O conteddo do presente relatério é de (nica responsabilidade do(s) autore(s).
(The contents of this report are the sole responsibility of the author(s).)

Browsing and Querying in Object-Oriented
Databases

Juliano Lopes de Oliveira

Ricardo de Oliveira Anido
Relatério Técnico DCC-12/92

Dezembro de 1992

Browsing and Querying in Object-Oriented
Databases

Juliano Lopes de Oliveira®

Ricardo de Oliveira Anido!

Abstract

We present a new interface for Object-Oriented Database Man-
agement Systems (OODBMSs). The GOODIES! system com-
bines and expands the functions of many existing interface sys-
tems, introducing some new concepts for improved browsing in
an OODBMS. The implementation of GOODIES proposes a new
approach to database interfaces development: instead of being
strongly dependent of the underlying DBMS, GOODIES is based
on the main features of the object-oriented data model. The sys-
tem design is based on an internal model and on an external model.
The internal model defines the relationships that bind the inter-
face to the DBMS, and it is fully described in [Oli92]. The external
model determines the possible interaction between the user and the
interface system. This paper describes the concepts of the external

model of the GOODIES system.

*Departamento de Ciéncia da Computagao, Universidade Estadual de Campinas,
13081-970 Campinas, SP. Pesquisa desenvolvida com suporte financeiro do CNPq —
Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico

'Departamento de Ciéncia da Computacio, Universidade Estadual de Campinas,
13081-970 Campinas, SP.

YGOODIES is an acronym for Graphical Object Oriented Database Interface with
Extended Synchronism.

2 J. L. Oliveira and R. O. Anido

1 Introduction

Offering database users a suitable interface is an old research issue, and
much work has being done towards that objective. Database Manage-
ment Systems (DBMSs) are powerful software tools, with a large and
complex set of functions. The main purpose of interface systems for
DBMSs is to improve access to those functions for the whole database
(DB) user community. That, however, is not an easy task, since dif-
ferent kinds of users (application programmers, database administrators
and end-users) expect different, and sometimes conflicting, functions. As
graphical workstations become more popular, there is a strong trend to
substitute the traditional DB programming languages by the graphical
interfaces, which are more suitable for the interaction between the user
and the DBMS [MvD91, Shn87, PH91].

In this paper we introduce GOODIES, a new system for browsing
and querying in Object-Oriented Database Systems (OODBMSs). This
new system is a multiple window graphical interface using the direct ma-
nipulation paradigm, and supporting multi-media objects. The system
combines, in a single tool, the main functions for database browsing at
both schema and data levels. Another important feature of GOODIES
is to be independent from a specific OODBMS.

1.1 Graphical Interfaces for DBMSs

[Her80] presents one of the first implementations of graphical interfaces
for relational databases: the SDMS system. It allows the visualization of
a relation through two windows, where the first window presents a global
view of the relation, and the second window presents a detailed view of
a subset of the tuples in the relation. The user can navigate through
tuples using a joystick. SDMS is very limited, since it is not possible
to visualize two or more relations simultaneously, but it has historical
importance.

[GGKZ8&5] shows the ISIS system, a graphical interface for the se-
mantic data model. This system permits both schema and data ma-

Browsing and Querying in Object-Oriented Databases 3

nipulation. The relationships among the objects are displayed as lines
that bind the schema classes. Data is displayed in separate windows,
one window for each object’s class. Another interface for the semantic
data model, the SNAP system, is presented in [BH86]. SNAP provides
facilities for schema manipulation and query formulation. The schema
is presented as a very complex graph, where different geometric figures
are used to represent different relationships.

The SIG system, described in [MNG86], provides only data manipu-
lation functions, and has no schema manipulation facility. The approach
to data representation introduced therein is very interesting, but it is
very difficult to create the first presentation of an object in SIG. An-
other problem is that the creation of a presentation modifies the class
definition, by adding methods that support operations on the presenta-
tion.

A graphical interface for the entity-relationship data model is pre-
sented in [RC8R]. The system permits navigation and update of both
schema and data. The interface automatically creates presentations for
the entities defined in the schema, and the user can modify these presen-
tations. During navigation, the system operates in two modes: browse,
where the user cannot modify the information, and edit, where update
operations are allowed.

The PICASSO system [KKS88] introduces a graphical query lan-
guage for DBs. The query formulation is based on a mouse with three
buttons. The left button is used to select attributes; the middle button is
used to build predicates; and the right button is used to choose options
from the query processing menu. Thus, PICASSO allows a graphical
definition of queries, and the queries defined in the system are very simi-
lar to the well-known SQL’s query blocks. An auxiliary tool allows both
navigation through the results of executed queries, and formulation of
complex queries using the results of previous queries.

KIVIEW [MDT89] is an object-oriented system that improves the
access of non-expert users to a DB. It allows navigation on both schema
and data levels. KIVIEW is a powerful browsing tool because the user
can save information during the navigation process, and the saved infor-

4 J. L. Oliveira and R. O. Anido

mation can be used as a starting point for other navigations. KIVIEW
also allows the simultaneous navigation in objects of different classes,
through synchronized browsing operations.

The LOOKS system is a graphical presentation generator for the
OODBMS 02. [Alt90a] describes the primitives provided in LOOKS
to manipulate the presentations using a programming language. The
LOOKS architecture is presented in the second part of [Mam91]. Be-
sides the LOOK presentation generator, the O2 system has an object-
oriented programming environment called OOPE [Alt90b]. Among other
functions, OOPE allows: creation, navigation and edition of classes and
methods, visualization and edition of the class hierarchy and ad hoc
query execution. The association of OOPE with LOOKS gives access to
the whole set of functions of the 02 system, and they are considered a
complete OODBMS interface system [BMP*92].

Other existing OODBMS interface systems can be cited, although
they are not as powerful as the 02 DBMS interface system. ODEVIEW
[AGS90], the interface system for the ODE OODBMS, allows schema
and data manipulation. A special function in ODEVIEW permits the
simultaneous navigation among objects of different classes (synchronized
browsing). In [Alm91] it is presented the GSDesigner system, an inter-
face tool that allows the graphical interactive definition of classes and
relationships for the OODBMS GemStone.

1.2 A New Interface for OODBMSs

Unlike relational databases, which share exactly the same data model,
OODBMSs are not based on a common formal model. Indeed, the
object-oriented (OO) data model is composed by a set of properties
and functions that database researchers consider essential for a DBMS
to be accepted as an object-oriented system. Recently, many papers pro-
posed basic features that should be present in an OODBMS ([ABD*89],
[EN89], [Com90], [Cat91] and [BMI1]). The following characteristics
represent the common points in these propositions [01i92]:

1. To have the basic features of a complete DBMS';

Browsing and Querying in Object-Oriented Databases 5

2. To support complex objects and object identity;
3. To provide encapsulation;

4. To support the class concept, and to permit inheritance and class
hierarchies;

5. To allow overloading and late binding of methods;

6. To be extensible and computationally complete.

Therefore, OODBMSs implement similar features, but they do not
follow an specific set of rigid rules. Due to this diversity of features
in OODBMs, interface systems for OODBMSs have an ad hoc design,
according to the specific implementation used in the OODBMS for the
fundamentals of the OO data model.

The GOODIES system introduces a new approach to the construction
of interfaces for OODBMSs. Discarding the idea of a strong relationship
between the OODBMS implementation and the process of interface de-
velopment, GOODIES’s design was directed by the essential features of
the OO data model, identified above, independently of a specific imple-
mentation of these features.

This new approach to OODBMSs interface development presents
some advantages in comparison to the previous approach. First, it per-
mits the validation of the basic features that define the OO data model.
A second advantage is that it permits to verify whether a given DBMS
provides these features, that is, the new approach can be used to verify
if the DBMS is object-oriented. Finally, the new approach facilitates the
adaptation of the interface system to a DBMS that implements, in any
way, the basic object-oriented features.

At the present stage, the GOODIES system implementation only
provides reading access to the information stored in the DBs. Thus, the
system cannot be considered a complete DBMS interface system. How-
ever, the GOODIES system design was conceived with the objective of
being extensible. So, the information update capability can be incorpo-
rated to the system, without changing its external model (user’s view of

6 J. L. Oliveira and R. O. Anido

the system), through a reduced number of modifications on the internal
model of the system (the way the system dialogs with the underlying
DBMS).

The following sections describe the external model of this new inter-
face system, showing the DB’s view that the system offers to the users.
In section 2 we describe the way the information is represented in the sys-
tem. Section 3 shows the interaction mechanism between the user and
the interface. In section 4 we explain the behavior of the browse and
query operations. Section 5 introduces some functions that improves the
system utilization. The last section comments the system implementa-
tion and relates it to previous work.

2 Information Visualization

In GOODIES, all kinds of information are displayed through windows.
Windows are composed by three parts: header, body and footer. The
window title (that is, the identification of the kind of information dis-
played in the window) appears in the header. The window body contains
the controls and the representations of the information associated to the
window. The window footer is split in two parts: left and right. In the
right part it is presented the name or identification of the DB compo-
nent that is represented in the window’s body. For instance, in a window
that displays a DB schema class, the right footer contains the name of
the represented class. The left footer is reserved for system messages
related to either the presented data or to the operations performed on
the window.

The system has four types of base windows, where the information
about schema and data (objects) are displayed. There is also a set of
auxiliary windows, which allows the user access to the complete system
functionality. GOODIES allows an arbitrary number of windows to be
displayed simultaneously.

Browsing and Querying in Object-Oriented Databases 7

"[E) GOODIES - Open Database |

Use File:
system

-
i OB

i SRC/

¢ animal

¢ ocar

. system

i]

3 directories, 3 files

L. /home/pos/juliano/tese/art/dbms

Figure 1: Directory Window

2.1 Schema Visualization

Three base windows contain information about schemas: the directory
window, which provides browsing facilities at DB level; the DB win-
dow, which presents the list of classes that are defined in a given DB
schema; and the class window, which presents the items that define a
given schema class.

DBs are considered by GOODIES as special kinds of files, which can
be identified and differentiated from the other kinds of files that exist
in the file system of the underlying equipment. The identification of the
DBs is handled in a very simple way: a sequence of bytes is compared
to the first bytes of the file, and if they match, GOODIES consider the
file to be a DB. The sequence of bytes used for comparison is dependent
on the specific DBMS used.

The directory window provides access to the existing DBs. This
window allows navigation on the file system in order to select a DBs.
The user can visualize different DBs at the same time, since each DB
selection in the directory window opens the DB window corresponding
to the selected DB. Existing DBs in a directory are visualized through a

8 J. L. Oliveira and R. O. Anido

r‘@ GOODIES — Schema Classes K
{(File w) (Wiew) (Edit v) (Props v)
Classes

=
File &
Function
Mathod hd
Maodule
Ohject
Person
Procedure
Program
Programmer

=

L system'_r

Figure 2: DB Window

list in the directory window. This list contains also the subdirectories of
the visualized directory, and an option, that always appears in the top
of the list, to go up one level in the directories hierarchy. Figure 1 shows
a directory window.

Besides the three DBs (animal, car and system) showed, the pre-
sented directory has three associated directories: the owner directory in
the directory tree (represented by ../), and two subdirectories (SRC and
OBJ). Figure 2 presents the DB window that contains the classes defined
in the schema of the system DB.

The third base window for schema visualization is the class window.
This window presents the definition of a class in a DB schema, and it is
composed by the following items:

e Type: a textual description of the class type definition, that is,
the composition of the instances (objects) of the class;

e Superclasses: a list of superclasses from which the described class
inherits attributes and methods;

e Subclasses: a list of subclasses that inherit the attributes and
methods defined for the described class;

Browsing and Querying in Object-Oriented Databases 9

e Methods: a list of methods associated to the described class;

e Objects: a list of object instances that belong to the described
class, that is, the class extension.

Figure 3 shows a class window that displays the class Program of the
DB presented in figure 2. The sliders on the left of the list items allow the
resizing of the representation of a given list item with respect to the other
items. In other words, the user can, through these sliders, change the
number of rows displayed in individual items, without changing the size
of the window. The system automatically changes the size of the items
in such a way that the complete set of items continue to be displayed in
the available space. This mechanism is useful to show more information
on important items.

2.2 Data Visualization

The three base windows described in the previous section (directory win-
dow, DB window and class window) are used to visualize and to nav-
igate on the schema definitions of the different DBs controlled by an
OODBMS. The fourth base window permits the execution of these op-
erations on data, i.e., on the objects stored in the DBs.

The object window contains the values of the attributes that com-
pose an object instance, according to the class composition description
presented in the class window. Figure 4 shows an object of the class
Program, presented in figure 3.

The objects attributes are divided, according to their representation
in the system, in the following groups:

1. Simple Attributes: these attributes are those which can be dis-
played as character strings containing at most 128 characters, and
that are atomic, that is, they are not composed by other elements.
Numbers (real, integer), boolean values and character strings

?character strings are not considered to be composed by elements of type character
because, in this case, the individual characters do not have their own semantic meaning

10

J. L. Oliveira and R. O. Anido

1=

GOODIES - Class Visualization

{(File w) (Wiew) (Edit v) (Props v)

Type

Super—
classes

Sub-
classes

Objects

Program: tuple
{

n[mdu] esiset

authors:1ist

objective:string;

module: text;

[T To)===[]

Ohject
Text

Function
Method
Maodule

Create_text
Edit_text
Create_program

Cons
Window _Manager
COODIES

i
i
i

(-G T (-3 0-GT=0 0= T20 [0

Program'_r

Figure 3: Class Window

Browsing and Querying in Object-Oriented Databases

] GOODIES - Object Visualization
{(File w) (Wiew) (Edit v) (Props v)
identification
creation_date
body
date_edited

ohjective | Interface for OODBMSs |
modules =
medulel.. &
module2.
authors =
prograrmmert.., hid
programmerz..,
program_hbody
windows i =
window1,. E
window?2,.,
o |
audio_notes
update_historic =
notel.., &
note.,
L GOODIES {

Figure 4: Object Window

12

J. L. Oliveira and R. O. Anido

r“g GOODIES - Text Attribute Visualization T
Attr_attribute INSTANCE; 5
int LIST_ROW_HEIGHT:
char goodies_file[4];
goodies_dir_window_objects goodies_di r_window;
goodies_dbms_primitives_objects .
goodies_dbms_primitives;
void d
main{int argc, char **argv)

i
extern int dir_window_open_filelchar #);
extern int CLASS_RESIZE_CALLS;
FILE *fp;
int i
char *dir = new char [MBXPATHLEN] ;
wy_init{¥V_INIT_ARGC_PTR_ARGY, &argec, argy, 0J: =
Browse: : :
1 program_body

Figure 5: Text Window

with less than 128 characters are examples of simple attributes.
These attributes are represented directly in the object window.
The attributes objective and identification of figure 4 are examples
of simple attributes.

. Textual Attributes: in this group are the atomic attributes, as

defined above, which cannot be represented with less than 129
characters. These attributes are displayed in auxiliary text win-
dows, associated to the object window that contains the textual
attribute. Figure 5 shows the representation of the textual at-
tribute program_body, of the object presented in figure 4.

. Images: an image is a sequence of bytes that defines the graphi-

cal representation of a picture. Images are presented in auxiliary
graphical windows, associated to the object window that contains
the image attribute. Figure 6 shows the image window that corre-
sponds to the first element of the windows list of the object pre-
sented in figure 4.

Browsing and Querying in Object-Oriented Databases

r“g GOODIES - Picture Attribute Visualization

0 4 1v] 0
3 window

Figure 6: Image Window

13

14

J. L. Oliveira and R. O. Anido

. Sounds: sound attributes are applied to audio recordings, whose

representation is realized by reproducing the sound stored in the
attribute. The sound and image attributes provide facilities for
storing and manipulating of multi-media objects, which are sup-
ported by the majority of existing object-oriented systems.

. Lists: collections of elements that belong to the same type are

represented by a list atribute. The elements of a list may be either
simple or complex. Simple attributes are displayed directly in the
object window as list items. If the elements of the list are not simple
attributes, the items of the list presented in the object window work
as references to the attributes that must be presented in auxiliary
windows.

. Tuples: tuple attributes represent the aggregation of elements of

heterogeneous types. Thus, tuples demand the creation of an aux-
iliary window in order to display its contents, since each tuple
element may belong to any of the defined attribute types.

. Sub-objects: these attributes are used to represent the concept

of complex object. According to this concept, an object can be
composed by an arbitrary set of other objects. The sub-objects are
displayed in object windows associated to the base object window.
There is no difference between the construction and presentation
of sub-object windows and the construction and presentation of
object windows, except that the sub-object window is associated
to the base object window, whereas the base object window is
associated to the object’s class window. This subtle difference is
the base of the synchronized browsing capability described later in
this text.

The auxiliary windows associated to the object window follows the

same scheme for attribute representation used in the object window.
Thus, it is possible to represent an arbitrary number of nested objects
and values, and this satisfies the directives for objects construction in

Browsing and Querying in Object-Oriented Databases 15

the OO data model [ABD¥89]. The attributes that must be visualized
in different windows are easily identified, because their reference names
are ended with ellipses (“...”), as shown in figure 4.

3 Interaction with the user

The direct manipulation paradigm [Shn83] was adopted as the main
mechanism for interaction with the user. This mechanism simplifies the
input actions required from the user in order to execute an operation,
and reduces both the amount of input errors and the user typing effort.

There are two basic ways to activate the system’s functions. The
first way is the traditional activating mode used in graphical interfaces:
the user selects the information and afterwards indicates the action to
be performed, through command buttons located in the window that
contains the selected information. The selection is done by positioning
the mouse on the desired information and clicking the mouse selection
button.

The second way to activate system’s functions is used as a shortcut to
some specific operations, mainly the browsing operations. This second
way can be used every time the user wants to select an information
and afterwards apply an operation in order to either create or open a
window that represents the selected information. Instead of selecting
the operation from a menu associated with some button in the window,
the user needs only to click the selection button twice on the desired
information. This double click operation indicates that the user wants to
open a window to visualize the data related to the selected information.

As an example of the utilization of these two interaction mechanisms,
the auxiliary text window presented in figure 5 could have been created
in the two following ways. The user could have selected the value of
the attribute program_body in the object window presented in figure 4
and afterwards he could have activated the Open option of the View
button of this window. Similarly, the double click on the program_body
attribute’s value of the object window would have caused the creation of
the text window. From this point on, the termselection will be used to

16 J. L. Oliveira and R. O. Anido

denote the complete action of choosing an information and applying a
browsing operation on it, through double click or through menu buttons.

Using the first interaction mode (command buttons), the user can
have access to the complete functionality of the interface system. The
second interaction mode (double-click) permits only the activation of
browsing functions on both schema and data levels. It is important to
emphasize that, in any system window, both interaction mechanisms pro-
duce exactly the same results for the same kinds of operations. The co-
herence between actions and results was a major guideline on the system
design, as it guarantees that the final user will have a fast comprehension
of the interface functionality.

Besides assuring coherence, the user interaction mechanisms of GOOD-
TIES also provide flexibility for the user to define the environment where
he is going to work. GOODIES allows the user to set up his workspace,
through facilities to resize, reposition, open, close, create and destroy
windows. The system neither limits the number of opened windows
(in fact this number is limited by the Window Manager ® and by the
available memory in the equipment), nor imposes any kind of restriction
about size or positionning of the windows.

4 Mechanisms for Browsing and Querying

Up to this point we presented the available windows in the GOODIES
system. The next sections describe how these windows are used to visu-
alize different aspects of schema and data contained in a OODBMS.

4.1 Schema Navigation

A working session in GOODIES is initiated with the directory window,
that allows the user to choose the desired DBs. The selection of a DB
causes the presentation of a DB window, containing the list of classes
defined for the selected DB. In order to select the DB, the user can

? Window Manager is the system responsible for controlling the windows in a multi-
window environment.

Browsing and Querying in Object-Oriented Databases 17

visualize the contents of the existing directories in the file system. The
selection of a directory in the list of the directory window causes the
contents of this window to change. The directory window list is updated
to present the DBs and subdirectories of the selected directory.

The user can either choose a subdirectory, navigating down in the
directories hierarchy or he can navigate upwards in this hierarchy, se-
lecting the first option of the directory window list (../). The user can
also select a DB in this list, and start the navigation process on the se-
lected DB. If the user knows the complete path of the desired DB, he
can type in this path in the text field on the upper part of the direc-
tory window, eliminating the process of navigation on the intermediary
subdirectories. Section 5 shows a mechanism through which the user
can define the desired DBs, in such a way that the system automatically
opens these DBs windows, so the user does not need to use the directory
window to search for a DBs.

Once obtained a DB window, the user can select the schema classes
that he wants to visualize from the DB window classes list. By selecting
classes in this list the user obtains the corresponding class windows,
which contain the complete description of each schema class (section 2.1
presents and explains the contents of the class window).

In a similar way, starting from the class window, the user can proceed
browsing the schema either selecting classes from the subclasses and
superclasses lists, or selecting methods from the class methods list. Tt is
also possible to start the data browsing over the class objects, through
the selection of instances in the class objects list.

The selection of superclasses or subclasses in the class window repre-
sents exactly the same operation of selection classes in the DB window.
These operations cause the creation and presentation of the class win-
dows for the selected classes.

The selection of a method from the class methods list triggers the
process of creation and presentation of an auxiliary window, the method
description window. This window contains the textual description of the
selected method, and each method selection causes the creation of a new
method window. Figure 7 shows the presentation of a method of the

18 J. L. Oliveira and R. O. Anido

o) GOODIES - Method Visualization T

/f Create object “text_window” in the specified instance.
£

Kv_opaque
goodies_text_window_objects::text_window_create(¥v_opagque

LE
owner,int method_wind -
i

extern void text_window_done(Framel; ||»

extern Motify_value
text_window_events(iv_window, Event *,

Wotify_arg, Motify_event_typel;

—

3 Edit_text

Figure 7: Method Window

class exhibited in figure 3.

4.2 Data Navigation

The data navigation starts with the selection of an object from the ob-
jects list of a class window. This operation causes the presentation of an
object window for the selected object, and each new selection in that list
causes the creation of a new object window. Thus, the user can work
with many instances of the same class simultaneously.

Sequencing operations are available to provide access to different ob-
jects through a single object window. These operations are activated
by the nezt, previous and first buttons of the object window. The next
button updates the contents of the object window with the value of the
next object in the class objects list. For example, if the visualized object
corresponds to the first element of the class objects list, the activation
of the next button causes the substitution of the attributes values of the
first object by the attributes values of the second element of the class
objects list.

The previous button has an analog effect, except that instead of using
the next element, it uses the previous element in the class objects list.
The first button causes the presentation of the first element of the class

Browsing and Querying in Object-Oriented Databases 19

objects list, no matter what object is currently being visualized in the
object window.

It is worth noting that the sequencing operations next and previous
see the class objects list as a circular list, in such a way that the activation
of next on the last element of this list causes the presentation of the first
element, and the activation of previous on the list’s first element exhibits
the last element of the list on the object window.

4.3 Query Facilities

In the previous sections we described the basic mechanisms for naviga-
tion in GOODIES. These mechanisms are also present in many other
existing database interface systems. This section introduces the addi-
tional capabilities that improve the browsing power of GOODIES, and
which can be regarded as a simplified querying process.

It is important to distinguish at this point the adopted terminol-
ogy: browsing (or navigation) is the process of sequential visualization
of information of a specific type; querying is the process of selecting and
restricting information, in such a way that only the explicitly demanded
information is retrieved from the DB and presented to the user.

4.3.1 Predicates

The first query facility available in GOODIES is the formulation of pred-
icates. The Props menu in the object window has a “predicate...” option
that creates an auxiliary window associated to the object window. This
auxiliary window is the predicate window, where the user can define
predicates that are applied to the object presented in the associated
object window. A predicate is composed by three elements:

Attribute: An attribute of the object displayed in the object window
for which the predicate window was created;

Operator: Either a comparison operator (=, <, >, <,>,#) or a set op-
erator (D, C);

20 J. L. Oliveira and R. O. Anido

Referential: Either a value or an attribute of an object presented in
the user workspace. If the referential is an attribute, its type must
be compatible with the type of the first element of the predicate.

A predicate can also be composed by the association of other predi-
cates, through logical connectors (And, Or) and logical negation opera-
tor (Not). Parentheses can be used to specify a resolution ordering for
the composed predicates.

Once the predicate is defined by the user, the semantic of the se-
quencing operations for the associated object window is modified. The
activation of next will not find the next element of the class objects list,
but the next element of this list that satisfies the defined predicate. The
same behavior is adopted by the previous operation, that searchs the
list in the reverse order, and by the first operation, which finds the first
element, starting from the beginning of the list, that satisfies the defined
predicate.

4.3.2 Syncronization

Another query facility provided by GOODIES is the synchronization of
object windows. As it was already said, an object window can have
references to other objects (sub-objects), and opening an object win-
dow through these references creates a synchronization link between the
complex object window and the sub-object window. Each reference to a
sub-object can have many associated windows, forming a synchronization
tree. The synchronization mechanism guarantees that any sequencing
operation applied on an object window is reflected in the whole sub-tree
whose root is the object window on which the sequencing operation was
performed.

A synchronization link creates a relationship of hierarchy between
two object representations. However, the synchronization link cannot be
created between any two objects. The synchronization relationship must
follow the composition definition of the object’s class. An object window
can be the owner of another window in the synchronization tree if, and

Browsing and Querying in Object-Oriented Databases 21

Figure 8: Composition Graph

only if, the object displayed in the owner window has an attribute that
references the object displayed in the owned window.

The synchronization mechanism can be better understood through
an example. Consider a schema composed by classes A, B, C and D,
where the definition of the type of class A includes sub-objects of classes
B and C, and the definition of class C includes a sub-object of class D,
as shown in figure 8.

A synchronization tree can be built in the following way: the se-
lection of sub-objects B1 and C1 in the object window A1l creates a
synchronization tree with object A1l as root and with two leaf nodes
that are the object windows of object B1 (of class B) and object C1 (of
class C). Another synchronization tree can be constructed in a similar
way. The root node of the new tree is the object C1 and it has a unique
leaf node, the object D1 (of class D). The resulting synchronization tree
can be observed in figure 9.

A sequencing operation applied to the object window of class A will
be reflected automatically in the object windows of classes B, C and D.

22

J. L. Oliveira and R. O. Anido

GOODIES - Object Visualization |

Browse:

Props @
Pravious

al

'@ GooDIES - Object visualization |

Props w
Previous

L B1

@) GOODIES - Object Visualization |

GOODIES — Object Visualization |

Figure 9: Synchronization Tree

Browsing and Querying in Object-Oriented Databases 23

For instance, the next operation, applied to the object window of class A
will produce the following effect: in the object window of class A it will
be presented the attribute values of the next object of the extension of
class A;in the object window of class B it will be presented the attribute
values of the object of class B that corresponds to the new object pre-
sented in the object window of class A; and in the object window of class
C it will be presented the object of class C that corresponds to the new
object presented in the object window of class A. The object window of
class D will also be updated, and it will present the attribute values of
the object of class D that corresponds to the new object presented in
the object window of class C. Figure 10 shows the synchronization tree
of figure 9 after the execution of the nexzt operation in the object window
Al.

As we have seen, a single sequencing operation can update the pre-
sentation of several objects, through the synchronization mechanism. It
is important to note that the predicates defined for each object window
continue to be verified when the object window is synchronized with
other windows. The association of predicates with the synchronization
mechanism provided by GOODIES is similar to a query processing facil-
ity where the user selects and restricts the required information. Only
graphical query tools provide this facility, and none of the systems cited
in section 1.1 have such a powerful mechanism for browsing.

5 Other Facilities

Besides the facilities for navigation and querying presented above, GOOD-
IES provides many facilities that were developed in order to allow the
user to customize the system according to his needs. These facilities are
also important for adjusting the features of the system to accomplish
some specific tasks.

J. L. Oliveira and R. O. Anido

r = GOODIES - Object Visualization |

View w Frops ¥
Previous

Browse:

L A2 4
GOODIES - Object Visualization | @ GcooDIEs - object visualization |
B2 |
i €2 i

GOODIES - Object Visualization |

Frops w
Frevious

Browse:

Figure 10: Synchronization Tree after next operation

Browsing and Querying in Object-Oriented Databases 25

5.1 Context Saving

The option Save Workspace associated to the Props menu of the DB win-
dow executes one of the customization functions available in the GOOD-
IES system. This option tells the system to save the current workspace
where the user is working. After saving his workspace, every time the
user opens a GOODIES section, the system automatically presents the
context that the user was visualizing in the moment he activated the
Save Workspace option.

The term context is used here to denote the base windows (directory
window, DB windows and class windows). The reason for the exclusion of
object windows from the context is that objects are dynamically inserted
in and removed from the DBs, whereas schemas are not expected to be
modified often.

5.2 Visualization Level

According to the inheritance concept, the definition of a class inherits
methods and attributes from its superclasses. Besides that, the inheri-
tance hierarchy may have an arbitrary depth, with a class being a su-
perclass of another, which is superclass of a third class, and so on. If
multiple inheritance is supported, a class inherits methods and attributes
from all its superclasses. In this way, the definition of a class type may
contain few attributes and methods defined for the class, with a large
number of inherited attributes and methods. So it is possible that the
user does not want to see the complete set of attributes and methods, but
only part of them. GOODIES offers facilities to define the visualization
level of the class hierarchy. The user can select the desired visualization
level through the following options:

Display Superclasses: an auxiliary window containing the list of super-
classes of a given class, and the user selects from this list the su-
perclasses whose attributes and methods should be displayed. This
selection updates the contents of the class window items Type, Su-
perclasses and Methods, as well as the attributes visualized in the

26 J. L. Oliveira and R. O. Anido

object windows that belong to the class.

Display Subclasses: in a similar way, the user can select the subclasses
that he wants to visualize, starting from a given class window.
The unselected subclasses are eliminated from the class subclasses
list of the class window, and the instances of those subclasses are
eliminated from the class objects list.

5.8 Attribute Selection

In an object-oriented database, the type definition of a class may con-
tain an arbitrary number of attributes. So, choosing the class hierarchy
visualization level is often not enough to fill the users needs, since a class
that has no superclasses can still have an excessive number of attributes
explicitly defined for it. GOODIES allows, through an auxiliary window
associated to the object window, to choose the attributes to be displayed.
The attribute selection window contains a list of all attributes defined
for (and inherited by) the object, according to the current visualization
level. Only the attributes selected in the attribute selection window are
presented in the object window.

In a similar way the user can choose the items that are presented
in a class window. As it was observed in section 2.1, the items that
compose the class window are five: the textual definition of the class
composition (Type) and four lists ((Superclasses, Subclasses, Methods
and Objects). There is no difference between the selection of object
attributes to be displayed in the object window and the selection of class
items to be displayed in the class window, except that there is a fixed
number of items in every class window, whereas the number of attributes
in an object window is variable. Figure 11 shows the attribute selection
window for the object window presented in figure 4.

Browsing and Querying in Object-Oriented Databases 27

r“g GOODIES-Select Display Attributes K

Attributes

¢ [identification i

i freation_date

¢ body bt

| |date_edited

i phjective

¢ [modules

¢ Buthors

. lprogram_body

B =
3 GOODIES |

Figure 11: Attribute Selection Window

6 Conclusion

We presented the functionality of the GOODIES system. The basic
mechanisms for interaction with the user was described, and it was noted
that many of the system functions were adapted from previously de-
veloped interface systems. In fact, one of the main advantages of the
GOODIES system is to provide the best browsing functions from previ-
ous database interfaces, assembled in one single tool.

The window construction style follows the OpenLook [Sun90] guide-
lines, and the concept of dividing a complex object representation in
several windows was inspired on the proposition of [MSB90]. Accord-
ing to that work, the natural trend to depict complex information in
a single representation is not always possible, besides being frequently
inefficient. In general, it is better to display complex information (for
instance, objects in a OODB) in more than one presentation, where each
presentation is tuned to a particular aspect of the global information.

The basic GOODIES navigation mechanism was inspired on the
database interface system described in [RC88], though the data model
of this system is the Entity-Relationship, whereas GOODIES uses the

28 J. L. Oliveira and R. O. Anido

object-oriented data model. The idea of synchronized browsing was
strongly influenced by the KIVIEW system concepts, introduced in [MDTR89].

The idea of using predicates to improve the navigation process is used
in graphical query systems, and the GOODIES definitions of predicates
is very similar to the concepts used in the PICASSO [KKS88] system, a
graphical query system for the universal relation data model.

Finally the items that define a class window are similar to those used
in the OOPE system, described in [Alt90b]. It should be noted, how-
ever, that none of the interface systems from which GOODIES inherited
features are independent from their respectives DBMSs. This important
characteristic, the independency from an specific DBMS, differentiates
the GOODIES system from the interface that influenced its design.

At the present moment, all the funcionality described (except the
predicate building facility) is implemented in a prototype that uses a
SUN SPARCstation as plataform, under the UNIX operating system.
The system applies the graphical resources of the XVIEW toolkit [Hel90],
and contains about twelve thousand lines of code written in C++. The
next step of the project is to integrate the GOODIES system to an
OODBMS, such as O2.

References

[ABD'89] Malcolm Atkinson, Francois Bancilhon, David DeWitt, Klaus
Dittrich, David Maier, and Stanley Zdonik. The Object-
Oriented Database System Manifesto. In Proceedings of
the 1st International Conference on Deductive and Object-
Oriented Databases, pages 40-57, Kyoto, Japan, December
1989.

[AGS90] R. Agrawal, N. H. Gehani, and J. Srinivasan. Odeview: The
Graphical Interface to Ode. In Proceedings of the 1990 ACM
SIGMOD, pages 34-43, Atlantic City, USA, May 1990.

Browsing and Querying in Object-Oriented Databases 29

[Alm91]

[Alt90a]

[AL£90b)]

[BHS6]

[BMO1]

[BMP+92]

[Cat91]

[Com90]

[EN8Y]

[GGKZS5]

Jay Almarode. Issues in the Design and Implementation of
a Schema Designer for an OODBMS. In FCOOP’91, pages
200-218, 1991.

Altair. The Looks Programmer Manual. Technical Report,
Gip Altair, January 1990. Printing Revision 1.1, 9/01/1990.

Altair. Oope: The Object-Oriented Programming Environ-
ment. Technical Report, Gip Altair, January 1990. Printing
Revision 1.1, 9/01/1990.

Daniel Bryce and Richard Hull. Snap:A Graphics-based
Schema Manager. In IFEFE Conference on Data Fngineer-
ing, February 1986.

Elisa Bertino and Lorenzo Martino. Object-Oriented
Database Management Systems: Concepts and Issues. IFEFE
Computer, 24(4):33-47, April 1991.

P. Borras, J. C. Mamou, D. Plateau, B. Poyet, and D. Tallot.
Building User Interfaces for Database Applications: The O2
Experience. SIGMOD Record, 21(1):32-38, March 1992.

R. G. G. Cattell. Next-generation Database Systems. Com-
munications of the ACM, 34(10):30-33, October 1991.

The Committee for Advanced DBMS Function. Third-
Generation Database System Manifesto. SIGMOD Record,
19(3):31-44, September 1990.

Ramez Elmasri and Shamkant Navathe. Fundamentals of
Database Systems. The Benjamin/Cummings Publishing
Company, 1989.

Kenneth J. Goldman, Sally A. Goldman, Paris C. Kanellakis,
and Stanley B. Zdonik. ISIS: Interface for a Semantic Infor-
mation System. In ACM SIGMOD Conference, May 1985.

30

[Hel90]

[Her80]

[KKS88]

[Mam91]

[MDTS89]

[MNGS6]

[MSB90]

[MvD91]

J. L. Oliveira and R. O. Anido

Dan Heller. XVIEW Programming Manual, volume 7 of The
X Window System Series. O’Reilly & Associates, April 1990.
Second Printing.

Christopher F. Herot. Spatial Management of Data. ACM
Transactions on Database systems, 5(4):493-513, December
1980.

Hyoung-Joo Kim, Henry F. Korth, and Avi Silberschatz. Pi-
casso: A Graphical Query Language. Software Practice and
FExperience, 18(3):169-203, March 1988.

Jean-Claude Mamou. Du Disque a le ecran: Genération
DfInterfaces Homme—-Machine Pour Objects Persistants.
PhD thesis, Université de Paris - Sud - Centre d‘Orsay, May
1991.

Amihai Motro, Alessandro DAtri, and Laura Tarantino. The
Design of KIVIEW: An Object-Oriented Browser. In Larry
Kerschberg, editor, Proceedings from the Second Internatinal
Conference on Frpert Database Systems, pages 107-131. The
Benjamin/Cummings Publishing Company, Inc., 1989.

David Maier, Peter Nordquist, and Mark Grossman. Display-
ing Database Objects. In Proceedings of the First Internatinal
Conference on Fxpert Database Systems, pages 15-30, April
1986.

John Alan McDonald, Werner Stuetzle, and Andreas Buja.
Painting Multiple Views of Complex Objects. In ACM
ECOOP/OOPSLA Proceedings, pages 245-257, Ottawa,
Canada, October 1990.

Aaron Marcus and Andries van Dam. User-Interface De-
velopments for the Nineties. [EFEE Computer, 24(9):49-57,
September 1991.

Browsing and Querying in Object-Oriented Databases 31

[01i92]

[PH91]

[RCSS]

[Shn&3]

[Shn&7]

[Sun90]

Juliano Lopes de Oliveira. Uma Ferramenta Gréfica para
Navegacao e Consulta em Bancos de Dados Orientados a Ob-
jetos. Master’s thesis, Universidade Estadual de Campinas
- Departamento de Ciéncia da Computacio, 1992. To be

published.

Thiagarajan Palanivel and Martin Helander. Human-Factors
Issues in Dialog Design. Advances in Computers, 33(1):115~
171, 1991.

T. R. Rogers and R. G. G. Cattell. Entity-Relationship
Database User Interfaces. In Michael Stonebraker, editor,
Readings in Database Systems. Morgan Kaufmann Publish-
ers, Inc., 1988.

Ben Shneiderman. Direct Manipulation: A Step Beyond Pro-
gramming Languages. I[EEE Computer, 16(8):57-69, August
1983.

Ben Shneiderman. Designing the User Interface: Strategies
for Effective Human-Computer Interaction. Addison-Wesley,
1987.

Sun Microsystems. OPENLOOK - Graphical User Interface
Applications Style Guidelines. Addison-Wesley, June 1990.
Third Printing.

01/92

02/92

03/92

04/92

05/92

06/92

07/92

08/92

09/92

10/92

11/92

Relatorios Técnicos

Applications of Finite Automata Representing Large Vo-
cabularies, C. L. Lucchesi, T. Kowaltowski

Point Set Pattern Matching in d-Dimensions, P. J.
de Rezende, D. T. Lee

On the Irrelevance of Edge Orientations on the Acyclic
Directed Two Disjoint Paths Problem, C. L. Lucchesi,
M. C. M. T. Giglio

A Note on Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi Diagrams,
W. Jacometti

An (l,u)-Transversal Theorem for Bipartite Graphs,
C. L. Lucchesi, D. H. Younger

Implementing Integrity Control in Active Databases,

C. B. Medeiros, M. J. Andrade

New Experimental Results For Bipartite Matching,
J. C. Setubal

Maintaining Integrity Constraints across Versions in a
Database, C. B. Medewros, G. Jomier, W. Cellary

On Clique-Complete Graphs, C. L. Lucchesi, C. P. Mello,
J. Szwarcfiter

Examples of Informal but Rigorous Correctness Proofs for
Tree Traversing Algorithms, T. Kowaltowski

Debugging Aids for Statechart-Based Systems, V. . 5. Elias,
H. Liesenberg

32

Departamento de Ciéncia da Computacdo — IMECC
Caiza Postal 6065

Universidade Fstadual de Campinas

13081-970 — Campinas — SP

BRASIL

reltec@dcc.unicamp.br

33

