
O conte�udo do presente relat�orio �e de �unica responsabilidade do(s) autore(s).(The contents of this report are the sole responsibility of the author(s).)
Browsing and Querying in Object-OrientedDatabasesJuliano Lopes de OliveiraRicardo de Oliveira AnidoRelat�orio T�ecnico DCC{12/92Dezembro de 1992



Browsing and Querying in Object-OrientedDatabasesJuliano Lopes de Oliveira�Ricardo de Oliveira AnidoyAbstractWe present a new interface for Object-Oriented Database Man-agement Systems (OODBMSs). The GOODIES1 system com-bines and expands the functions of many existing interface sys-tems, introducing some new concepts for improved browsing inan OODBMS. The implementation of GOODIES proposes a newapproach to database interfaces development: instead of beingstrongly dependent of the underlying DBMS, GOODIES is basedon the main features of the object-oriented data model. The sys-tem design is based on an internal model and on an external model.The internal model de�nes the relationships that bind the inter-face to the DBMS, and it is fully described in [Oli92]. The externalmodel determines the possible interaction between the user and theinterface system. This paper describes the concepts of the externalmodel of the GOODIES system.�Departamento de Ciência da Computa�c~ao, Universidade Estadual de Campinas,13081-970 Campinas, SP. Pesquisa desenvolvida com suporte �nanceiro do CNPq |Conselho Nacional de Desenvolvimento Cient���co e Tecnol�ogicoyDepartamento de Ciência da Computa�c~ao, Universidade Estadual de Campinas,13081-970 Campinas, SP.1GOODIES is an acronym for Graphical Object Oriented Database Interface withExtended Synchronism. 1



2 J. L. Oliveira and R. O. Anido1 IntroductionO�ering database users a suitable interface is an old research issue, andmuch work has being done towards that objective. Database Manage-ment Systems (DBMSs) are powerful software tools, with a large andcomplex set of functions. The main purpose of interface systems forDBMSs is to improve access to those functions for the whole database(DB) user community. That, however, is not an easy task, since dif-ferent kinds of users (application programmers, database administratorsand end-users) expect di�erent, and sometimes con
icting, functions. Asgraphical workstations become more popular, there is a strong trend tosubstitute the traditional DB programming languages by the graphicalinterfaces, which are more suitable for the interaction between the userand the DBMS [MvD91, Shn87, PH91].In this paper we introduce GOODIES, a new system for browsingand querying in Object-Oriented Database Systems (OODBMSs). Thisnew system is a multiple window graphical interface using the direct ma-nipulation paradigm, and supporting multi-media objects. The systemcombines, in a single tool, the main functions for database browsing atboth schema and data levels. Another important feature of GOODIESis to be independent from a speci�c OODBMS.1.1 Graphical Interfaces for DBMSs[Her80] presents one of the �rst implementations of graphical interfacesfor relational databases: the SDMS system. It allows the visualization ofa relation through two windows, where the �rst window presents a globalview of the relation, and the second window presents a detailed view ofa subset of the tuples in the relation. The user can navigate throughtuples using a joystick. SDMS is very limited, since it is not possibleto visualize two or more relations simultaneously, but it has historicalimportance.[GGKZ85] shows the ISIS system, a graphical interface for the se-mantic data model. This system permits both schema and data ma-



Browsing and Querying in Object-Oriented Databases 3nipulation. The relationships among the objects are displayed as linesthat bind the schema classes. Data is displayed in separate windows,one window for each object's class. Another interface for the semanticdata model, the SNAP system, is presented in [BH86]. SNAP providesfacilities for schema manipulation and query formulation. The schemais presented as a very complex graph, where di�erent geometric �guresare used to represent di�erent relationships.The SIG system, described in [MNG86], provides only data manipu-lation functions, and has no schema manipulation facility. The approachto data representation introduced therein is very interesting, but it isvery di�cult to create the �rst presentation of an object in SIG. An-other problem is that the creation of a presentation modi�es the classde�nition, by adding methods that support operations on the presenta-tion.A graphical interface for the entity-relationship data model is pre-sented in [RC88]. The system permits navigation and update of bothschema and data. The interface automatically creates presentations forthe entities de�ned in the schema, and the user can modify these presen-tations. During navigation, the system operates in two modes: browse,where the user cannot modify the information, and edit , where updateoperations are allowed.The PICASSO system [KKS88] introduces a graphical query lan-guage for DBs. The query formulation is based on a mouse with threebuttons. The left button is used to select attributes; the middle button isused to build predicates; and the right button is used to choose optionsfrom the query processing menu. Thus, PICASSO allows a graphicalde�nition of queries, and the queries de�ned in the system are very simi-lar to the well-known SQL's query blocks. An auxiliary tool allows bothnavigation through the results of executed queries, and formulation ofcomplex queries using the results of previous queries.KIVIEW [MDT89] is an object-oriented system that improves theaccess of non-expert users to a DB. It allows navigation on both schemaand data levels. KIVIEW is a powerful browsing tool because the usercan save information during the navigation process, and the saved infor-



4 J. L. Oliveira and R. O. Anidomation can be used as a starting point for other navigations. KIVIEWalso allows the simultaneous navigation in objects of di�erent classes,through synchronized browsing operations .The LOOKS system is a graphical presentation generator for theOODBMS O2. [Alt90a] describes the primitives provided in LOOKSto manipulate the presentations using a programming language. TheLOOKS architecture is presented in the second part of [Mam91]. Be-sides the LOOK presentation generator, the O2 system has an object-oriented programming environment called OOPE [Alt90b]. Among otherfunctions, OOPE allows: creation, navigation and edition of classes andmethods, visualization and edition of the class hierarchy and ad hocquery execution. The association of OOPE with LOOKS gives access tothe whole set of functions of the O2 system, and they are considered acomplete OODBMS interface system [BMP+92].Other existing OODBMS interface systems can be cited, althoughthey are not as powerful as the O2 DBMS interface system. ODEVIEW[AGS90], the interface system for the ODE OODBMS, allows schemaand data manipulation. A special function in ODEVIEW permits thesimultaneous navigation among objects of di�erent classes (synchronizedbrowsing). In [Alm91] it is presented the GSDesigner system, an inter-face tool that allows the graphical interactive de�nition of classes andrelationships for the OODBMS GemStone.1.2 A New Interface for OODBMSsUnlike relational databases, which share exactly the same data model,OODBMSs are not based on a common formal model. Indeed, theobject-oriented (OO) data model is composed by a set of propertiesand functions that database researchers consider essential for a DBMSto be accepted as an object-oriented system. Recently, many papers pro-posed basic features that should be present in an OODBMS ([ABD+89],[EN89], [Com90], [Cat91] and [BM91]). The following characteristicsrepresent the common points in these propositions [Oli92]:1. To have the basic features of a complete DBMS ;



Browsing and Querying in Object-Oriented Databases 52. To support complex objects and object identity ;3. To provide encapsulation;4. To support the class concept, and to permit inheritance and classhierarchies;5. To allow overloading and late binding of methods;6. To be extensible and computationally complete.Therefore, OODBMSs implement similar features, but they do notfollow an speci�c set of rigid rules. Due to this diversity of featuresin OODBMs, interface systems for OODBMSs have an ad hoc design,according to the speci�c implementation used in the OODBMS for thefundamentals of the OO data model.The GOODIES system introduces a new approach to the constructionof interfaces for OODBMSs. Discarding the idea of a strong relationshipbetween the OODBMS implementation and the process of interface de-velopment, GOODIES's design was directed by the essential features ofthe OO data model, identi�ed above, independently of a speci�c imple-mentation of these features.This new approach to OODBMSs interface development presentssome advantages in comparison to the previous approach. First, it per-mits the validation of the basic features that de�ne the OO data model.A second advantage is that it permits to verify whether a given DBMSprovides these features, that is, the new approach can be used to verifyif the DBMS is object-oriented. Finally, the new approach facilitates theadaptation of the interface system to a DBMS that implements, in anyway, the basic object-oriented features.At the present stage, the GOODIES system implementation onlyprovides reading access to the information stored in the DBs. Thus, thesystem cannot be considered a complete DBMS interface system. How-ever, the GOODIES system design was conceived with the objective ofbeing extensible. So, the information update capability can be incorpo-rated to the system, without changing its external model (user's view of



6 J. L. Oliveira and R. O. Anidothe system), through a reduced number of modi�cations on the internalmodel of the system (the way the system dialogs with the underlyingDBMS).The following sections describe the external model of this new inter-face system, showing the DB's view that the system o�ers to the users.In section 2 we describe the way the information is represented in the sys-tem. Section 3 shows the interaction mechanism between the user andthe interface. In section 4 we explain the behavior of the browse andquery operations. Section 5 introduces some functions that improves thesystem utilization. The last section comments the system implementa-tion and relates it to previous work.2 Information VisualizationIn GOODIES, all kinds of information are displayed through windows.Windows are composed by three parts: header, body and footer. Thewindow title (that is, the identi�cation of the kind of information dis-played in the window) appears in the header. The window body containsthe controls and the representations of the information associated to thewindow. The window footer is split in two parts: left and right. In theright part it is presented the name or identi�cation of the DB compo-nent that is represented in the window's body. For instance, in a windowthat displays a DB schema class, the right footer contains the name ofthe represented class. The left footer is reserved for system messagesrelated to either the presented data or to the operations performed onthe window.The system has four types of base windows, where the informationabout schema and data (objects) are displayed. There is also a set ofauxiliary windows, which allows the user access to the complete systemfunctionality. GOODIES allows an arbitrary number of windows to bedisplayed simultaneously.



Browsing and Querying in Object-Oriented Databases 7
Figure 1: Directory Window2.1 Schema VisualizationThree base windows contain information about schemas: the directorywindow , which provides browsing facilities at DB level; the DB win-dow , which presents the list of classes that are de�ned in a given DBschema; and the class window , which presents the items that de�ne agiven schema class.DBs are considered by GOODIES as special kinds of �les, which canbe identi�ed and di�erentiated from the other kinds of �les that existin the �le system of the underlying equipment. The identi�cation of theDBs is handled in a very simple way: a sequence of bytes is comparedto the �rst bytes of the �le, and if they match, GOODIES consider the�le to be a DB. The sequence of bytes used for comparison is dependenton the speci�c DBMS used.The directory window provides access to the existing DBs. Thiswindow allows navigation on the �le system in order to select a DBs.The user can visualize di�erent DBs at the same time, since each DBselection in the directory window opens the DB window correspondingto the selected DB. Existing DBs in a directory are visualized through a



8 J. L. Oliveira and R. O. Anido
Figure 2: DB Windowlist in the directory window. This list contains also the subdirectories ofthe visualized directory, and an option, that always appears in the topof the list, to go up one level in the directories hierarchy. Figure 1 showsa directory window.Besides the three DBs (animal, car and system) showed, the pre-sented directory has three associated directories: the owner directory inthe directory tree (represented by ../), and two subdirectories (SRC andOBJ). Figure 2 presents the DB window that contains the classes de�nedin the schema of the system DB.The third base window for schema visualization is the class window.This window presents the de�nition of a class in a DB schema, and it iscomposed by the following items:� Type: a textual description of the class type de�nition, that is,the composition of the instances (objects) of the class;� Superclasses: a list of superclasses from which the described classinherits attributes and methods;� Subclasses: a list of subclasses that inherit the attributes andmethods de�ned for the described class;



Browsing and Querying in Object-Oriented Databases 9� Methods: a list of methods associated to the described class;� Objects: a list of object instances that belong to the describedclass, that is, the class extension.Figure 3 shows a class window that displays the class Program of theDB presented in �gure 2. The sliders on the left of the list items allow theresizing of the representation of a given list item with respect to the otheritems. In other words, the user can, through these sliders, change thenumber of rows displayed in individual items, without changing the sizeof the window. The system automatically changes the size of the itemsin such a way that the complete set of items continue to be displayed inthe available space. This mechanism is useful to show more informationon important items.2.2 Data VisualizationThe three base windows described in the previous section (directory win-dow, DB window and class window) are used to visualize and to nav-igate on the schema de�nitions of the di�erent DBs controlled by anOODBMS. The fourth base window permits the execution of these op-erations on data, i.e., on the objects stored in the DBs.The object window contains the values of the attributes that com-pose an object instance, according to the class composition descriptionpresented in the class window. Figure 4 shows an object of the classProgram, presented in �gure 3.The objects attributes are divided, according to their representationin the system, in the following groups:1. Simple Attributes: these attributes are those which can be dis-played as character strings containing at most 128 characters, andthat are atomic, that is, they are not composed by other elements.Numbers (real, integer), boolean values and character strings 22character strings are not considered to be composed by elements of type characterbecause, in this case, the individual characters do not have their own semantic meaning



10 J. L. Oliveira and R. O. Anido

Figure 3: Class Window



Browsing and Querying in Object-Oriented Databases 11

Figure 4: Object Window



12 J. L. Oliveira and R. O. Anido
Figure 5: Text Windowwith less than 128 characters are examples of simple attributes.These attributes are represented directly in the object window.The attributes objective and identi�cation of �gure 4 are examplesof simple attributes.2. Textual Attributes: in this group are the atomic attributes, asde�ned above, which cannot be represented with less than 129characters. These attributes are displayed in auxiliary text win-dows , associated to the object window that contains the textualattribute. Figure 5 shows the representation of the textual at-tribute program body , of the object presented in �gure 4.3. Images : an image is a sequence of bytes that de�nes the graphi-cal representation of a picture. Images are presented in auxiliarygraphical windows, associated to the object window that containsthe image attribute. Figure 6 shows the image window that corre-sponds to the �rst element of the windows list of the object pre-sented in �gure 4.



Browsing and Querying in Object-Oriented Databases 13

Figure 6: Image Window



14 J. L. Oliveira and R. O. Anido4. Sounds : sound attributes are applied to audio recordings, whoserepresentation is realized by reproducing the sound stored in theattribute. The sound and image attributes provide facilities forstoring and manipulating of multi-media objects, which are sup-ported by the majority of existing object-oriented systems.5. Lists: collections of elements that belong to the same type arerepresented by a list atribute. The elements of a list may be eithersimple or complex. Simple attributes are displayed directly in theobject window as list items. If the elements of the list are not simpleattributes, the items of the list presented in the object window workas references to the attributes that must be presented in auxiliarywindows.6. Tuples : tuple attributes represent the aggregation of elements ofheterogeneous types. Thus, tuples demand the creation of an aux-iliary window in order to display its contents, since each tupleelement may belong to any of the de�ned attribute types.7. Sub-objects: these attributes are used to represent the conceptof complex object . According to this concept, an object can becomposed by an arbitrary set of other objects. The sub-objects aredisplayed in object windows associated to the base object window.There is no di�erence between the construction and presentationof sub-object windows and the construction and presentation ofobject windows, except that the sub-object window is associatedto the base object window, whereas the base object window isassociated to the object's class window. This subtle di�erence isthe base of the synchronized browsing capability described later inthis text.The auxiliary windows associated to the object window follows thesame scheme for attribute representation used in the object window.Thus, it is possible to represent an arbitrary number of nested objectsand values, and this satis�es the directives for objects construction in



Browsing and Querying in Object-Oriented Databases 15the OO data model [ABD+89]. The attributes that must be visualizedin di�erent windows are easily identi�ed, because their reference namesare ended with ellipses (\..."), as shown in �gure 4.3 Interaction with the userThe direct manipulation paradigm [Shn83] was adopted as the mainmechanism for interaction with the user. This mechanism simpli�es theinput actions required from the user in order to execute an operation,and reduces both the amount of input errors and the user typing e�ort.There are two basic ways to activate the system's functions. The�rst way is the traditional activating mode used in graphical interfaces:the user selects the information and afterwards indicates the action tobe performed, through command buttons located in the window thatcontains the selected information. The selection is done by positioningthe mouse on the desired information and clicking the mouse selectionbutton.The second way to activate system's functions is used as a shortcut tosome speci�c operations, mainly the browsing operations. This secondway can be used every time the user wants to select an informationand afterwards apply an operation in order to either create or open awindow that represents the selected information. Instead of selectingthe operation from a menu associated with some button in the window,the user needs only to click the selection button twice on the desiredinformation. This double click operation indicates that the user wants toopen a window to visualize the data related to the selected information.As an example of the utilization of these two interaction mechanisms,the auxiliary text window presented in �gure 5 could have been createdin the two following ways. The user could have selected the value ofthe attribute program body in the object window presented in �gure 4and afterwards he could have activated the Open option of the Viewbutton of this window. Similarly, the double click on the program bodyattribute's value of the object window would have caused the creation ofthe text window. From this point on, the termselection will be used to



16 J. L. Oliveira and R. O. Anidodenote the complete action of choosing an information and applying abrowsing operation on it, through double click or through menu buttons.Using the �rst interaction mode (command buttons), the user canhave access to the complete functionality of the interface system. Thesecond interaction mode (double-click) permits only the activation ofbrowsing functions on both schema and data levels. It is important toemphasize that, in any system window, both interaction mechanisms pro-duce exactly the same results for the same kinds of operations. The co-herence between actions and results was a major guideline on the systemdesign, as it guarantees that the �nal user will have a fast comprehensionof the interface functionality.Besides assuring coherence, the user interaction mechanisms of GOOD-IES also provide 
exibility for the user to de�ne the environment wherehe is going to work. GOODIES allows the user to set up his workspace,through facilities to resize, reposition, open, close, create and destroywindows. The system neither limits the number of opened windows(in fact this number is limited by the Window Manager 3 and by theavailable memory in the equipment), nor imposes any kind of restrictionabout size or positionning of the windows.4 Mechanisms for Browsing and QueryingUp to this point we presented the available windows in the GOODIESsystem. The next sections describe how these windows are used to visu-alize di�erent aspects of schema and data contained in a OODBMS.4.1 Schema NavigationA working session in GOODIES is initiated with the directory window,that allows the user to choose the desired DBs. The selection of a DBcauses the presentation of a DB window, containing the list of classesde�ned for the selected DB. In order to select the DB, the user can3Window Manager is the system responsible for controlling the windows in a multi-window environment.



Browsing and Querying in Object-Oriented Databases 17visualize the contents of the existing directories in the �le system. Theselection of a directory in the list of the directory window causes thecontents of this window to change. The directory window list is updatedto present the DBs and subdirectories of the selected directory.The user can either choose a subdirectory, navigating down in thedirectories hierarchy or he can navigate upwards in this hierarchy, se-lecting the �rst option of the directory window list (../). The user canalso select a DB in this list, and start the navigation process on the se-lected DB. If the user knows the complete path of the desired DB, hecan type in this path in the text �eld on the upper part of the direc-tory window, eliminating the process of navigation on the intermediarysubdirectories. Section 5 shows a mechanism through which the usercan de�ne the desired DBs, in such a way that the system automaticallyopens these DBs windows, so the user does not need to use the directorywindow to search for a DBs.Once obtained a DB window, the user can select the schema classesthat he wants to visualize from the DB window classes list. By selectingclasses in this list the user obtains the corresponding class windows,which contain the complete description of each schema class (section 2.1presents and explains the contents of the class window).In a similar way, starting from the class window, the user can proceedbrowsing the schema either selecting classes from the subclasses andsuperclasses lists, or selecting methods from the class methods list. It isalso possible to start the data browsing over the class objects, throughthe selection of instances in the class objects list.The selection of superclasses or subclasses in the class window repre-sents exactly the same operation of selection classes in the DB window.These operations cause the creation and presentation of the class win-dows for the selected classes.The selection of a method from the class methods list triggers theprocess of creation and presentation of an auxiliary window, the methoddescription window. This window contains the textual description of theselected method, and each method selection causes the creation of a newmethod window. Figure 7 shows the presentation of a method of the



18 J. L. Oliveira and R. O. Anido
Figure 7: Method Windowclass exhibited in �gure 3.4.2 Data NavigationThe data navigation starts with the selection of an object from the ob-jects list of a class window. This operation causes the presentation of anobject window for the selected object, and each new selection in that listcauses the creation of a new object window. Thus, the user can workwith many instances of the same class simultaneously.Sequencing operations are available to provide access to di�erent ob-jects through a single object window. These operations are activatedby the next , previous and �rst buttons of the object window. The nextbutton updates the contents of the object window with the value of thenext object in the class objects list. For example, if the visualized objectcorresponds to the �rst element of the class objects list, the activationof the next button causes the substitution of the attributes values of the�rst object by the attributes values of the second element of the classobjects list.The previous button has an analog e�ect, except that instead of usingthe next element, it uses the previous element in the class objects list.The �rst button causes the presentation of the �rst element of the class



Browsing and Querying in Object-Oriented Databases 19objects list, no matter what object is currently being visualized in theobject window.It is worth noting that the sequencing operations next and previoussee the class objects list as a circular list, in such a way that the activationof next on the last element of this list causes the presentation of the �rstelement, and the activation of previous on the list's �rst element exhibitsthe last element of the list on the object window.4.3 Query FacilitiesIn the previous sections we described the basic mechanisms for naviga-tion in GOODIES. These mechanisms are also present in many otherexisting database interface systems. This section introduces the addi-tional capabilities that improve the browsing power of GOODIES, andwhich can be regarded as a simpli�ed querying process.It is important to distinguish at this point the adopted terminol-ogy: browsing (or navigation) is the process of sequential visualizationof information of a speci�c type; querying is the process of selecting andrestricting information, in such a way that only the explicitly demandedinformation is retrieved from the DB and presented to the user.4.3.1 PredicatesThe �rst query facility available in GOODIES is the formulation of pred-icates . The Props menu in the object window has a \predicate..." optionthat creates an auxiliary window associated to the object window. Thisauxiliary window is the predicate window, where the user can de�nepredicates that are applied to the object presented in the associatedobject window. A predicate is composed by three elements:Attribute: An attribute of the object displayed in the object windowfor which the predicate window was created;Operator: Either a comparison operator (=; <;>;�;�; 6=) or a set op-erator (�;�);



20 J. L. Oliveira and R. O. AnidoReferential: Either a value or an attribute of an object presented inthe user workspace. If the referential is an attribute, its type mustbe compatible with the type of the �rst element of the predicate.A predicate can also be composed by the association of other predi-cates, through logical connectors (And, Or) and logical negation opera-tor (Not). Parentheses can be used to specify a resolution ordering forthe composed predicates.Once the predicate is de�ned by the user, the semantic of the se-quencing operations for the associated object window is modi�ed. Theactivation of next will not �nd the next element of the class objects list,but the next element of this list that satis�es the de�ned predicate. Thesame behavior is adopted by the previous operation, that searchs thelist in the reverse order, and by the �rst operation, which �nds the �rstelement, starting from the beginning of the list, that satis�es the de�nedpredicate.4.3.2 SyncronizationAnother query facility provided by GOODIES is the synchronization ofobject windows. As it was already said, an object window can havereferences to other objects (sub-objects), and opening an object win-dow through these references creates a synchronization link between thecomplex object window and the sub-object window. Each reference to asub-object can have many associated windows, forming a synchronizationtree. The synchronization mechanism guarantees that any sequencingoperation applied on an object window is re
ected in the whole sub-treewhose root is the object window on which the sequencing operation wasperformed.A synchronization link creates a relationship of hierarchy betweentwo object representations. However, the synchronization link cannot becreated between any two objects. The synchronization relationship mustfollow the composition de�nition of the object's class. An object windowcan be the owner of another window in the synchronization tree if, and



Browsing and Querying in Object-Oriented Databases 21
A

B C

DFigure 8: Composition Graphonly if, the object displayed in the owner window has an attribute thatreferences the object displayed in the owned window.The synchronization mechanism can be better understood throughan example. Consider a schema composed by classes A, B, C and D,where the de�nition of the type of class A includes sub-objects of classesB and C, and the de�nition of class C includes a sub-object of class D,as shown in �gure 8.A synchronization tree can be built in the following way: the se-lection of sub-objects B1 and C1 in the object window A1 creates asynchronization tree with object A1 as root and with two leaf nodesthat are the object windows of object B1 (of class B) and object C1 (ofclass C). Another synchronization tree can be constructed in a similarway. The root node of the new tree is the object C1 and it has a uniqueleaf node, the object D1 (of class D). The resulting synchronization treecan be observed in �gure 9.A sequencing operation applied to the object window of class A willbe re
ected automatically in the object windows of classes B, C and D.



22 J. L. Oliveira and R. O. Anido

Figure 9: Synchronization Tree



Browsing and Querying in Object-Oriented Databases 23For instance, the next operation, applied to the object window of classAwill produce the following e�ect: in the object window of class A it willbe presented the attribute values of the next object of the extension ofclassA; in the object window of class B it will be presented the attributevalues of the object of class B that corresponds to the new object pre-sented in the object window of class A; and in the object window of classC it will be presented the object of class C that corresponds to the newobject presented in the object window of class A. The object window ofclass D will also be updated, and it will present the attribute values ofthe object of class D that corresponds to the new object presented inthe object window of class C. Figure 10 shows the synchronization treeof �gure 9 after the execution of the next operation in the object windowA1.As we have seen, a single sequencing operation can update the pre-sentation of several objects, through the synchronization mechanism. Itis important to note that the predicates de�ned for each object windowcontinue to be veri�ed when the object window is synchronized withother windows. The association of predicates with the synchronizationmechanism provided by GOODIES is similar to a query processing facil-ity where the user selects and restricts the required information. Onlygraphical query tools provide this facility, and none of the systems citedin section 1.1 have such a powerful mechanism for browsing.5 Other FacilitiesBesides the facilities for navigation and querying presented above, GOOD-IES provides many facilities that were developed in order to allow theuser to customize the system according to his needs. These facilities arealso important for adjusting the features of the system to accomplishsome speci�c tasks.



24 J. L. Oliveira and R. O. Anido

Figure 10: Synchronization Tree after next operation



Browsing and Querying in Object-Oriented Databases 255.1 Context SavingThe option Save Workspace associated to the Props menu of the DB win-dow executes one of the customization functions available in the GOOD-IES system. This option tells the system to save the current workspacewhere the user is working. After saving his workspace, every time theuser opens a GOODIES section, the system automatically presents thecontext that the user was visualizing in the moment he activated theSave Workspace option.The term context is used here to denote the base windows (directorywindow, DB windows and class windows). The reason for the exclusion ofobject windows from the context is that objects are dynamically insertedin and removed from the DBs, whereas schemas are not expected to bemodi�ed often.5.2 Visualization LevelAccording to the inheritance concept , the de�nition of a class inheritsmethods and attributes from its superclasses. Besides that, the inheri-tance hierarchy may have an arbitrary depth, with a class being a su-perclass of another, which is superclass of a third class, and so on. Ifmultiple inheritance is supported, a class inherits methods and attributesfrom all its superclasses. In this way, the de�nition of a class type maycontain few attributes and methods de�ned for the class, with a largenumber of inherited attributes and methods. So it is possible that theuser does not want to see the complete set of attributes and methods, butonly part of them. GOODIES o�ers facilities to de�ne the visualizationlevel of the class hierarchy. The user can select the desired visualizationlevel through the following options:Display Superclasses: an auxiliary window containing the list of super-classes of a given class, and the user selects from this list the su-perclasses whose attributes and methods should be displayed. Thisselection updates the contents of the class window items Type, Su-perclasses and Methods , as well as the attributes visualized in the



26 J. L. Oliveira and R. O. Anidoobject windows that belong to the class.Display Subclasses: in a similar way, the user can select the subclassesthat he wants to visualize, starting from a given class window.The unselected subclasses are eliminated from the class subclasseslist of the class window, and the instances of those subclasses areeliminated from the class objects list.5.3 Attribute SelectionIn an object-oriented database, the type de�nition of a class may con-tain an arbitrary number of attributes. So, choosing the class hierarchyvisualization level is often not enough to �ll the users needs, since a classthat has no superclasses can still have an excessive number of attributesexplicitly de�ned for it. GOODIES allows, through an auxiliary windowassociated to the object window, to choose the attributes to be displayed.The attribute selection window contains a list of all attributes de�nedfor (and inherited by) the object, according to the current visualizationlevel. Only the attributes selected in the attribute selection window arepresented in the object window.In a similar way the user can choose the items that are presentedin a class window. As it was observed in section 2.1, the items thatcompose the class window are �ve: the textual de�nition of the classcomposition (Type) and four lists ((Superclasses , Subclasses , Methodsand Objects). There is no di�erence between the selection of objectattributes to be displayed in the object window and the selection of classitems to be displayed in the class window, except that there is a �xednumber of items in every class window, whereas the number of attributesin an object window is variable. Figure 11 shows the attribute selectionwindow for the object window presented in �gure 4.



Browsing and Querying in Object-Oriented Databases 27
Figure 11: Attribute Selection Window6 ConclusionWe presented the functionality of the GOODIES system. The basicmechanisms for interaction with the user was described, and it was notedthat many of the system functions were adapted from previously de-veloped interface systems. In fact, one of the main advantages of theGOODIES system is to provide the best browsing functions from previ-ous database interfaces, assembled in one single tool.The window construction style follows the OpenLook [Sun90] guide-lines, and the concept of dividing a complex object representation inseveral windows was inspired on the proposition of [MSB90]. Accord-ing to that work, the natural trend to depict complex information ina single representation is not always possible, besides being frequentlyine�cient. In general, it is better to display complex information (forinstance, objects in a OODB) in more than one presentation, where eachpresentation is tuned to a particular aspect of the global information.The basic GOODIES navigation mechanism was inspired on thedatabase interface system described in [RC88], though the data modelof this system is the Entity-Relationship, whereas GOODIES uses the



28 J. L. Oliveira and R. O. Anidoobject-oriented data model. The idea of synchronized browsing wasstrongly in
uenced by the KIVIEW system concepts, introduced in [MDT89].The idea of using predicates to improve the navigation process is usedin graphical query systems, and the GOODIES de�nitions of predicatesis very similar to the concepts used in the PICASSO [KKS88] system, agraphical query system for the universal relation data model.Finally the items that de�ne a class window are similar to those usedin the OOPE system, described in [Alt90b]. It should be noted, how-ever, that none of the interface systems from which GOODIES inheritedfeatures are independent from their respectives DBMSs. This importantcharacteristic, the independency from an speci�c DBMS, di�erentiatesthe GOODIES system from the interface that in
uenced its design.At the present moment, all the funcionality described (except thepredicate building facility) is implemented in a prototype that uses aSUN SPARCstation as plataform, under the UNIX operating system.The system applies the graphical resources of the XVIEW toolkit [Hel90],and contains about twelve thousand lines of code written in C++. Thenext step of the project is to integrate the GOODIES system to anOODBMS, such as O2.References[ABD+89] Malcolm Atkinson, Fran�cois Bancilhon, David DeWitt, KlausDittrich, David Maier, and Stanley Zdonik. The Object-Oriented Database System Manifesto. In Proceedings ofthe 1st International Conference on Deductive and Object-Oriented Databases, pages 40{57, Kyoto, Japan, December1989.[AGS90] R. Agrawal, N. H. Gehani, and J. Srinivasan. Odeview: TheGraphical Interface to Ode. In Proceedings of the 1990 ACMSIGMOD, pages 34{43, Atlantic City, USA, May 1990.



Browsing and Querying in Object-Oriented Databases 29[Alm91] Jay Almarode. Issues in the Design and Implementation ofa Schema Designer for an OODBMS. In ECOOP'91, pages200{218, 1991.[Alt90a] Alta��r. The Looks Programmer Manual. Technical Report,Gip Alta��r, January 1990. Printing Revision 1.1, 9/01/1990.[Alt90b] Alta��r. Oope: The Object-Oriented Programming Environ-ment. Technical Report, Gip Alta��r, January 1990. PrintingRevision 1.1, 9/01/1990.[BH86] Daniel Bryce and Richard Hull. Snap:A Graphics-basedSchema Manager. In IEEE Conference on Data Engineer-ing, February 1986.[BM91] Elisa Bertino and Lorenzo Martino. Object-OrientedDatabase Management Systems: Concepts and Issues. IEEEComputer, 24(4):33{47, April 1991.[BMP+92] P. Borras, J. C. Mamou, D. Plateau, B. Poyet, and D. Tallot.Building User Interfaces for Database Applications: The O2Experience. SIGMOD Record, 21(1):32{38, March 1992.[Cat91] R. G. G. Cattell. Next-generation Database Systems. Com-munications of the ACM, 34(10):30{33, October 1991.[Com90] The Committee for Advanced DBMS Function. Third-Generation Database System Manifesto. SIGMOD Record,19(3):31{44, September 1990.[EN89] Ramez Elmasri and Shamkant Navathe. Fundamentals ofDatabase Systems. The Benjamin/Cummings PublishingCompany, 1989.[GGKZ85] Kenneth J. Goldman, Sally A. Goldman, Paris C. Kanellakis,and Stanley B. Zdonik. ISIS: Interface for a Semantic Infor-mation System. In ACM SIGMOD Conference, May 1985.



30 J. L. Oliveira and R. O. Anido[Hel90] Dan Heller. XVIEW Programming Manual, volume 7 of TheX Window System Series. O'Reilly & Associates, April 1990.Second Printing.[Her80] Christopher F. Herot. Spatial Management of Data. ACMTransactions on Database systems, 5(4):493{513, December1980.[KKS88] Hyoung-Joo Kim, Henry F. Korth, and Avi Silberschatz. Pi-casso: A Graphical Query Language. Software Practice andExperience, 18(3):169{203, March 1988.[Mam91] Jean-Claude Mamou. Du Disque �a le ecran: Gen�erationD`Interfaces Homme{Machine Pour Objects Persistants.PhD thesis, Universit�e de Paris - Sud - Centre d`Orsay, May1991.[MDT89] Amihai Motro, Alessandro D�Atri, and Laura Tarantino. TheDesign of KIVIEW: An Object-Oriented Browser. In LarryKerschberg, editor, Proceedings from the Second InternatinalConference on Expert Database Systems, pages 107{131. TheBenjamin/Cummings Publishing Company, Inc., 1989.[MNG86] David Maier, Peter Nordquist, and Mark Grossman. Display-ing Database Objects. In Proceedings of the First InternatinalConference on Expert Database Systems, pages 15{30, April1986.[MSB90] John Alan McDonald, Werner Stuetzle, and Andreas Buja.Painting Multiple Views of Complex Objects. In ACMECOOP/OOPSLA Proceedings, pages 245{257, Ottawa,Canada, October 1990.[MvD91] Aaron Marcus and Andries van Dam. User-Interface De-velopments for the Nineties. IEEE Computer, 24(9):49{57,September 1991.



Browsing and Querying in Object-Oriented Databases 31[Oli92] Juliano Lopes de Oliveira. Uma Ferramenta Gr�a�ca paraNavega�c~ao e Consulta em Bancos de Dados Orientados a Ob-jetos. Master's thesis, Universidade Estadual de Campinas- Departamento de Ciência da Computa�c~ao, 1992. To bepublished.[PH91] Thiagarajan Palanivel and Martin Helander. Human-FactorsIssues in Dialog Design. Advances in Computers, 33(1):115{171, 1991.[RC88] T. R. Rogers and R. G. G. Cattell. Entity-RelationshipDatabase User Interfaces. In Michael Stonebraker, editor,Readings in Database Systems. Morgan Kaufmann Publish-ers, Inc., 1988.[Shn83] Ben Shneiderman. Direct Manipulation: A Step Beyond Pro-gramming Languages. IEEE Computer, 16(8):57{69, August1983.[Shn87] Ben Shneiderman. Designing the User Interface: Strategiesfor E�ective Human-Computer Interaction. Addison-Wesley,1987.[Sun90] Sun Microsystems. OPENLOOK - Graphical User InterfaceApplications Style Guidelines. Addison-Wesley, June 1990.Third Printing.



Relat�orios T�ecnicos01/92 Applications of Finite Automata Representing Large Vo-cabularies, C. L. Lucchesi, T. Kowaltowski02/92 Point Set Pattern Matching in d-Dimensions, P. J.de Rezende, D. T. Lee03/92 On the Irrelevance of Edge Orientations on the AcyclicDirected Two Disjoint Paths Problem, C. L. Lucchesi,M. C. M. T. Giglio04/92 A Note on Primitives for the Manipulation of GeneralSubdivisions and the Computation of Voronoi Diagrams,W. Jacometti05/92 An (l; u)-Transversal Theorem for Bipartite Graphs,C. L. Lucchesi, D. H. Younger06/92 Implementing Integrity Control in Active Databases,C. B. Medeiros, M. J. Andrade07/92 New Experimental Results For Bipartite Matching,J. C. Setubal08/92 Maintaining Integrity Constraints across Versions in aDatabase, C. B. Medeiros, G. Jomier, W. Cellary09/92 On Clique-Complete Graphs, C. L. Lucchesi, C. P. Mello,J. Szwarc�ter10/92 Examples of Informal but Rigorous Correctness Proofs forTree Traversing Algorithms, T. Kowaltowski11/92 Debugging Aids for Statechart-Based Systems,V. G. S. Elias,H. Liesenberg 32



Departamento de Ciência da Computa�c~ao | IMECCCaixa Postal 6065Universidade Estadual de Campinas13081-970 { Campinas { SPBRASILreltec@dcc.unicamp.br

33


