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Abstract

This paper analyzes the problem of maintaining application-
dependent integrity constraints in databases for design environ-
ments. Such environments are characterized by the need to sup-
port different types of interaction between integrity maintenance
and version maintenance mechanisms. The paper describes these
problems, and proposes a framework in which they can be treated
homogeneously. We thus bridge the gap existing between research
on constraint maintenance and on version control, which has so far
posed several problems to researchers in these two areas.

1 Introduction

A design environment (e.g., CASE, CAD) must support parallel develop-
ment of independent entities (e.g., program modules, or car parts) that
are eventually integrated into a final product (e.g., a piece of software,
or an engine). During this activity, entities are logically grouped into
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sets whose components “go together”, i.e., satisfy a certain unit spec-
ification. These sets are called design surfaces. Other common names
are configurations or contexts. A surface usually corresponds to a design
unit, assigned to a given design team.

In order to support the work of these design teams, the environ-
ment must provide the means for ensuring the integrity of the different
surfaces, and of keeping track of their versions. It must also provide
communication channels among the teams, and supply tools for progres-
sive integration of the design surfaces. Managing the coordination of
integrity and version control is therefore a crucial issue.

Designing involves an intensive work of experimentation over dif-
ferent alternatives, where entities are created, updated, destroyed and
merged. In order to support these activities in a database environ-
ment, several version support mechanisms have been proposed (e.g.,
[KSW86, Kat90, CJ90, TG92, KS92]), and recently surveyed in [BBA91].
Very little is said, however, on the maintenance of integrity constraints
in such a context.

Since the design activity is exploratory by nature, different versions
of any given entity may exist simultaneously in a database. Controlling
the database’s coherence requires therefore maintaining versions of sur-
faces, i.e., finding out and keeping track of the appropriate component
versions that form a consistent surface. The integrity problem acquires
thus two dimensions: maintaining the consistency of a surface that has
several components, and maintaining a component’s integrity. These two
dimensions are translated into two problems: maintaining different ver-
sions of components and surfaces, and integrating component versions
into an appropriate surface version.

Due to the complexity of these issues, the integrity problem in a
version context is usually limited to integrating component versions into
a consistent surface version. Thus, the consistency concept in a version
environment is mainly that of determining sets of consistent versions of
data [KSW86]. When a new component version is created, the first goal
is that of maintaining the entity’s (local) consistency, followed by trying
to integrate this version into some consistent view of the database.



As we will show, the consistency issue has other ramifications which
so far have been ignored by researchers: constraint evolution during the
design process; surface evolution; and interference among surfaces. The
two latter involve issues similar to the ones treated in the view update
problem (e.g., [BS81]).

This paper presents a framework that allows homogeneous treatment
of versions and of constraints, based on the database version mecha-
nism described in [CJK91], and extended in [CVJ91]. We show how this
framework can be used to manage versions of constraints, and constraints
which are imposed over the version generation process. The latter is a
new type of constraint, which we call version control constraints. We
follow the division proposed in [Sci91], and distinguish logical and phys-
ical versioning. We present all issues from a logical (design) level, rather
than from a physical (implementation) level. For implementation details
of the mechanism discussed, the reader is referred to [CJ90]. The main
contributions of this paper are the following;:

e Systematic discussion of the problems of supporting the interaction
between integrity control mechanisms and version control mecha-
nisms in a design environment.

o Presentation of a framework that allows treating these issues in
design databases. This framework encompasses versioning of con-
straints, which has so far been ignored in the literature.

¢ Discussion of a new family of integrity constraints, version control
constraints, which are rules that define legitimate ways of creating
and maintaining relationships among versions.

The results presented are general, and independent of the data model.
To stress that, we will refer to database entities instead of the term
objects. The latter, in this paper, refers to entities in an object-oriented
database, and which should be thus understood in the corresponding
context. A database entity is a set of database elements that represent
a design component and may for instance be a tuple or a relation in a
relational database, or a set of objects in an object-oriented database.



The term object, on the other hand, is used here as an instance of a class
in an object-oriented database. It is characterized by its state (contents)
and behavior (methods), and is subject to inheritance and composition
properties [Bee89].

This paper is organized as follows. Section 2 presents the terminol-
ogy used and some issues concerning constraint maintenance and version
generation mechanisms. Section 3 discusses the problems of maintaining
versions in the presence of integrity constraints, and presents the ap-
proach of [CJ90], which we extend to unify the concepts of version and
constraint maintenance. Section 4 presents two new problems - version-
ing of constraints and constraints over version generation - and shows
how our approach can be used to solve these issues. Finally, Section 5
contains conclusions and directions for future work.

2 Research on versions and on constraints

An integrity constraint, in a database environment, is a statement of
a condition that must be met in order to maintain data consistency
[JMSS90]. The problem of automatic maintenance of integrity con-
straints in a database management system (DBMS) has been extensively
considered in the literature. Since database systems have limited sup-
port for such a facility, application developers are forced to embed code
in each application, in order to verify constraints. This has also the
inconvenient of making all applications very sensitive to any modifica-
tion in the constraint set, besides leaving to programmers the burden of
having to know and check all relevant constraints at each step.

The issue of database versions is another problem that has been in-
tensively researched in recent years. A version is a “semantically mean-
ingful snapshot of an object at a point in time” ([Kat90]). Among the
problems that have to be solved in version management are the main-
tenance of historical data, the sharing of versions, and the control of
concurrency for version access.

Research on constraints and on versions have for the most part been
conducted independently. Version management mechanisms implicitly



assume that existing integrity constraints are somehow maintained when
a version is created. In other words, no entity version may reflect an
inconsistent state of the world. By the same token, the research on con-
straint maintenance does not take the possibility of versions into con-
sideration. It only addresses the issue of ensuring global consistency of
a database, given a set of updates. In a version environment, however,
this is not always feasible.

The main issue is that, once we are faced with a world with versions,
we lose the traditional notion of transaction correctness which underlies
the standard constraint maintenance paradigm. A transaction is a se-
quence of operations that takes a consistent database state into another
consistent state. A transaction under the version paradigm does not
obey this definition, since the notion of a globally consistent database no
longer holds. Thus, it has been impossible to integrate results of research
in integrity management and version management since each forces the
adoption of a different consistency definition paradigm.

2.1 Issues on constraint maintenance mechanisms

The development of efficient mechanisms for performing maintenance of
integrity constraints is still a difficult problem. Such tasks are mostly
left to database designers or application programmers. Designers try to
ensure integrity by following specific design rules, and defining protec-
tion schemes for sensitive data. Programmers have to encode integrity
maintenance into applications, which is very costly, since it means mod-
ifying code whenever the integrity characteristics of a system change. A
partial solution offered to this problem is that of maintaining constraints
by means of production rules, using the active database paradigm (e.g.,
[KDMS88, DHL90, GJ91, BM91]).

Integrity constraints may be application-dependent (defined by the
user) or model-dependent (and thus ensured by the DBMS). We will not
worry about the latter, since we assume they are ensured by the underly-
ing database management system. What concerns us is the maintenance
of application-dependent constraints in a version environment.



Constraints can be classified in several ways. One of these many
classifications relies on distinguishing static constraints — i.e., those that
define a valid database state and are usually stated using first order
logic — and dynamic constraints — that specify valid database state transi-
tions, and are specified using modal logic. One important set of dynamic
constraints is that of temporal constraints, that determine coherent se-
quences of state transitions over time [JMSS90].

Though the notion of constraint is usually associated with modifica-
tion of data, the database schema composition (i.e, the specification of
the database components and their types) may also be subject to restric-
tions. One can, for instance, add new fields to a relation, or change the
composition graph of a class in an object-oriented database.

In an object-oriented world, constraints can be defined not only
over structure or contents, but also over behavior. As pointed out in
[MP91], these constraints correspond to establishing consistency direc-
tives for methods. We take the view that behavior description is part of
a database schema. Static constraints on methods are, for instance, do-
main constraints over their parameters. Dynamic constraints over meth-
ods are, for instance, the specification of allowable sequences of method
execution. Thus, we consider that the constraints that interest us can be
either static or dynamic constraints, and may apply to the data or to the
schema of a database, where the schema, in object-oriented databases,
includes behavior specification.

2.2 Issues in version mechanisms

Versions are present in all stages of a design process. As remarked in
[EL90], it is impossible to give a formal specification of a version. The
task of determining what constitutes a version of an entity is left to the
user.

Normally, there is a distinction between two types of version creation
operations: revisions and alternatives (also called variants). A revision
corresponds to an improvement; its creation is thus always dependent
on a predecessor. A typical use of revisions is found in the historical



approach to versions, which considers the evolution of entities through
time, and only the latest version is updated [Bla91]. Once a revision is
established, none of its previous versions in time can be changed. Alter-
natives correspond to variations in a given version, in response to differ-
ent prerequisites (e.g., performance) but which are functionally similar.
CAD applications use alternatives extensively, by considering the paral-
lel evolution of several versions of an entity [BBA91]. It is up to the user
to determine whether a newly created version constitutes an alternative
or a revision of an existing entity.

The version creation process for an entity is frequently depicted by
means of different types of graphs, where each node corresponds to a
version of the entity. The most common of these is a directed acyclic
graph — dag — where a node’s descendants along a path are its successive
revisions. The edge from a node to its descendant indicates a temporal
creation order. Nodes that have the same immediate parent constitute
a set of alternatives. Revisions can be created from several parents at
the same time, which corresponds to the merging (or consolidation) of
concepts.

As mentioned in the introduction, designer teams work on a set of
entities, that form a design unit — the surface. Maintaining the con-
sistency of a surface requires correctly matching entity versions, i.e., a
set of entity versions that form a coherent functional system unit. The
design process in the presence of versions requires progressively merging
different (consistent) surfaces until the final product is achieved. Since
designers work over a surface in order to obtain a final product, most
of the work in version support mechanisms is concerned with providing
users with adequate surface management.

3 Maintaining constraints in the presence of
versions

The consistency problem in the presence of versions has so far been con-
sidered as a problem of determining and maintaining consistent surfaces.



There are, however, several other issues to be considered:

1. Constraint evolution. First, during any design process the set

3.1

of constraints is also subject to evolution. In fact, as stressed by
[CVJ91], the notion of consistency evolves over time. Thus, one is
now dealing with a world where constraints themselves are subject
to modifications.

“View” updates. Second, the design process is often undertaken
by a group of designers, and the project is divided in subtasks,
where different groups design different parts for future integration.
Each group sees a set of entities over which it has to configure
and maintain the appropriate surfaces. However, maintaining local
(surface) consistency is no longer sufficient, since decisions taken
by a group may affect the decisions taken by a different design
group that sees another portion of the database. Therefore, the
usual local consistency model is not enough and we are faced with
a variation of the view update problem, where the view is now a
design surface.

. Propagation of constraints. Finally, the evolution of constraints

may occur simultaneously in several design groups. In some cases,
constraints which have been added or modified by a group will have
to be adopted by other groups. One thus sees the phenomenon of
update propagation from a new prism: researchers limit themselves
to analyzing effects of propagating updates on data, whereas in a
design environment constraints themselves are propagated along
different surfaces.

Evolution of versions under constraints

Figure 1 shows two graphs. The one on the left describes the version
evolution of a surface S, and the one on the right the evolution of a
design project to which this surface belongs. The first graph shows the
(database) view of a designer team working on surface S. The surface
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Figure 1: Version Graphs

goes through a set of revisions and alternatives that are merged into a
final version. Some alternatives are abandoned.

The second graph shows the project manager’s global view (in this
case, surfaces S and T). After an initial (independent) design stage, the
surfaces interact (shown by the dashed lines). This interaction is not
necessarily visible to the design teams, and corresponds to constraints
across surfaces visible only at the global level: design decisions taken
for T affect the future evolution of S, and vice-versa, since the product
needs eventually merging S and T.

Of course, this is just a simplified example, since in most cases sur-
faces have intersections from the start (e.g., in software design, where
modules developed by different teams use the same data structures, or
must communicate via a common interface). The figure, however, illus-
trates some of the problems of interaction of constraints and versions:

e global constraints - these are overall project constraints, which
must be kept for all design stages of all surfaces (e.g., enterprise



price policy, or a global data model).

e local (component) constraints - these are constraints that apply to
a single design entity (e.g., dimensions of a surface component).

e local (surface) constraints - these are constraints that apply to a
surface (e.g., to S), and which are ignored by other surfaces (e.g.,
functional specification).

e inter-surface constraints - these are constraints imposed across sur-
faces (e.g., interface definitions for future integration). These are
the constraints that control the interaction between T and S.

Let us illustrate these issues using a simple example. Suppose that
a project uses a relational database, where each surface is stored in a
relation. A global constraint is enforcement of INF. Local entity con-
straints are those that apply to a given tuple, or attribute (e.g., domain).
Local surface constraints apply to one relation alone (e.g., a functional
dependency). Finally, inter-surface constraints would restrict sets of re-
lations (e.g., referential integrity constraints). Coordination of versions
in this system means maintaining all these dependencies for all versions
of tuples, relations and attributes. However, multiple versions of any
given relation, say R1, must coexist in the system. Each version of R1
is consistent with respect to its local constraints, and to the database’s
global constraints. On the other hand, the set of versions of R1 may
violate local constraints (e.g., a functional dependency). By the same
token, consider a constraint that determines valid relationships between
R1 and another relation R2, which also has several versions. This con-
straint is not supposed to hold between any two versions of R1 and R2.
Rather, it has to be maintained between appropriate pairs of versions of
these relations.

The greatest difficulty in consolidating work in constraints and in ver-
sions lies in that researchers in these areas live in different worlds, and
cater to different users. Integrity constraint maintenance presupposes
that users have a comprehensive view of an application, and that, even
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if the world evolves, the database will harmoniously follow this evolution,
by changing state (e.g., schema or data updates). Version management
presupposes that users are dealing with tentative specifications, working
on different alternatives at the same time. In this world, evolution means
not only changing the one state, but keeping different states alive and
available at the same time, keeping track of them all for future modifica-
tions. Research and mechanisms for constraint maintenance are geared
towards moving a database from one state to another. Research and
mechanisms in a version environment concern moving a database from
a set of states (the surfaces) to another set of states.

Thus, standard integrity maintenance mechanisms are useless in con-
trolling integrity across sets of versions. In fact the traditional notion
of constraint ceases to hold, once we introduce versions, since constraint
maintenance mechanisms tacitly assume there is just one instance per
entity, whereas version mechanisms assume there are several different
instances for the same entity. The existence of a database with versions
means therefore the existence of a database that is by definition inconsis-
tent in the traditional sense. The consistency problem becomes therefore
that of finding surfaces, or sets thereof (i.e., partial rather than global
consistency).

We summarize the problem as follows:

Maintaining integrity constraints in the presence of versions is a problem
of finding and maintaining surfaces across a database, where each surface
should be kept consistent with respect to the constraints. It entails main-
taining consistency within a single database with several entities, where
to each entity may be associated several data versions, several schema
versions and several (versioned) views.

The introduction of the object oriented paradigm increased the dif-
ficulty of dealing with versions in the presence of constraints. When a
composite object is updated, one must determine how to propagate the
update to the appropriate component versions, which is difficult when
there are different alternatives for component and composite objects.
The task is therefore that of finding first the appropriate surface for a
composite object, and then of finding the schema version to which that
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surface belongs. Thus, some researchers restrict themselves to versioning
object schemas (e.g., [ALP91]) and others yet to the problem of version-
ing isolated objects while maintaining the schema invariant.

Suppose for instance we have sets of Seats, Wheels, Brakes and
Gearboxes (components) which we want to use to design Land Vehi-
cles (surfaces). Cars and Trucks both need Seats, Wheels, Brakes and
Gearboxes, but under different versions. Depending on how we put them
together, we will come up with a different product. Though each com-
ponent is consistent with respect to its local constraints (e.g., a Wheel
should be round) the final product may be subject to a different set of
constraints (e.g., the weight of the Land Vehicles). A different com-
ponent version does not necessarily mean difference in stored data but
different behavior. Thus, two versions of the same component may react
differently to the same method (e.g., fold applied to Seat).

Land Vehicles Land Vehicles

/

Schema Evolution - Inheritance Graph

AN
./

Street Interstate

Figure 2: Schema evolution

During the design process, the schema may evolve for certain alter-
natives (see Figure 2). Thus, if we decide to design Buses, we will need
different (and more) Seats and Wheels. Thus, a given Seat version will
only fit Land Vehicle versions of Buses. Interstate-Buses will further-
more need a new component - Sanitary_Facilities.
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3.2 Introducing the VBD framework

Until recently, all the issues discussed previously were considered under
the assumption of a unique database, where surfaces had to be rebuilt at
every new entity version, rending global consistency control practically
impossible. The first attempt to relax this monolythical framework was
the VDB model, presented in [CJ90], and extended and formalized in
[CJK91], in the context of object oriented databases. In this model,
instead of keeping track of versions of individual entities, the authors
treat the problem from a point of view where a unit of versioning is the
entire database, rather than parts thereof.

In the standard approach, when some entity version is created, several
links have to be established, to determine to which consistent surface the
version should belong. In the VBD approach, instead, the creation of
an entity version entails the creation of a new logical database which
will contain this entity, and all surfaces to which it belongs. The VBD
approach sees therefore an augmented database that contains a set of
logical databases, which differ from each other in the entity versions and
the surface versions they encompass.

Creating a Seat version S1 for a Truck verson T1 means the creation
of a logical database Dk, which contains one single seat version (S1) for
a given truck version (T1). The user who is working with Dk ignores the
existence of other Truck or seat versions. Dk is a database which ignores
the notion of versions.

Informally, this model can be described as follows: “Let D be a VBD
database. At any instant in time, the state of D is described by a set
of logical database states { D1, D2 ... Dj ... Dn }, where each Di is
consistent and any two elements Di, Dj differ from each other by at
least one entity version. If E is some entity in some database Dj, the
creation of a version E’ for E logically corresponds to the creation of a
new consistent logical database Dj’ which contains F’ instead of E. The
new state of D is thus D U {Dj’}. Each Djis a non-version VBD databse
view.

The evolution of a VBD database in the presence of versions can be
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seen as a sequence of two transactions, as follows:

1. the first transaction generates a new logical database, Dj’, which is
an exact copy of Dj. Since Dj was supposed to be consistent, then
Dj’ is also consistent;

2. the second transaction operates only over Dj’, as if it were the only
database in D, and changes E to F’. Furthermore, it may modify
other entities in Dj’ in order to achieve consistency within Dj’ only
- in the same way that a transaction (in the standard nonversion
model) will propagate updates in order to achieve a final consistent
state. Thus, it takes Dj’ from a consistent state to a consistent
state.

The modification of other entities by the second transaction corresponds
to finding the appropriate surface for E’, creating in the process other
entity versions, if necessary.

We like to compare the evolution of a VBD to the creation of database
“slices ” in time. FEach slice is a logical database, which is consistent
and can evolve independently. Creating a new version for an entity
corresponds to the appearance of another slice. From now on, to help
text understanding we will refer to a “slice” meaning “a logical database
inside a VBD database”. It must be stressed that slices in the VBD
approach are not snapshots. Rather, they are databases that can be
updated by the user. These updates do not in themselves force the
creation of a new slice. It is up to the user to determine from a slice’s
state whether the sets of updates that have been applied to it configure
the need for another slice. This is similar, up to a certain level, to the
notion of a temporal database, which can be seen as a sequence of past
database states (the temporal slices) along time (e.g., [Sno90]).

In a design environment, a given design group does not need to see
a complete database, just the set of entities that correspond to the task
the group is developing. The VBD model was extended in [CVJ91], for
object-oriented databases, to take this into account. Each VBD slice
is locally consistent, and a design team only works within a slice at a
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time. A slice thus constitutes a database view for a team. We have
thus fallen back into the usual transaction model, and need only worry
about consistency within a logical database (a slice). Each slice is now a
standard database without versions. It is is consistent in the traditional
sense, and can be updated at will, independent of the other slices that
exist at the same time in the VBD. One does not have, therefore, to deal
with multiple versions of an object within a slice, since each version will
belong to a different slice.

Consider again the Truck example. Let us consider three of its com-
ponents: (Wheel, Gearbox, Brake). Each component is assigned to a
design team that will develop it along different versions. Global con-
straints apply to every Land Vehicle (e.g., relationship between ma-
terial used and maximum component weight). Consider initially a first
state with two Wheel alternatives (W; and W3), one Gearbox G and
two Brake alternatives (By Bj). Supposing that we can make Trucks
with any combination of brakes, wheels and gearboxes, we have a VBD
with the following slices: {D1=(W1, Gy, By), D2=(W; ,G1 Bz), D3=(W,
N Gl, Bl), D4I(W2 ,Gl BQ)}

This database has four logically independent slices that may now
evolve independently (and can be considered as consistent views of the
VBD). Suppose now that, in the next design stage, Brake B, suffers a
revision and becomes Bs which will force updates to slices D2 and D4.
Suppose that B3 is not consistent with Wheel version Wy. In this case,
only D4 can be updated, becoming D5 (since D2 contains Wy ) .

D2 should be abandoned in the design process, since its W compo-
nent is not consistent with the revision of B. This is an example where
an integrity constraint, combined with the version mechanism, forces
discarding a slice. Thus, we now have {D1=(W; Gy By), D3=(W,; G4
Bl), D5I(W2 ,Gl Bg)}

If we now create an alternative to G7 called (G5 which is consistent
with W; but not with respect to Wy we will have the following VBD
{D1=(W1 G1 Bi), D3=(W; G1 Bi), Db=(Wy G Bs), D6=(W; Gy
B1)}. Notice that now no slice is abandoned, since the version process
created an alternative (and thus allowed maintaining older versions of the
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same component). The team responsible for surface Wy will work inde-
pendently over D1, D3 or D5, each with a different view of the database.
Figure 3 shows the VBD evolution together with surface evolution, where
the time axis is situated vertically.

4 Constraints in the VBD framework

Given the VBD framework, we can now analyze the constraint mainte-
nance problem in a multiversion database as follows. A database with
versions is a set of slices where each slice is a consistent database of its
own - in fact, slices differ from each other by containing different ver-
sions of given surfaces. When we apply updates to a slice we need never
worry about other slices in the system, and updating the slice does not
necessarily imply the creation of a new slice!.

The data model is immaterial - for instance, in an object-oriented
world, update propagation along an object’s components is a local prob-
lem that will be performed within the slice that contains the object, with-
out caring about other versions of the same object that exist in other
slices. By the same token, we do not have to worry about matching
schema and data versions. These problems disappear since by definition
all operations are applied within a slice.

So far, we have stated the following points:

e We solve the standard problem of constraint maintenance in the
presence of versions (i.e., maintaining surface consistency) by adopt-
ing the VBD model, where these two issues can be treated orthog-
onally.

o In the VBD model, each surface version in a database belongs to
a slice — an autonomous database. This slice is a database view
for a design team. Thus, only a subset of the VBD’s surfaces have

! This does not mean that traditional update problems have been solved. It only
means that update control mechanisms do not have to be burdened with versioning
at the same time.
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non-null values in this slice. The remainder of the database is ig-
nored by the design team. Consistency maintenance is restricted to
maintaining integrity within a slice (and thus to its set of surfaces).
This is another formulation of the view update problem.

o Local (i.e. slice) consistency implies global (i.e. VBD) consistency.

The second statement shows that we now face a standard view update
problem. The third statement is the usual assumption in integrity main-
tenance research [JMSS90]. We point out that these assumptions underly
all research in integrity maintenance in databases. We have thus trans-
formed the problem into that of traditional (slice) integrity maintenance.

The above is sufficient for maintaining application-dependent integrity
constraints in the presence of versions, in the traditional sense. We now
extend the problem to show how we permit other types of constraints
not considered in the literature.

4.1 Introducing versions of constraints

In a design environment, constraints themselves evolve as more knowl-
edge is acquired about the end product. Thus, one should consider the
situation in which constraints themselves are versioned: there may be
scenarios where some constraints do not yet exist, and others in which
they are not completely defined. Two different versions of an entity may
exist not because the entity itself was directly subject to a change, but
because the constraints to which it was subject were modified.

In the previous section, we showed how to solve the problem of main-
taining immutable constraints for a given surface. To completely char-
acterize the evolution of versions in a database, we must also consider
versions of constraints. This problem has not yet been treated, to our
knowledge, due to the difficulties it adds to a classical version environ-
ment. How can one establish connections among different entity versions,
if a given entity may be subject to different constraints over time?

Again we find the answer to this problem in the VBD model. We
recall that a given slice in a VBD is a database on its own. Thus, it obeys
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the (local) constraints, which may happen to be a particular version of
the constraints that apply to other slices in the VBD. Therefore, support-
ing versions of constraints becomes yet another case of slice generation.
We treat integrity constraints as properties of a database schema, and
thus maintaining versions of constraints is one instance of the more gen-
eral case of maintaining versions of schema. The two-transaction model
remains the same. First, one creates a new slice which is an exact copy
of some other slice. Then, the constraints in this new slice are updated
(deleted, changed, or introduced), and existing data is changed in order
to adapt to the new local conditions.
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Figure 3: VBD evolution along time

Let us return again to the Truck problem, with 4 slices (D1, D3, D5,
D6). Assume that the designers want to try an alternative constraint on
the speed of Truck of slice D1, which is reflected on the form its Wheels
are connected with its Gearboxes. We now have an alternative to D1,
called D7, which obeys different (local) constraints which are not shared
by the other slices. Notice no change was applied to the components,
only to the way they are integrated into the surface.
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The new VBD is thus {D7=(W1 Gy By), D1=(W; Gy By),
D3=(Wy G By), D5=(W3 Gy Bz), D6=(W1 G2 By) }, where the local val-
ues of Wi | G1 and By were maintained, but an alternative was necessary
since new constraints apply to the slice. Being an alternative, slice D1
was not discarded.

4.2 Introducing constraints across versions

Research on constraints considers static and dynamic constraints over
data and over schema. The VBD framework allows us to look at a
multiversion database as if it were a set of independent databases, each
of which is consistent. We know, however, that these databases are
actually far from independent. In fact, their creation follows some order
over time, and a new slice is obtained from some others by a set of
operations: revisions, alternatives or merges.

When we superimpose the standard constraint classification (dy-
namic and static) and the VBD model, we see that besides the con-
straints imposed at the “local” (slice) level, users specify constraints
on version generation and maintenance, which are applied over sets of
slices, i.e., globally. We thus see the emergence of a new class of con-
straints, which establishes consistency relationships among slices, and
which in the VBD model holds over a different dimension, i.e., acrosslog-
ical databases rather than inside a database. We claim that this global
type of constraint is different in nature from other integrity constraints,
and that only by treating the problem in the VDB framework this issue
can be properly understood. Furthermore, this type of constraint has
not been considered previously.

These new constraints are imposed on version generation and main-
tenance. We call them wversion control constraints, in that they consist
of constraints that determine when and how to create new surface ver-
sions, and in what way and to what degree these versions must preserve
consistency among themselves.

The version evolution of an entity is traditionally represented in a
dag. We extend now this notion, and propose a database evolution dag
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for the VDB model, where each node is a slice instead of a component
version. In fact, we impose a global constraint to the slices within the
VBD, forcing that they be related to each other according to a slice gen-
eration dag. A given path indicates chronological creation of revisions.

Version control constraints are also application-dependent. It is these
constraints that determine when a revision or an alternative should be
created or deleted. They can also be dynamic or static. A dynamic
constraint controls creation or deletion of slices, based on information
from the existing slices, therefore controlling changes in the graph topol-
ogy. A static constraint across slices controls updates on a slice (without
changing graph topology), based on information about the state of other
slices. One has thus two dimensions over which constraints can oper-
ate: in the standard sense, dynamically or statically, inside a given slice,
when it is updated without creating a new version. And dynamically or
statically as regards version generation, as sets of versions are considered
as a whole.

As an example of static version control constraints, suppose the
project administrator decides that the Gearbox constraints in D7 are
the ones that must be obeyed by all future Gearbox instances. Remem-
ber that D7 uses gear alternative G3. This means that all future slice
versions will have to use Gearboxes that obey the constraints on Gj.
Furthermore, every time G5 constraints change, all surfaces will have to
change. This is equivalent to saying that the constraint on the Gearbox
component must be obeyed by all Gearbox versions, and also that this
constraint must be obeyed by all future slice updates. Thus, a constraint
on a slice component affects the future evolution of slices.

One example of dynamic cross-slice constraints are temporal con-
straints applied over a (historical) sequence of revisions (i.e., along a
VBD dag path) - for instance, the cost of Truck versions can never de-
crease. When a path node is updated, a new slice - its revision - can
be created only if this constraint is obeyed. A dynamic constraint over
a single version is maintained locally (in a slice) when that version is
updated, and is not connected with version generation. A dynamic con-
straint over a set of versions imposes conditions on the derivation of a
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D1, D2, D3, D4
D4 becomes D5 (component revision)

| D2 discarded
(constraint violation)

D6 is created
(new version of G)

D1, D3, D5, D6
D7 isalternativeto D1

(constraint evolution)
Dl’ DS’ D5’ D6 @
D1 and D7 arevalid

alternatives;
D5 and D3 are merged into
D8 D1, D7,D8,D6

Figure 4: VBD evolution dag - Version control constraints
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new version. We have thus established a new type of dynamic constraint:
a constraint across slices in a VBD.

Another dynamic version control constraint may state, for instance,
that it is possible to merge slices as long as they differ only on one
component. Thus, D3 and D5 can be merged (since they differ only on
Brake), but D3 and D7 cannot be merged (since they differ in Wheel
and Gearboxes). Figure 4 shows the evolution of the VBD’s set of slices,
where the edges have been annotated with the reason for the transition.
Suppose now that revisions of D7 and of D3 are created whereby they
acquire the same Gearbox component (say, (s ). These revisions will now
be allowed to merge, since they will differ only in the Wheel component.

5 Conclusions and directions for future work

This paper presented a new framework that allows considering the in-
tegration of version maintenance and integrity control mechanisms. We
showed that by using this approach the two problems can be consid-
ered independently, and thus solved at the same time without the usual
interference seen in other models. We also showed how the constraint
maintenance issue in a multiversion environment can be treated at two
different dimensions - locally, over one slice, and globally, across sets of
slices.

We showed how in this framework one can treat uniformly several
problems that have so far been ignored by other authors, such as the
versioning of data and schema, and versions of constraints themselves.
Finally, we introduced version control constraints, which is a new class
of constraints that controls the process of legitimate version generation.

The VBD model is being implemented for the O2 database system.
Among future directions of our work are the extension of [MP91] to that
of maintaining integrity constraints in a multi-version object-oriented
database, and the managing of temporal properties through versions.
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