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Managing Time in Object-Oriented DatabasesLincoln M. Oliveira Claudia Bauzer Medeiros�AbstractThis paper presents a new approach for modelling and queryingtemporal object oriented databases. The model presented in thispaper extends previous work in the area, by supporting the evolu-tion of all object properties through time (inheritance, compositionand behavior), and allowing temporal schema evolution. A proto-type of this model is being implemented as a time-managing layeron top of the O2 object-oriented database system. In order tomanipulate our temporal objects, we have extended the O2 querylanguage with temporal constructs, which we also discuss in thepaper.1 IntroductionThe recording of temporal evolution of data allows users to better modelthe dynamics of the real world. For this reason, there has been anextensive research e�ort in the area of temporal databases. Many dif-ferent models have been proposed, mainly for relational systems (see,for instance, the bibliography in [Soo91]). There still remain severalproblems to be solved (as witness the comments about open issues in[Sno90, JCG+92]).Research in temporal object-oriented systems is recent, and has, forthe most part, been conducted in the last two years. Existing models donot fully consider all issues involved in introducing time into the object�Research partially �nanced by grants FAPESP 91/2117-1 and CNPq 500869/91-01



world { such as schema or behavior evolution. Furthermore, most modelsconsider only one time dimensionThe model presented in this paper { tod { is an attempt to solvethese issues. Like most models, tod supports the temporal dimensionby extending a non-temporal model (in this case, object-oriented) withnew attributes and functions. Unlike previous proposals, it allows severaldegrees of freedom in the temporal evolution of objects, by supportingdata, behavior and schema modi�cations in time, for two independenttime dimensions. As will be seen, though this enables the representationof a broad spectrum of real life situations, it introduces many problemsfor the correct maintenance and querying of temporal data.The main contributions presented are:� Support of the object-oriented frameworktod is fully object-oriented, which means that it takes composi-tion, inheritance and behavior into account when modelling tem-poral evolution. Other models consider only object composition,and inheritance treatment is limited to special cases.Temporal composition involves the process of building temporalobjects from other (temporal) objects with varying lifespans andtemporal characteristics. It considers issues such as determiningthe validity of a composite object whose components are valid indi�erent time periods (e.g., when modelling o�ce documents).Inheritance issues concern de�ning appropriate rules for determin-ing the temporal behavior of objects of a class when this behavioris inherited from other classes.Temporal modelling of behavior implies supporting the evolutionof methods along time. Thus, an object may change in time notbecause its data values change, but because its behavior is modi-�ed.� Temporal queryingTemporal queries in tod can return either time values or databasestates, and can navigate through and combine database states in2



time. Query constructs also extend previous work in the sense thatthey may return sets of database states over time (instead of onestate at a given point in time). Thus, tod queries can be used asa means for creating new temporal databases.� Temporal schema evolutionUnlike previous research, we consider not only the evolution ofdata (extension) but also of the schema. Thus, the maintenanceof previous database states involves keeping track of the associ-ated schema. Schema evolution is subject to temporalization rules,which are integrity constraints that determine valid schema modi-�cations given temporal inheritance and composition constraints.tod is being implemented as a layer on top of the O2 object-orientedsystem. This includes providing new builtin methods and functions forde�ning and querying temporal objects. The implementation is stillunder way, and is not discussed in this paper. We restrict ourselves todescribing the model and the query language constructs.The rest of this paper is organized as follows: section 2 presentsthe terminology adopted in this paper, and discusses recent results inthe area; section 3 presents tod , comparing it to other object-orientedtemporal data models; section 4 discusses the query language; �nally,section 5 presents the conclusions and comments on the present state ofthe implementation e�ort.2 Temporal databases - an overviewThis section presents an overview of recent research on temporal databases.We chose to analyze the aspects of temporal modelling which we considerimportant to the understanding of the problem, and to allow presentingour approach.An attempt to establish a common terminology basis for temporalresearch in relational systems appeared in [JCG+92]. This paper adopts3



the same terminology, adapting it, when necessary, to the object frame-work.2.1 Data ModelMost proposals on modelling temporal databases are based on the re-lational model. Relational temporal models are usually obtained byadding special (time-related) attributes to a relation. These attributesare subject to a speci�c semantic interpretation. There are few non-relational proposals: two that are based on the entity-relationship model[KL83, AQ86], one that does not depend on a particular data model[SS87, SS88], and some recent proposals that extend the object-orienteddata model [SC91, KS92, WD92, DW92, PM92].[SC91]'s proposal does not consider all the implications of introducingtemporal issues into the OO paradigm, like inheritance. [WD92]'s model,though more comprehensive as far as object-orientation is concerned, isbased on a functional paradigm, and leaves to the database designer thede�nition of great part of the temporal data model, without providingspeci�c temporal primitives. [KS92] base their proposal on the moleculeobject model (MAD), and do not consider method or schema evolution.[PM92] treat time as an added attribute in an object model that wasdesigned for information systems support, and which is therefore notgeneral.2.2 Temporal DimensionsMost authors agree on the need to support at least one of two typesof time { valid time and transaction time. Transaction time is system-generated, and records when a fact was actually stored in the database,by means of timestamp generators. Valid time is user-provided, andrepresents the actual time when a fact occurs in the real world. It allowsrecording information not only about the past, but also about the future.Thus, whereas transaction time increases monotonically, valid time canvary arbitrarily. Another type of time, user-de�ned time, correspondsto a data type whose domain is de�ned on time values, but does not4



have any special meaning to the DBMS. Valid time and transaction timecan be seen as two orthogonal dimensions of time, over which the dataevolves independently.Most proposals consider only one kind of time (usually valid time).Only [SA85, MS90], [ABN87], [KRS90] and [Sar90b] provide supportto two temporal dimensions (valid and transaction time). [Ari86] and[Gad88] furthermore present proposals to generalize the concept to anarbitrary number of temporal dimensions. Our model supports transac-tion and valid time. The only object-based model that considers morethan one dimension is [WD92].Some authors discuss the need for more than one temporal dimension,but do not explain how they provide support to them or describe how totake advantage of them. Examples are [LDE+84], [MNA87], [SC91] and[KS92].2.3 Value Evolution over TimeDatabase entities (attributes, tuples, components, objects) can vary overtime in several ways. The classi�cation presented by [SS88] summarizesthe proposals in the literature. Entities that vary following a step-wiseconstant keep their values unchanged during the period between twoupdates. In case of discrete value modi�cation, the value assigned to anentity is valid for only one instant and there is no connection among theentity values in distinct instants. Continuous and user-de�ned evolutionis modeled by interpolating stored values using a curve �tting functionprovided, respectively, by the DBMS or by the user.The step-wise constant variation of values is supported by defaultin all models analyzed, except [KL83]. In this model the user mustde�ne a set of functions to determine values not stored. [SA86], [Sar90a]and [LJ88] support furthermore discrete value evolution. [LJ88] uses anoperator to simulate other types of interpolation. tod , like [SS87, SS88]and [KRS90], provides support to the four types of value modi�cation.5



2.4 Algebraic Operators and Query LanguageMost models introduce either an algebra or a query language to manip-ulate temporal constructs. Only three models ([LDE+84], [KL83] and[ABN87]) propose neither. Algebras are usually extensions to the re-lational algebra and di�er in the set of temporal operators and in themanner in which they treat the traditional relational operators.Most proposals provide an operator to perform valid time slicing,i.e., an operator that returns the state of a database entity at somespeci�c valid time interval. Examples are [CC88]'s �WHEN , �@L and�@A operators, [Sar90b]'s fromtime and totime, [Gad88]'s during,[Ari86]'s at, while, during, before and after and [SC91]'s whenclauses. tod provides the operator (vslice) for this purpose.The most common operation concerning transaction time is the roll-back operation, which returns a database state that was current at somepoint in time. Snodgrass' operator � [MS90] and clause as-of [Sno87],and [Ari86]'s as-of clauses are examples of that operation. In our modelwe generalize this operation using operator tslice to select data over aset of time intervals instead of at a single instant.A third kind of operation yields a set of time values according to someconditions on the data. It is executed either directly enabling access tothe timestamp values or by de�ning speci�c operators, like [CC88]'s 
operator or [Gad88]'s tdom clause. Our model provides two operators(twhen/vwhen) for this purpose.In a few models the temporal dimension is manipulated by operatorsanalogous to the nested relational operators. [Tan86]'s pack/unpack,[Sar90b]'s expand/coalesce and [LJ88] fold/unfold operators areexamples of this.Temporal object models provide similar operations, and are in
u-enced by the underlying data model. [WD92]'s language di�ers fromall of the above by allowing temporal operations without extending thequery language. Their functional model supports storing and queryingof time by adding functions to the database. Thus, there is no di�erencebetween temporal and nontemporal query syntax.6



2.5 Other AspectsBesides the issues discussed, there are other relevant aspects in temporalmodelling. The level of time versioning, i.e., the choice of associatingtime to entities or entity components (in the relational model, to at-tributes or tuples) and the choice of the timestamp characteristics |time points, time intervals or sets of time intervals | are extensivelydiscussed. tod associates time to object components (which resemblesattribute stamping); time can be stored as points, intervals or sets oftime intervals.Maintaining past states of the database brings up the issue of schemaevolution. In spite of the importance of this topic, it is totally ignored inmost the proposals. Only few models emphasize this topic (e.g. [MS90]and [MNA87]). In our model we support schema evolution by associ-ating the schema to transaction time (treating the problem as that ofmaintaining schema versions over time).Implementation is another issue to be considered. Several models aresupported by an implementation, usually modifying an existent DBMS.Those implementations only aim at demonstrating that the models areimplementable, without worrying about e�ciency. Our model is beingimplemented as a layer on top of the O2 system.2.6 Synoptic TablesIn the annex, we summarize the topics analyzed. The topic SchemaEvolution only denotes if the topic was mentioned, which does not meanthe model treats this issue in a satisfactory way.3 tod - Temporal Object oriented Data modelThere is no standard de�nition for an object-oriented model. tod re-lies on [Bee89]'s class-based framework. An object is an instance of aclass. It is characterized by its state (contents) and behavior (methods),and is subject to inheritance and composition properties. Objects can7



be composed into more complex objects using constructors. Users mayalso de�ne functions, which operate on values. The database schemais de�ned by its composition and inheritance graphs, as well as the ap-plicable methods. tod extends [Bee89]'s object model with valid andtransaction time dimensions. From now on, these times will be denotedTT and VT. The main characteristics of tod that make it more generalthan other object oriented temporal models are:� Temporal categories { simultaneous maintenance of di�erent typesof temporal classes;� The time hierarchy { representation and maintenance of the timedimension by means of objects of a special class hierarchy;� Schema evolution { de�nition of a set of integrity rules that de�nevalid schema transitions in time.3.1 Temporal categoriesSimilar to the classi�cation of temporal relations in [JCG+92], in todthere are four categories of temporal classes according to the type of timesupported:� Snapshot classes { traditional non-temporal classes.� Valid time classes { classes that support only vt . They allowdescribing the history of object states as known in the present.� Transaction time classes { classes whose objects support onlytt . They maintain past (recorded) database states, but not va-lidity information.� Bitemporal classes { classes that support both vt and tt .Paraphrasing [JS92]'s de�nition of a temporal relation, we de�ne a todtemporal database to be a \sequence of historical database states indexedby transaction time". Thus, a database can be visualized as a sequence8



of (logical) temporal slices, where each slice is the database's state for agiven tt , and where the real world historical evolution of an object isgiven by vt . The most recent slice in the tt sequence corresponds tothe present time, and is indexed by a special tt value { now . The pastcannot be updated { i.e., updates can only be applied to the now slice.With this de�nition, the schema of a temporal database needs no longerto be �xed, since for each tt slice there may exist a di�erent databaseschema.Figures 1 and 2 show two examples of the slice concept. In Figure 1,the schema evolution of a class hierarchy is displayed. Initially, at tt =tt1, there was only class C. At tt = tt2, the C1 subclass of C wascreated. Finally, C2 was de�ned. Figure 2 shows the tt states for a
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3. all information about CS and CTV is destroyed in the previousslice. It will only preserve the classes that support tt { CTT andCBT . The other two classes exist by de�nition only in the present.Thus, a rollback operation will not recover all class extensions asstored in a given tt , only those that support this dimension.We note that there may exist other interpretations of time seman-tics { e.g., that snapshot and valid time classes are immune tott variation, and thus should exist in all slices. We chose how-ever to adopt the time semantics used by all other other temporalmodels that support both vt and tt .We stress that this copying of slices is a logical operation, and thatit does not actually require copying the whole database. Our \slicing"model is based on [CJ90]'s object version management model, where wesubstitute tt for the version identi�cator. The use of a version man-agement framework allows tod to handle versions as well as time. Eachslice corresponds to a version of the database.3.2 Representing the time dimension - the time hierarchyThe representation of time is a central issue in all temporal models. Mostdatabase researchers represent time as a set of consecutive, equidistanttime points. The distance between two such points is called theminimumtime granularity. A time interval (t1..t2) is a set of time points coveringthe period starting in t1 and ending in t2. We use an approach similar to[WD92]'s to temporally extend an object-oriented model: we maintaina system-supported set of classes, which model time dimensions.tod thus distinguishes between temporal objects and the represen-tation of time. This representation relies on an atomic type calledTime Point, and a hierarchy of classes whose root is a class calledTIME, and which is de�ned as a set of Time Point. Di�erent sub-classes of the hierarchy represent di�erent types of time evolution, thusallowing several time representations inside a single database.Database objects in tod are ordinary objects, extended with com-ponents of the time hierarchy. This extension is achieved by means of11



the tuple constructor, present in all object-oriented models. Databaseobjects may be of three kinds:� time-invariant objects - do not have a temporal component� time elements - complex objects of some class of the time hierarchy� time-varying objects - that have at least one component from thetime hierarchySince complex objects can be recursively built from other objects us-ing constructors, a complex time-varying object may have time-varyingcomponents as well. This is equivalent to combining attribute and tupletemporal timestamping in the relational model: the object has temporalproperties, which describe it as a whole; and each of its components mayin turn have speci�c temporal properties.The temporal dimension starts at the atomic level, transformingatomic values into time-varying objects. For instance, an atomic at-tribute NAME of type string may be temporally represented by a bitem-poral object TNAME:TNAME: tuple (Value: string; vt : time h; tt : time h)A temporal object containing sets of TNAMEs may be represented, forinstance asO1: tuple (Content: set(TNAME); vt : time h; tt : time h) (bitempo-ral)O2: tuple (Content: set(TNAME); vt : time h) (valid time object)or even O3: set(TNAME) (snapshot object, whose components are bitem-poral)(We use the notation time h to denote that members of the timehierarchy. Each one, however, may belong to a di�erent class in thishierarchy.) We point out one of the characteristics of tod : O2 is a validtime object, but it has bitemporal components (i.e., O2 exists only now, but its components may exist in other slices). Queries posed on O2will ignore the tt dimension of its components; queries posed directly to12



these components may consider this dimension. This approach to queryprocessing is one of the points in which tod di�ers from other models.This characterizaton allows a given object to be composed of otherobjects with di�erent temporal characteristics. Classes of the time hi-erarchy may vary according to time granularity, type and unit.The type of variation of an object in time is given by four functions(see [SS87]) { step, discrete, continuous and user-de�ned. The granular-ity can be of three types: points in time, intervals and sets of disjointintervals. The unit indicates how time varies (e.g, second, day, month).time hierarchy classes are subject to methods that perform temporaloperations: set operations (e.g., intersection, union, di�erence), compar-ison operations (e.g., equality, containment, inequality) and order oper-ations (e.g., before, after, �rst, last). These methods are activated onqueries and on schema updates, to maintain (temporal) schema integrity(see 3.3). There are, moreover, functions that perform temporal con-versions to allow operations among members of di�erent classes (e.g.,intersection of a time object which is an interval of year units with atime object which is a set of intervals of month units).Since tt is determined by the DBMS, its properties should remain�xed for a given database system. In general, it is a step-wise functionwith a point or interval granularity. vt depends on the user; thus, severaltypes of vt can coexist in a single database. This, again, is similar to[WD92]'s model, except that the latter do not consider automaticallyproviding builtin temporal data types.3.3 Schema updatesThe schema of a temporal database can be restructured during thedatabase's lifetime. This issue is ignored by most temporal data models.tod supports these changes by associating to each schema the tt forwhich it existed, similar to a version mechanism. We discarded the pos-sibility of associating vt to a schema, since that would imply allowingdi�erent schemas inside a database slice, with varying validity spans.We only discuss updates in the context of empty schema elements13



(i.e., classes without extensions). Schema changes of classes with ex-tensions imply managing the oid. A discussion of this problem involvesimplementation assumptions about a database system. For details, thereader is referred to [Oli93].3.3.1 Ordering of temporal categoriesA database schema contains inheritance and composition links. Thismeans that the creation of new classes cannot be done arbitrarily, sincethere are implicit constraints that must be obeyed.The constraints that de�ne a temporally consistent state in tod arebased on a partial order of the temporal categories. This order states thata class from a given category must accept at least all temporal operatorsapplicable to its precedessor classes in the order. Let � denote thispartial order. If C1 and C2 are classes, then C1 � C2 means that C2accepts at least all operators accepted by C1. In general,snapshot class � transaction time class � bitemporal classsnapshot class � valid time class � bitemporal classThis order shows, for instance, that a bitemporal class allows anytemporal operation that is allowed by the other categories. This partialorder imposes constraints on inheritance and composition links. Forinstance, a transaction time class can be a subclass of a snapshot class,but not the opposite. A snapshot class can be composed of bitemporalclasses, but not otherwise. Since the temporal dimension corresponds toadding components in a tuple, changing the category just implies addingor eliminating tt /vt from a class type.3.3.2 Update operationsTemporalization is the process by means of which a database schema ismade temporally consistent by forcing changes in existing classes whena schema update is performed. Schema updates can be classi�ed in thefollowing groups 14



� class creation or removal� modi�cation of the composition graph (deletion or addition of com-ponent, or change of component temporal characteristics)� modi�cation of the inheritance graph (addition or deletion of edges)� changes in the temporal characteristics of a class� behavior changes (methods)Class creation or removalClass creation is subject to the partial order constraints (e.g., all sub-classes of a bitemporal class must be bitemporal; subclasses of a validtime class may be bitemporal or valid time classes). This extends othertime inheritance models, which assume a single temporal category for allmembers of a hierarchy.Class removal only eliminates the class description from the nowslice. If it is a bitemporal or transaction time class, its description re-mains in the past database slices.Changes in the composition graphThe only change in the composition graph that may alter temporal char-acteristics is the addition of a new component (class C1) to a class C. Ifthis component is an already de�ned class C1, this may force alterationsin C1 (and recursively to its component classes) to obey the partial or-der constraints: the temporal category of the C1 component must be atleast the same as the category of composite class C. For instance, if asnapshot component CS is added to a transaction time class, then theCS disappears and a new transaction time class is created, with the samecomponents as CS, and which will acquire the tt dimension.Notice that the temporalization process may have to iterate betweenhierarchy and composition compatibilization until a consistent tempo-ral schema is achieved. For instance, if CS had any subclasses, they15



might have to change their temporal properties after the change in theirancestor.Changes in the inheritance graphTwo cases must be considered: the addition of an edge and the elimina-tion of an edge. Edge elimination does not require temporal adjustment.The addition of an edge requires compatibilization only if the new in-heritance edge links existing classes. In this case, the subclass must bemade temporally compatible with the superclass, following the partialorder.Changes in behaviorWe consider methods to be part of the database schema. Methods maysu�er changes in code. Furthermore, the objects to which they applymay also change in time. Finally, methods may become invalid if theclass to which they are attached changes its temporal characteristics.A method is allowed to change temporally by adding tt and/or vt toits signature. The method can only be applied to objects whose tt andvt values are compatible with its signature values. This compatibilityis de�ned as follows: the object's corresponding time dimensions (vt ortt components) must have an intersection with the method's vt andtt components (i.e., return a positive answer to one of the operatorsoverlaps, intersects, contains).3.4 Value determinationUntil now we have not considered the question of evolution of data valuesin time. The semantics of vt demands de�nition of this evolution, inorder to allow composition of objects with di�erent time properties.Again, this is an extension not considered by other models. This onlyapplies to valid time (since we assume that all tt objects in a databasebelong to the same time class). 16



Consider again object O in �gure 2, for slice tt = tt1. Its value isa as of vt =vt1, and b as-of vt =vt2. Its value between those two timesdepends on the temporal characteristics of the class to which O belongs.If it varies according to a discrete function, then O's value between vt1and vt2 is null. If according to a continuous or user-de�ned function,the corresponding interpolation function will be used. If the variation isgiven by a step-wise function, then the value a is valid from vt1 to vt2.Inheritance and composition links do not a�ect the temporal proper-ties of a value. In the case of composition, the composite object's tempo-ral properties will determine when its components belong together. Forinstance, consider the ascending time point order (vt1, vt2, vt3, vt4)and objects O (valid from vt1 to vt3), O1 (valid from vt2 to vt4) andO2 (valid from vt1 to vt2). Suppose O is composed of O1 and O2 (i.e.,O =< O1; O2 >. Then, the values of O during its validity period are:O = < null, O2 > (as-of vt1); O = < O1, O2 > (as-of vt2); O = < O1,null > (as-of vt3)4 The query languageOur temporal query language syntax is based on the O2 database querylanguage { O2Query. Our choice of language was in
uenced by the factthat we already use the O2 system, and are well acquainted with itsquerying facilities.4.1 Query constructs in todTemporal queries in tod may return� non-temporal elements (e.g., a string),� time-invariant values (e.g., results of functions that do not vary intime),� temporal elements (time values, and time-varying objects, classesor databases). 17



We will only discuss the third type of query, since the others do notpresent any novelty. The most general form of answer to a temporalquery is a (new) temporal database, which restricts the original databaseto some set of vt and/or tt temporal intervals. This extends othertemporal query languages, which do not allow the creation of databases.Queries must take schema modi�cation into account. Thus, when aquery navigates through di�erent database slices, it must consider theschema for every slice2 .As in several other proposals, the statement of a query depends on thetemporal nature of the database elements being accessed. If the databasecontains only snapshot classes it is a standard nontemporal database,and queries on snapshot classes are standard database queries. We thusensure one of the properties desired of temporal systems - that temporalqueries be reduced to their non-temporal equivalents if the database isnot temporal.By the same token, it makes no sense to look for vt in a transaction-time class (or, analogously, to apply a query involving tt to a valid-timeclass). Finally, bitemporal classes support queries in vt and/or tt .Queries on temporal elements use special operators, which can beeither comparators (return a boolean value) or constructors (return anew temporal element). These operators are methods applied to thetime components of objects of temporal elements. The complete set ofoperators is described in [Oli93].Temporal queries that return temporal elements can be of two kinds:� queries that return objects of the time hierarchy (e.g., intersec-tion ([1990 .. 1992], [1991 .. 1993]) is a temporal query thatreturns the interval [1991 .. 1992])� queries that return time-varying objects (e.g., displaying a tempo-ral class extent)2This can be achieved by a mechanism similar to [CJ90]'s version support.18



4.2 Queries returning objects of the time hierarchyThese are the queries that answer when questions. VWHEN determineswhen a given fact was valid in the real world; TWHEN returns the setof transaction times in which the fact was stored.A \when" query over tt is stated asTWHEN (non-temporal predicate on database objects)FROM { source classes}VALID (temporal predicate)This query returns the set of tt for which the predicate was valid duringthe vt speci�ed in the valid clause.Its result is obtained through the following three steps1. obtain the set of time objects that satisfy the valid clause2. restrict the database to the set of temporal elements that satisfythe predicate3. return the transaction times at which the elements found in (2)were valid at the times determined in (1).Analogously, a \when" vt query is obtained as:VWHEN (non-temporal predicate on database objects)FROM (source classes)INDB (temporal predicate)This query returns the set of vt for which the predicate is valid in thereal world at all the tt values speci�ed in the indb clause. The resultcan be described in three steps, similar to the previous vwhen query.A temporal predicate may be a condition on time objects (e.g., valid(now) ) or on time-varying objects. For instance,TWHEN (predicate X)FROM source classesVALID (during (Y.age = 25) )19



requires in fact two temporal queries of the database: the �rst to de-termine what was the time interval for which the age of Y was 25; thesecond to determine the tt values in which X was true at the same timeperiods.4.3 Queries returning temporal objectsThese queries return the state(s) of a database that satisfy certain con-ditions during a vt or tt period. Queries that return objects are calledtimeslice queries. They can be seen as operations that slice the databaseat speci�c tt and/or vt intervals.In the �rst case, we say that one is applying a valid timeslice { VS-LICE operation; in the second case, a transaction timeslice { TSLICEoperation. Both types of slicing must be applied simultaneously in themore general type of query. Unlike slices described by most researchers,(which contain one state of each object), our temporal slices correspondto a set of temporal states of a database.tslice operators are applicable to any class that contains tt (i.e.,transaction and bitemporal classes). For each tt in the argument, theyreturn the state of the objects that satisfy the query and which existedat the time. This is similar to [MS90] rollback operator (in the sense thatit returns database tt slices given a transaction time). However, unlikethat operator, it may return a set of states whenever the time argumentcontains a set or interval of tt values. The result of a tslice operatorcan therefore be a temporal database covering a set of tt values.vslice operators are applicable to classes that contain vt (i.e., validtime and bitemporal classes). They operate in a way similar to trans-action timeslice operators, with the di�erence that the time argumentis based on vt instead of tt . Again, this operator generalizes [MS90]valid timeslice operator.When the tslice (or vslice) argument is restricted to one tt orvt span, our timeslice operators are reduced to the rollback and validtimeslice operators of [MS90].Time slice operators are stated as20



Standard database query without temporal operators(returns values or objects)TSLICE (temporal expression)VSLICE (temporal expression)Their results can be described as obtained in the following way:1. obtain time hierarchy objects that satisfy tt (tslice) and/or vt(vslice)2. obtain the database temporal state restricted to the spans deter-mined in (1), for objects satisfying the queryFigure 3 shows an example of a query combining tslice, vslice.4.4 General temporal queriesGeneral temporal queries are those where the time expressions applyboth to the predicate and to the desired objects. They can be expressedasSELECT (goal) [ { TSLICE VSLICE } ]FROM (target classes)WHERE (predicate ) [ { VALID | INDB } clauses ](restrict predicate to objects within a specified time period)First, the set of objects satisfying the predicate are determined (beingrestricted by the temporal expressions associated with the predicate).Next, the answer is given from the state of these objects, given the goalrestricted by the vslice/tslice operators.5 ConclusionsThis paper presented tod - a temporal object-oriented model, whichconsiders the evolution of objects and behavior { inheritance, composi-tion and schema { over two time dimensions.21
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Though many temporal models exist in the literature, there are fewproposals for object-oriented systems. tod extends these proposals byallowing the simultaneous existence of di�erent class categories, evolu-tion of behavior and of schema, and providing constraints for databaseevolution.We stress that most of the problems we have treated have not beenconsidered before, since they are due to our having combined two factorswhich are usually ignored in the literature:� allowing di�erent class categories in the same database; and� allowing schema evolution.These factors have ensured tod a greater freedom in modelling the realworld. It is, therefore, more general than the other temporal object-oriented models.This model is now being implemented as a layer on top of the O2database system. The time hierarchy has been created as a standardO2 class, and we are implementing the di�erent temporal methods tomanage its objects.The semantics of O2Query is helping the implementation work. Theresult of a query can be either objects already existing in the database, ora complex value whose type is de�ned by the query itself. The result ofa query can be manipulated by a program and can be used to build newcomplex objects. This characteristic is very important to our concept oftemporal query. It allows us to use the result of a query to build a newtemporal database, or to incorporate it as a new component of a givenobject.
23



Data Temporal Value Algebra orModel Dimensions Evolution Query Lang.[CW83, CC88] Relational VT Step-wise Algebra[KL83] ER TT User-de�ned None[LDE+84] Relational TT Step-wise None[SA85, SA86, Sno87, MS90] Relational VT/TT Step/Discrete Both[Tan86] Relational VT Step-wise Algebra[Gad88, GV85, GY88] Relational Arbitrary Step-wise Both[AQ86] ER TT Step-wise Language[Ari86] Relational Arbitrary Step-wise Both[SS87, SS88] Independent VT 4 types Algebra[MNA87] Relational VT Step- wise Language[ABN87] Relational VT/TT Step-wise None[LJ88] Relational VT Step/Discrete Algebra[Sar90a, Sar90b] Relational VT/TT Step/Discrete Both[KRS90] Relational VT/TT 4 types Algebra[GM91] Relational VT Step-wise Both[SC91] OO VT Step-wise Algebra[WD92] OO Arbitrary Step-wise Language[KS92] Complex-Obj VT Step-wise Languagetod OO VT/TT 4 types Language
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Timestamp Timestamp Schema Implem-Level Kind Evolution entation[CW83, CC88] Attribute Points p :[KL83] Attribute Points : p[LDE+84] Tuple Intervals p �[SA85, SA86, Sno87, MS90] Tuple Points/Intervals p p[Tan86] Attribute Intervals : :[Gad88, GV85, GY88] Attribute Set of Intervals : :[AQ86] Variable Points p �[Ari86] Tuple Points : �[SS87, SS88] Tuple Points : :[MNA87] Tuple Intervals p :[ABN87] Tuple Points : p[LJ88] Tuple Points/Intervals : p[Sar90a, Sar90b] Tuple Intervals : p[KRS90] Tuple Points : �[GM91] Tuple Intervals p :[SC91] Object Intervals p :[WD92] Variable Intervals : p[KS92] Object Intervals : ptod Object Points/Set Intervals p �p Mentioned: Not mentioned� Implementation in progress or mapping described
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