
O conte�udo do presente relat�orio �e de �unica responsabilidade do(s) autore(s).(The contents of this report are the sole responsibility of the author(s).)
Maintaining Integrity Constraints acrossVersions in a DatabaseClaudia Bauzer MedeirosGenevi�eve Jomier Wojciech CellaryRelat�orio T�ecnico DCC{08/92Novembro de 1992



Maintaining Integrity Constraints across Versionsin a DatabaseClaudia Bauzer Medeiros� Genevi�eve Jomier yWojciech Cellary zAbstractThis paper analyzes the problem of maintaining application-dependent integrity constraints in databases for design environ-ments. Such environments are characterized by the need to sup-port di�erent types of interaction between integrity maintenanceand version maintenance mechanisms. The paper describes theseproblems, and proposes a framework in which they can be treatedhomogeneously. We thus bridge the gap existing between researchon constraint maintenance and on version control, which has so farposed several problems to researchers in these two areas.1 IntroductionA design environment (e.g., CASE, CAD) must support parallel develop-ment of independent entities (e.g., program modules, or car parts) thatare eventually integrated into a �nal product (e.g., a piece of software,or an engine). During this activity, entities are logically grouped into�Research partially �nanced by grants FAPESP 91/2117-1, CNPq RHAE/INFO46.0571/91.5 and CNPq 453176/91yUniversit�e Paris IX -Dauphine, 1 pl du Mal. Lattre de Tassigny, PariszInstitute of Computing Science, Technical University of Poznan, 60-695 Poznan,Poland 1



sets whose components \go together", i.e., satisfy a certain unit spec-i�cation. These sets are called design surfaces. Other common namesare con�gurations or contexts. A surface usually corresponds to a designunit, assigned to a given design team.In order to support the work of these design teams, the environ-ment must provide the means for ensuring the integrity of the di�erentsurfaces, and of keeping track of their versions. It must also providecommunication channels among the teams, and supply tools for progres-sive integration of the design surfaces. Managing the coordination ofintegrity and version control is therefore a crucial issue.Designing involves an intensive work of experimentation over dif-ferent alternatives, where entities are created, updated, destroyed andmerged. In order to support these activities in a database environ-ment, several version support mechanisms have been proposed (e.g.,[KSW86, Kat90, CJ90, TG92, KS92]), and recently surveyed in [BBA91].Very little is said, however, on the maintenance of integrity constraintsin such a context.Since the design activity is exploratory by nature, di�erent versionsof any given entity may exist simultaneously in a database. Controllingthe database's coherence requires therefore maintaining versions of sur-faces, i.e., �nding out and keeping track of the appropriate componentversions that form a consistent surface. The integrity problem acquiresthus two dimensions: maintaining the consistency of a surface that hasseveral components, and maintaining a component's integrity. These twodimensions are translated into two problems: maintaining di�erent ver-sions of components and surfaces, and integrating component versionsinto an appropriate surface version.Due to the complexity of these issues, the integrity problem in aversion context is usually limited to integrating component versions intoa consistent surface version. Thus, the consistency concept in a versionenvironment is mainly that of determining sets of consistent versions ofdata [KSW86]. When a new component version is created, the �rst goalis that of maintaining the entity's (local) consistency, followed by tryingto integrate this version into some consistent view of the database.2



As we will show, the consistency issue has other rami�cations whichso far have been ignored by researchers: constraint evolution during thedesign process; surface evolution; and interference among surfaces. Thetwo latter involve issues similar to the ones treated in the view updateproblem (e.g., [BS81]).This paper presents a framework that allows homogeneous treatmentof versions and of constraints, based on the database version mecha-nism described in [CJK91], and extended in [CVJ91]. We show how thisframework can be used to manage versions of constraints, and constraintswhich are imposed over the version generation process. The latter is anew type of constraint, which we call version control constraints. Wefollow the division proposed in [Sci91], and distinguish logical and phys-ical versioning. We present all issues from a logical (design) level, ratherthan from a physical (implementation) level. For implementation detailsof the mechanism discussed, the reader is referred to [CJ90]. The maincontributions of this paper are the following:� Systematic discussion of the problems of supporting the interactionbetween integrity control mechanisms and version control mecha-nisms in a design environment.� Presentation of a framework that allows treating these issues indesign databases. This framework encompasses versioning of con-straints, which has so far been ignored in the literature.� Discussion of a new family of integrity constraints, version controlconstraints, which are rules that de�ne legitimate ways of creatingand maintaining relationships among versions.The results presented are general, and independent of the data model.To stress that, we will refer to database entities instead of the termobjects. The latter, in this paper, refers to entities in an object-orienteddatabase, and which should be thus understood in the correspondingcontext. A database entity is a set of database elements that representa design component and may for instance be a tuple or a relation in arelational database, or a set of objects in an object-oriented database.3



The term object, on the other hand, is used here as an instance of a classin an object-oriented database. It is characterized by its state (contents)and behavior (methods), and is subject to inheritance and compositionproperties [Bee89].This paper is organized as follows. Section 2 presents the terminol-ogy used and some issues concerning constraint maintenance and versiongeneration mechanisms. Section 3 discusses the problems of maintainingversions in the presence of integrity constraints, and presents the ap-proach of [CJ90], which we extend to unify the concepts of version andconstraint maintenance. Section 4 presents two new problems - version-ing of constraints and constraints over version generation - and showshow our approach can be used to solve these issues. Finally, Section 5contains conclusions and directions for future work.2 Research on versions and on constraintsAn integrity constraint, in a database environment, is a statement ofa condition that must be met in order to maintain data consistency[JMSS90]. The problem of automatic maintenance of integrity con-straints in a database management system (DBMS) has been extensivelyconsidered in the literature. Since database systems have limited sup-port for such a facility, application developers are forced to embed codein each application, in order to verify constraints. This has also theinconvenient of making all applications very sensitive to any modi�ca-tion in the constraint set, besides leaving to programmers the burden ofhaving to know and check all relevant constraints at each step.The issue of database versions is another problem that has been in-tensively researched in recent years. A version is a \semantically mean-ingful snapshot of an object at a point in time" ([Kat90]). Among theproblems that have to be solved in version management are the main-tenance of historical data, the sharing of versions, and the control ofconcurrency for version access.Research on constraints and on versions have for the most part beenconducted independently. Version management mechanisms implicitly4



assume that existing integrity constraints are somehow maintained whena version is created. In other words, no entity version may re
ect aninconsistent state of the world. By the same token, the research on con-straint maintenance does not take the possibility of versions into con-sideration. It only addresses the issue of ensuring global consistency ofa database, given a set of updates. In a version environment, however,this is not always feasible.The main issue is that, once we are faced with a world with versions,we lose the traditional notion of transaction correctness which underliesthe standard constraint maintenance paradigm. A transaction is a se-quence of operations that takes a consistent database state into anotherconsistent state. A transaction under the version paradigm does notobey this de�nition, since the notion of a globally consistent database nolonger holds. Thus, it has been impossible to integrate results of researchin integrity management and version management since each forces theadoption of a di�erent consistency de�nition paradigm.2.1 Issues on constraint maintenance mechanismsThe development of e�cient mechanisms for performing maintenance ofintegrity constraints is still a di�cult problem. Such tasks are mostlyleft to database designers or application programmers. Designers try toensure integrity by following speci�c design rules, and de�ning protec-tion schemes for sensitive data. Programmers have to encode integritymaintenance into applications, which is very costly, since it means mod-ifying code whenever the integrity characteristics of a system change. Apartial solution o�ered to this problem is that of maintaining constraintsby means of production rules, using the active database paradigm (e.g.,[KDM88, DHL90, GJ91, BM91]).Integrity constraints may be application-dependent (de�ned by theuser) or model-dependent (and thus ensured by the DBMS). We will notworry about the latter, since we assume they are ensured by the underly-ing database management system. What concerns us is the maintenanceof application-dependent constraints in a version environment.5



Constraints can be classi�ed in several ways. One of these manyclassi�cations relies on distinguishing static constraints { i.e., those thatde�ne a valid database state and are usually stated using �rst orderlogic { and dynamic constraints { that specify valid database state transi-tions, and are speci�ed using modal logic. One important set of dynamicconstraints is that of temporal constraints, that determine coherent se-quences of state transitions over time [JMSS90].Though the notion of constraint is usually associated with modi�ca-tion of data, the database schema composition (i.e, the speci�cation ofthe database components and their types) may also be subject to restric-tions. One can, for instance, add new �elds to a relation, or change thecomposition graph of a class in an object-oriented database.In an object-oriented world, constraints can be de�ned not onlyover structure or contents, but also over behavior. As pointed out in[MP91], these constraints correspond to establishing consistency direc-tives for methods. We take the view that behavior description is part ofa database schema. Static constraints on methods are, for instance, do-main constraints over their parameters. Dynamic constraints over meth-ods are, for instance, the speci�cation of allowable sequences of methodexecution. Thus, we consider that the constraints that interest us can beeither static or dynamic constraints, and may apply to the data or to theschema of a database, where the schema, in object-oriented databases,includes behavior speci�cation.2.2 Issues in version mechanismsVersions are present in all stages of a design process. As remarked in[EL90], it is impossible to give a formal speci�cation of a version. Thetask of determining what constitutes a version of an entity is left to theuser.Normally, there is a distinction between two types of version creationoperations: revisions and alternatives (also called variants). A revisioncorresponds to an improvement; its creation is thus always dependenton a predecessor. A typical use of revisions is found in the historical6



approach to versions, which considers the evolution of entities throughtime, and only the latest version is updated [Bla91]. Once a revision isestablished, none of its previous versions in time can be changed. Alter-natives correspond to variations in a given version, in response to di�er-ent prerequisites (e.g., performance) but which are functionally similar.CAD applications use alternatives extensively, by considering the paral-lel evolution of several versions of an entity [BBA91]. It is up to the userto determine whether a newly created version constitutes an alternativeor a revision of an existing entity.The version creation process for an entity is frequently depicted bymeans of di�erent types of graphs, where each node corresponds to aversion of the entity. The most common of these is a directed acyclicgraph { dag { where a node's descendants along a path are its successiverevisions. The edge from a node to its descendant indicates a temporalcreation order. Nodes that have the same immediate parent constitutea set of alternatives. Revisions can be created from several parents atthe same time, which corresponds to the merging (or consolidation) ofconcepts.As mentioned in the introduction, designer teams work on a set ofentities, that form a design unit { the surface. Maintaining the con-sistency of a surface requires correctly matching entity versions, i.e., aset of entity versions that form a coherent functional system unit. Thedesign process in the presence of versions requires progressively mergingdi�erent (consistent) surfaces until the �nal product is achieved. Sincedesigners work over a surface in order to obtain a �nal product, mostof the work in version support mechanisms is concerned with providingusers with adequate surface management.3 Maintaining constraints in the presence ofversionsThe consistency problem in the presence of versions has so far been con-sidered as a problem of determining and maintaining consistent surfaces.7



There are, however, several other issues to be considered:1. Constraint evolution. First, during any design process the setof constraints is also subject to evolution. In fact, as stressed by[CVJ91], the notion of consistency evolves over time. Thus, one isnow dealing with a world where constraints themselves are subjectto modi�cations.2. \View" updates. Second, the design process is often undertakenby a group of designers, and the project is divided in subtasks,where di�erent groups design di�erent parts for future integration.Each group sees a set of entities over which it has to con�gureand maintain the appropriate surfaces. However, maintaining local(surface) consistency is no longer su�cient, since decisions takenby a group may a�ect the decisions taken by a di�erent designgroup that sees another portion of the database. Therefore, theusual local consistency model is not enough and we are faced witha variation of the view update problem, where the view is now adesign surface.3. Propagation of constraints. Finally, the evolution of constraintsmay occur simultaneously in several design groups. In some cases,constraints which have been added or modi�ed by a group will haveto be adopted by other groups. One thus sees the phenomenon ofupdate propagation from a new prism: researchers limit themselvesto analyzing e�ects of propagating updates on data, whereas in adesign environment constraints themselves are propagated alongdi�erent surfaces.3.1 Evolution of versions under constraintsFigure 1 shows two graphs. The one on the left describes the versionevolution of a surface S, and the one on the right the evolution of adesign project to which this surface belongs. The �rst graph shows the(database) view of a designer team working on surface S. The surface8
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S SS Figure 1: Version Graphsgoes through a set of revisions and alternatives that are merged into a�nal version. Some alternatives are abandoned.The second graph shows the project manager's global view (in thiscase, surfaces S and T). After an initial (independent) design stage, thesurfaces interact (shown by the dashed lines). This interaction is notnecessarily visible to the design teams, and corresponds to constraintsacross surfaces visible only at the global level: design decisions takenfor T a�ect the future evolution of S, and vice-versa, since the productneeds eventually merging S and T.Of course, this is just a simpli�ed example, since in most cases sur-faces have intersections from the start (e.g., in software design, wheremodules developed by di�erent teams use the same data structures, ormust communicate via a common interface). The �gure, however, illus-trates some of the problems of interaction of constraints and versions:� global constraints - these are overall project constraints, whichmust be kept for all design stages of all surfaces (e.g., enterprise9



price policy, or a global data model).� local (component) constraints - these are constraints that apply toa single design entity (e.g., dimensions of a surface component).� local (surface) constraints - these are constraints that apply to asurface (e.g., to S), and which are ignored by other surfaces (e.g.,functional speci�cation).� inter-surface constraints - these are constraints imposed across sur-faces (e.g., interface de�nitions for future integration). These arethe constraints that control the interaction between T and S.Let us illustrate these issues using a simple example. Suppose thata project uses a relational database, where each surface is stored in arelation. A global constraint is enforcement of 1NF. Local entity con-straints are those that apply to a given tuple, or attribute (e.g., domain).Local surface constraints apply to one relation alone (e.g., a functionaldependency). Finally, inter-surface constraints would restrict sets of re-lations (e.g., referential integrity constraints). Coordination of versionsin this system means maintaining all these dependencies for all versionsof tuples, relations and attributes. However, multiple versions of anygiven relation, say R1, must coexist in the system. Each version of R1is consistent with respect to its local constraints, and to the database'sglobal constraints. On the other hand, the set of versions of R1 mayviolate local constraints (e.g., a functional dependency). By the sametoken, consider a constraint that determines valid relationships betweenR1 and another relation R2, which also has several versions. This con-straint is not supposed to hold between any two versions of R1 and R2.Rather, it has to be maintained between appropriate pairs of versions ofthese relations.The greatest di�culty in consolidating work in constraints and in ver-sions lies in that researchers in these areas live in di�erent worlds, andcater to di�erent users. Integrity constraint maintenance presupposesthat users have a comprehensive view of an application, and that, even10



if the world evolves, the database will harmoniously follow this evolution,by changing state (e.g., schema or data updates). Version managementpresupposes that users are dealing with tentative speci�cations, workingon di�erent alternatives at the same time. In this world, evolution meansnot only changing the one state, but keeping di�erent states alive andavailable at the same time, keeping track of them all for future modi�ca-tions. Research and mechanisms for constraint maintenance are gearedtowards moving a database from one state to another. Research andmechanisms in a version environment concern moving a database froma set of states (the surfaces) to another set of states.Thus, standard integrity maintenance mechanisms are useless in con-trolling integrity across sets of versions. In fact the traditional notionof constraint ceases to hold, once we introduce versions, since constraintmaintenance mechanisms tacitly assume there is just one instance perentity, whereas version mechanisms assume there are several di�erentinstances for the same entity. The existence of a database with versionsmeans therefore the existence of a database that is by de�nition inconsis-tent in the traditional sense. The consistency problem becomes thereforethat of �nding surfaces, or sets thereof (i.e., partial rather than globalconsistency).We summarize the problem as follows:Maintaining integrity constraints in the presence of versions is a problemof �nding and maintaining surfaces across a database, where each surfaceshould be kept consistent with respect to the constraints. It entails main-taining consistency within a single database with several entities, whereto each entity may be associated several data versions, several schemaversions and several (versioned) views.The introduction of the object oriented paradigm increased the dif-�culty of dealing with versions in the presence of constraints. When acomposite object is updated, one must determine how to propagate theupdate to the appropriate component versions, which is di�cult whenthere are di�erent alternatives for component and composite objects.The task is therefore that of �nding �rst the appropriate surface for acomposite object, and then of �nding the schema version to which that11



surface belongs. Thus, some researchers restrict themselves to versioningobject schemas (e.g., [ALP91]) and others yet to the problem of version-ing isolated objects while maintaining the schema invariant.Suppose for instance we have sets of Seats, Wheels, Brakes andGearboxes (components) which we want to use to design Land Vehi-cles (surfaces). Cars and Trucks both need Seats, Wheels, Brakes andGearboxes, but under di�erent versions. Depending on how we put themtogether, we will come up with a di�erent product. Though each com-ponent is consistent with respect to its local constraints (e.g., a Wheelshould be round) the �nal product may be subject to a di�erent set ofconstraints (e.g., the weight of the Land Vehicles). A di�erent com-ponent version does not necessarily mean di�erence in stored data butdi�erent behavior. Thus, two versions of the same component may reactdi�erently to the same method (e.g., fold applied to Seat).
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3.2 Introducing the VBD frameworkUntil recently, all the issues discussed previously were considered underthe assumption of a unique database, where surfaces had to be rebuilt atevery new entity version, rending global consistency control practicallyimpossible. The �rst attempt to relax this monolythical framework wasthe VDB model, presented in [CJ90], and extended and formalized in[CJK91], in the context of object oriented databases. In this model,instead of keeping track of versions of individual entities, the authorstreat the problem from a point of view where a unit of versioning is theentire database, rather than parts thereof.In the standard approach, when some entity version is created, severallinks have to be established, to determine to which consistent surface theversion should belong. In the VBD approach, instead, the creation ofan entity version entails the creation of a new logical database whichwill contain this entity, and all surfaces to which it belongs. The VBDapproach sees therefore an augmented database that contains a set oflogical databases, which di�er from each other in the entity versions andthe surface versions they encompass.Creating a Seat version S1 for a Truck verson T1 means the creationof a logical database Dk, which contains one single seat version (S1) fora given truck version (T1). The user who is working with Dk ignores theexistence of other Truck or seat versions. Dk is a database which ignoresthe notion of versions.Informally, this model can be described as follows: \Let D be a VBDdatabase. At any instant in time, the state of D is described by a setof logical database states f D1, D2 ... Dj ... Dn g, where each Di isconsistent and any two elements Di, Dj di�er from each other by atleast one entity version. If E is some entity in some database Dj, thecreation of a version E' for E logically corresponds to the creation of anew consistent logical database Dj' which contains E' instead of E. Thenew state of D is thus D U fDj'g. Each Dj is a non-version VBD databseview.The evolution of a VBD database in the presence of versions can be13



seen as a sequence of two transactions, as follows:1. the �rst transaction generates a new logical database, Dj', which isan exact copy of Dj. Since Dj was supposed to be consistent, thenDj' is also consistent;2. the second transaction operates only over Dj', as if it were the onlydatabase in D, and changes E to E'. Furthermore, it may modifyother entities in Dj' in order to achieve consistency within Dj' only- in the same way that a transaction (in the standard nonversionmodel) will propagate updates in order to achieve a �nal consistentstate. Thus, it takes Dj' from a consistent state to a consistentstate.The modi�cation of other entities by the second transaction correspondsto �nding the appropriate surface for E', creating in the process otherentity versions, if necessary.We like to compare the evolution of a VBD to the creation of database\slices " in time. Each slice is a logical database, which is consistentand can evolve independently. Creating a new version for an entitycorresponds to the appearance of another slice. From now on, to helptext understanding we will refer to a \slice" meaning \a logical databaseinside a VBD database". It must be stressed that slices in the VBDapproach are not snapshots. Rather, they are databases that can beupdated by the user. These updates do not in themselves force thecreation of a new slice. It is up to the user to determine from a slice'sstate whether the sets of updates that have been applied to it con�gurethe need for another slice. This is similar, up to a certain level, to thenotion of a temporal database, which can be seen as a sequence of pastdatabase states (the temporal slices) along time (e.g., [Sno90]).In a design environment, a given design group does not need to seea complete database, just the set of entities that correspond to the taskthe group is developing. The VBD model was extended in [CVJ91], forobject-oriented databases, to take this into account. Each VBD sliceis locally consistent, and a design team only works within a slice at a14



time. A slice thus constitutes a database view for a team. We havethus fallen back into the usual transaction model, and need only worryabout consistency within a logical database (a slice). Each slice is now astandard database without versions. It is is consistent in the traditionalsense, and can be updated at will, independent of the other slices thatexist at the same time in the VBD. One does not have, therefore, to dealwith multiple versions of an object within a slice, since each version willbelong to a di�erent slice.Consider again the Truck example. Let us consider three of its com-ponents: (Wheel, Gearbox, Brake). Each component is assigned to adesign team that will develop it along di�erent versions. Global con-straints apply to every Land Vehicle (e.g., relationship between ma-terial used and maximum component weight). Consider initially a �rststate with two Wheel alternatives (W1 and W2), one Gearbox G1 andtwo Brake alternatives (B1 B2). Supposing that we can make Truckswith any combination of brakes, wheels and gearboxes, we have a VBDwith the following slices: fD1=(W1, G1, B1), D2=(W1 ,G1B2), D3=(W2, G1, B1), D4=(W2 ,G1B2)g.This database has four logically independent slices that may nowevolve independently (and can be considered as consistent views of theVBD). Suppose now that, in the next design stage, Brake B2 su�ers arevision and becomes B3 which will force updates to slices D2 and D4.Suppose that B3 is not consistent with Wheel version W1. In this case,only D4 can be updated, becoming D5 (since D2 contains W1 ) .D2 should be abandoned in the design process, since its W compo-nent is not consistent with the revision of B. This is an example wherean integrity constraint, combined with the version mechanism, forcesdiscarding a slice. Thus, we now have fD1=(W1 G1 B1), D3=(W2 G1B1), D5=(W2 ,G1B3)g.If we now create an alternative to G1 called G2 which is consistentwith W1 but not with respect to W2 we will have the following VBDfD1=(W1 G1 B1), D3=(W2 G1 B1), D5=(W2G1B3), D6=(W1 G2B1)g. Notice that now no slice is abandoned, since the version processcreated an alternative (and thus allowed maintaining older versions of the15



same component). The team responsible for surface W1 will work inde-pendently over D1, D3 or D5, each with a di�erent view of the database.Figure 3 shows the VBD evolution together with surface evolution, wherethe time axis is situated vertically.4 Constraints in the VBD frameworkGiven the VBD framework, we can now analyze the constraint mainte-nance problem in a multiversion database as follows. A database withversions is a set of slices where each slice is a consistent database of itsown - in fact, slices di�er from each other by containing di�erent ver-sions of given surfaces. When we apply updates to a slice we need neverworry about other slices in the system, and updating the slice does notnecessarily imply the creation of a new slice1 .The data model is immaterial - for instance, in an object-orientedworld, update propagation along an object's components is a local prob-lem that will be performed within the slice that contains the object, with-out caring about other versions of the same object that exist in otherslices. By the same token, we do not have to worry about matchingschema and data versions. These problems disappear since by de�nitionall operations are applied within a slice.So far, we have stated the following points:� We solve the standard problem of constraint maintenance in thepresence of versions (i.e., maintaining surface consistency) by adopt-ing the VBD model, where these two issues can be treated orthog-onally.� In the VBD model, each surface version in a database belongs toa slice { an autonomous database. This slice is a database viewfor a design team. Thus, only a subset of the VBD's surfaces have1This does not mean that traditional update problems have been solved. It onlymeans that update control mechanisms do not have to be burdened with versioningat the same time. 16



non-null values in this slice. The remainder of the database is ig-nored by the design team. Consistency maintenance is restricted tomaintaining integrity within a slice (and thus to its set of surfaces).This is another formulation of the view update problem.� Local (i.e. slice) consistency implies global (i.e. VBD) consistency.The second statement shows that we now face a standard view updateproblem. The third statement is the usual assumption in integrity main-tenance research [JMSS90]. We point out that these assumptions underlyall research in integrity maintenance in databases. We have thus trans-formed the problem into that of traditional (slice) integrity maintenance.The above is su�cient for maintaining application-dependent integrityconstraints in the presence of versions, in the traditional sense. We nowextend the problem to show how we permit other types of constraintsnot considered in the literature.4.1 Introducing versions of constraintsIn a design environment, constraints themselves evolve as more knowl-edge is acquired about the end product. Thus, one should consider thesituation in which constraints themselves are versioned: there may bescenarios where some constraints do not yet exist, and others in whichthey are not completely de�ned. Two di�erent versions of an entity mayexist not because the entity itself was directly subject to a change, butbecause the constraints to which it was subject were modi�ed.In the previous section, we showed how to solve the problem of main-taining immutable constraints for a given surface. To completely char-acterize the evolution of versions in a database, we must also considerversions of constraints. This problem has not yet been treated, to ourknowledge, due to the di�culties it adds to a classical version environ-ment. How can one establish connections among di�erent entity versions,if a given entity may be subject to di�erent constraints over time?Again we �nd the answer to this problem in the VBD model. Werecall that a given slice in a VBD is a database on its own. Thus, it obeys17



the (local) constraints, which may happen to be a particular version ofthe constraints that apply to other slices in the VBD. Therefore, support-ing versions of constraints becomes yet another case of slice generation.We treat integrity constraints as properties of a database schema, andthus maintaining versions of constraints is one instance of the more gen-eral case of maintaining versions of schema. The two-transaction modelremains the same. First, one creates a new slice which is an exact copyof some other slice. Then, the constraints in this new slice are updated(deleted, changed, or introduced), and existing data is changed in orderto adapt to the new local conditions.
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The new VBD is thus fD7=(W1G1B1), D1=(W1G1B1),D3=(W2G1B1), D5=(W2G1B2), D6=(W1G2B1) g, where the local val-ues ofW1 , G1 and B1 were maintained, but an alternative was necessarysince new constraints apply to the slice. Being an alternative, slice D1was not discarded.4.2 Introducing constraints across versionsResearch on constraints considers static and dynamic constraints overdata and over schema. The VBD framework allows us to look at amultiversion database as if it were a set of independent databases, eachof which is consistent. We know, however, that these databases areactually far from independent. In fact, their creation follows some orderover time, and a new slice is obtained from some others by a set ofoperations: revisions, alternatives or merges.When we superimpose the standard constraint classi�cation (dy-namic and static) and the VBD model, we see that besides the con-straints imposed at the \local" (slice) level, users specify constraintson version generation and maintenance, which are applied over sets ofslices, i.e., globally. We thus see the emergence of a new class of con-straints, which establishes consistency relationships among slices, andwhich in the VBD model holds over a di�erent dimension, i.e., across log-ical databases rather than inside a database. We claim that this globaltype of constraint is di�erent in nature from other integrity constraints,and that only by treating the problem in the VDB framework this issuecan be properly understood. Furthermore, this type of constraint hasnot been considered previously.These new constraints are imposed on version generation and main-tenance. We call them version control constraints, in that they consistof constraints that determine when and how to create new surface ver-sions, and in what way and to what degree these versions must preserveconsistency among themselves.The version evolution of an entity is traditionally represented in adag. We extend now this notion, and propose a database evolution dag19



for the VDB model, where each node is a slice instead of a componentversion. In fact, we impose a global constraint to the slices within theVBD, forcing that they be related to each other according to a slice gen-eration dag. A given path indicates chronological creation of revisions.Version control constraints are also application-dependent. It is theseconstraints that determine when a revision or an alternative should becreated or deleted. They can also be dynamic or static. A dynamicconstraint controls creation or deletion of slices, based on informationfrom the existing slices, therefore controlling changes in the graph topol-ogy. A static constraint across slices controls updates on a slice (withoutchanging graph topology), based on information about the state of otherslices. One has thus two dimensions over which constraints can oper-ate: in the standard sense, dynamically or statically, inside a given slice,when it is updated without creating a new version. And dynamically orstatically as regards version generation, as sets of versions are consideredas a whole.As an example of static version control constraints, suppose theproject administrator decides that the Gearbox constraints in D7 arethe ones that must be obeyed by all future Gearbox instances. Remem-ber that D7 uses gear alternative G2. This means that all future sliceversions will have to use Gearboxes that obey the constraints on G2.Furthermore, every time G2 constraints change, all surfaces will have tochange. This is equivalent to saying that the constraint on the Gearboxcomponent must be obeyed by all Gearbox versions, and also that thisconstraint must be obeyed by all future slice updates. Thus, a constrainton a slice component a�ects the future evolution of slices.One example of dynamic cross-slice constraints are temporal con-straints applied over a (historical) sequence of revisions (i.e., along aVBD dag path) - for instance, the cost of Truck versions can never de-crease. When a path node is updated, a new slice - its revision - canbe created only if this constraint is obeyed. A dynamic constraint overa single version is maintained locally (in a slice) when that version isupdated, and is not connected with version generation. A dynamic con-straint over a set of versions imposes conditions on the derivation of a20
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new version. We have thus established a new type of dynamic constraint:a constraint across slices in a VBD.Another dynamic version control constraint may state, for instance,that it is possible to merge slices as long as they di�er only on onecomponent. Thus, D3 and D5 can be merged (since they di�er only onBrake), but D3 and D7 cannot be merged (since they di�er in WheelandGearboxes). Figure 4 shows the evolution of the VBD's set of slices,where the edges have been annotated with the reason for the transition.Suppose now that revisions of D7 and of D3 are created whereby theyacquire the sameGearbox component (say,G5). These revisions will nowbe allowed to merge, since they will di�er only in theWheel component.5 Conclusions and directions for future workThis paper presented a new framework that allows considering the in-tegration of version maintenance and integrity control mechanisms. Weshowed that by using this approach the two problems can be consid-ered independently, and thus solved at the same time without the usualinterference seen in other models. We also showed how the constraintmaintenance issue in a multiversion environment can be treated at twodi�erent dimensions - locally, over one slice, and globally, across sets ofslices.We showed how in this framework one can treat uniformly severalproblems that have so far been ignored by other authors, such as theversioning of data and schema, and versions of constraints themselves.Finally, we introduced version control constraints, which is a new classof constraints that controls the process of legitimate version generation.The VBD model is being implemented for the O2 database system.Among future directions of our work are the extension of [MP91] to thatof maintaining integrity constraints in a multi-version object-orienteddatabase, and the managing of temporal properties through versions.22
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