle (named in the constraint), and Boat and Car(subclasses). The only method that a�ects a Vehicle's price is update-price, which is inherited by Boat and Car, thus updating L event (similarto the previous examples). However, Boat has a local method (insure)that also a�ects the price and <Boat, insure> is thus added to L event.This example therefore shows a case where a constraint may be violatedby a (local) method modifying an inherited attribute, and where againconstraint analysis is not su�cient to derive all rules.18



Client-Employee 8 c 2 Car, c.owner.salary > c.priceClient-Employee hireCar update-priceCar assign-ownerClient-Employee update-salaryEmployee hireEmployee update-salaryLeventTclass-attributeTclass MethodClassCarMoneyEmployeeowner: Employeeprice: Moneysalary: MoneyFigure 5: Constraint propagation by inheritance of methods and com-position
8 v 2 Vehicle: v.price > 0BoatVehicle Vehicle update-priceBoat insureBoat update-priceCar update-priceprice: MoneyTclass attribute Class MethodCar LeventTclass

Figure 6: In
uence of local methods on constraint inheritance19



6 ConclusionsThis paper analyzed the problem of maintaining static integrity con-straints in database systems and presented an algorithm for automati-cally transforming an integrity constraint into a set of <E,C,A> rules.This algorithm generalizes previous work in the area of constraint main-tenance in active databases. Among the main contributions presentedwe can cite:� the algorithm was implemented into a constraint management sys-tem that is fully functional, and takes advantage of the rule facili-ties implemented for an object-oriented DBMS (O2);� the system supports constraints over schema, over data and overmethod execution order, and automatically performs constraintpropagation along inheritance and composition graphs;� the system can be used as a layer over di�erent active databasesystems that have rule support systems. It was designed to bemodel independent, and to be employed for constraint maintenancein active relational, nested relational or object-oriented DBMS.Several extensions are under consideration. The �rst concerns takingschema evolution into account. If the schema is modi�ed, previously de-�ned constraints may cease to hold, and the corresponding rules have tobe deleted, or new rules may have to be added (e.g., when a class is addedin a hierarchy whose root is subject to an already existing constraint). Inthe present version, every schema update requires reprocessing all con-straints in order to determine a new set of rules, which is very costly.One possible improvement we are studying is that of maintaining ad-ditional classes (or relations) in the database, to record association ofconstraints with the corresponding rules, and relationships of rules andthe classes (relations) whose integrity they check. Thus, when the schemais modi�ed, only a subset of constraints and rules need be checked. Thishowever brings the inconvenient of burdening the database with addi-20



tional information (relating rules and constraints) which may never beused.The system described in this paper assumes that all constraints thatrefer to a given class are inherited by its subclasses. This may not bealways the case, since in certain cases the user may want to specify excep-tions to constraints, as in [Bor85]. We are also analyzing this problem,and its implications in the rule determination process.Another extension concerns restricting the set of events, given ad-ditional semantic information about a database. For instance, when aconstraint refers to an aggregate �eld (e.g., average) then not necessarilyall methods that a�ect the �eld's components may violate the constraint.A constraint that imposes that a given average may never decrease willnot be a�ected by a method that will increase the �elds that composethis average. We are analyzing how to increase the input semantic in-formation to the constraint system, in order to reduce the set of rulesproduced in those and other special cases.Finally, no consideration was made in the direction of detecting cyclesin rule execution. In our case, this would imply analysis of the rules' ac-tions, to determine rule activation graphs, and from these graphs deductthe existence of rule loops (since actions may themselves require execu-tion of methods, which will in turn trigger other rules). One possiblesolution is to adapt the study that appears in [AWH92] for rules in anextensible relational DBMS, extending it to include information aboutinheritance and composition.Acknowledgements The authors thank Frederico Sidney Cox Jr.for his insightful comments and careful reading of this paper.References[ABD+89] A. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier,and S. Zdonik. The Object-oriented Database System Man-ifesto. In Proc. First Conference on Deductive and Object-Oriented Databases, pages 40{57, 1989.21



[And92] M. J. Andrade. Manuten�c~ao de Restri�c~oes de Integridadeem Bancos de Dados Orientados a Objetos. Master's thesis,Dept. Computer Science, UNICAMP, March 1992.[AWH92] A. Aiken, J. Widom, and J. M. Hellerstein. Behavior ofDatabase Production Rules: Termination, Con
uence andObservable Determinism. Technical Report RJ8562, IBM Al-maden, 1992.[Bee89] C. Beeri. Formal Models for Object-oriented Databases. InProc. 1st International Conference on Deductive and Object-oriented Databases, pages 370{395, 1989.[Bor85] A. Borgida. Language Features For Flexible Handling of Ex-ceptions in Information Systems. ACM TODS, 10(4):565{603, 1985.[CBB+89] S. Chakravarthy, B. Blaustein, A. Buchmann, M. Carey,U. Dayal, D. Goldhirsch, M. Hsu, R. Jauhari, R. Ladin,M. Livny, D. MacCarthy, R. McKee, and A. Rosenthal.HiPAC: a Research Project in Active, Time-constrainedDatabase Management. Technical Report XAIT-89-02, Xe-rox Advanced Information Technology, 1989. Final TechnicalReport.[CW91] S. Ceri and J. Widom. Deriving Production Rules for In-cremental View Maintenance. In Proc. 17th VLDB, pages577{589, 1991.[Da90] O. Deux and al. The Story of O2. IEEE Transactions onKnowledge Bases and Data Engineering, 2(1), 1990.[DBM88] U. Dayal, A. Buchmann, and D. McCarthy. Rules are ob-jects too: a knowledge model for an active, object orienteddatabase system. In Lecture Notes in Computer Science, vol-ume 334, pages 129{143. Springer Verlag, 1988. 2nd Work-shop in OODBS. 22



[DHL90] U. Dayal, M. Hsu, and R. Ladin. Organizing long-runningactivities with triggers and transactions. In Proc. ACM SIG-MOD, pages 36{58, 1990.[DHL91] U. Dayal, M. Hsu, and R. Ladin. A Transactional Model forLong-Running Activities. In Proceedings 17th VLDB, pages113{122, 1991.[DPG91] O. Diaz, N. Paton, and P. Gray. Rule Management in Object-Oriented Databases: A Uniform Approach. In Proceedings17th VLDB, pages 317{326, 1991.[JMSS90] M. Jarke, S. Mazumdar, E. Simon, and D. Stemple. AssuringDatabase Integrity. J. Database Admin., 1(1):391{400, 1990.[KDM88] A. Kotz, K. Dittrich, and J. Mulle. Supporting SemanticRules by a Generalized Event/trigger Mechanism. In Proc.1st EDBT, pages 76{91, 1988.[MD89] D. McCarthy and U. Dayal. The architecture of an activedatabase management system. In Proc. ACM SIGMOD,pages 215{224, 1989.[Mor83] M. Morgenstern. Active databases as a paradigm for en-hanced computing environments. In Proc. 9th VLDB, pages34{42, 1983.[Mor84] M. Morgenstern. Constraint equations: Declarative expres-sion of constraints with automatic enforcement. In Proc. 10thVLDB, pages 291{300, 1984.[Mor89] M. Morgenstern. Constraint-Based Systems: KnowledgeAbout Data. In Proceedings of 2nd International Conferenceon Expert Database Systems, pages 23{43, 1989.[MP91a] C. Medeiros and P. Pfe�er. A Mechanism for ManagingRules in an Object-oriented Database. Technical report, GIP-ALTAIR, 1991. 23



[MP91b] C. Medeiros and P. Pfe�er. Object Integrity Using Rules.In Proceedings European Conference on Object-Oriented Pro-gramming, pages 219{230, 1991.[NQZ90] R. Nassif, Y. Qiu, and J. Zhu. Extending the Object-orientedParadigm to Support Relationships and Constraints. In Proc.IFIP Conference Object Oriented Database Systems - analy-sis, Design and Construction, 1990.[RCBB89] A. Rosenthal, S. Chakravarthy, B. Blaustein, and J. Blake-ley. Situation monitoring for active databases. In Proc. 15thVLDB, 1989.[Ris89] T. Risch. Monitoring database objects. In Proc. 15th VLDB,pages 445{453, 1989.[SHP88] M. Stonebraker, E. Hanson, and S. Potamianos. The POST-GRES rule manager. IEEE Transactions on Software Engi-neering, 14(7), 1988.[SJGP90] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. Onrules, procedures, caching and views in database systems. InProc. ACM SIGMOD, pages 281{290, 1990.[SPAM91] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan. Alert:An Architecture for Transforming a Passive DBMS into anActive DBMS. In Proceedings 17th VLDB, pages 469{478,1991.[SZ91] A. Segev and J. Zhao. Data Management for Large RuleSystems. In Proceedings 17th VLDB, pages 297{307, 1991.[UD89] S. Urban and L. Delcambre. Constraint Analysis for Speci-fying Perspectives of Class Objects. In Proc. 5th IEEE Con-ference on Data Engineering, pages 10{17, 1989.[UD90] S. Urban and M. Desiderio. Translating Constraints to Rulesin CONTEXT: a CONstrainT EXplanation Tool. In Proc.24



IFIP Conference Object Oriented Database Systems - analy-sis, Design and Construction, 1990.[UKN92] S. Urban, A. Karadimce, and R. Nannapaneni. The Imple-mentation and Evaluation of Integrity Maintenance Rules inan Object-Oriented Database. In Proc. IEEE Data Engineer-ing Conference, pages 565{572, 1992.[WF90] J. Widom and S. Finkelstein. Set Oriented Production Rulesin Relational Database Systems. In Proc. ACM SIGMOD,pages 259{270, 1990.

25



Relat�orios T�ecnicos01/92 Applications of Finite Automata Representing Large Vo-cabularies, C. L. Lucchesi, T. Kowaltowski02/92 Point Set Pattern Matching in d-Dimensions, P. J.de Rezende, D. T. Lee03/92 On the Irrelevance of Edge Orientations on the AcyclicDirected Two Disjoint Paths Problem, C. L. Lucchesi,M. C. M. T. Giglio04/92 A Note on Primitives for the Manipulation of GeneralSubdivisions and the Computation of Voronoi Diagrams,W. Jacometti05/92 An (l; u)-Transversal Theorem for Bipartite Graphs,C. L. Lucchesi, D. H. Younger
Departamento de Ciência da Computa�c~ao | IMECCCaixa Postal 6065Universidade Estadual de Campinas13081-970 { Campinas { SPBRASILreltec@dcc.unicamp.br 26


