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Managing Time in Object-Oriented Databases

Lincoln M. Oliveira Claudia Bauzer Medeiros*

Abstract

This paper presents a new approach for modelling and querying
temporal object oriented databases. The model presented in this
paper extends previous work in the area, by supporting the evolu-
tion of all object properties through time (inheritance, composition
and behavior), and allowing temporal schema evolution. A proto-
type of this model is being implemented as a time-managing layer
on top of the O2 object-oriented database system. In order to
manipulate our temporal objects, we have extended the O2 query
language with temporal constructs, which we also discuss in the

paper.

1 Introduction

The recording of temporal evolution of data allows users to better model
the dynamics of the real world. For this reason, there has been an
extensive research effort in the area of temporal databases. Many dif-
ferent models have been proposed, mainly for relational systems (see,
for instance, the bibliography in [So0091]). There still remain several
problems to be solved (as witness the comments about open issues in
[Sno90, JCGT92]).

Research in temporal object-oriented systems is recent, and has, for
the most part, been conducted in the last two years. Existing models do
not fully consider all issues involved in introducing time into the object

*Research partially financed by grants FAPESP 91/2117-1 and CNPq 500869/91-0



world — such as schema or behavior evolution. Furthermore, most models
consider only one time dimension

The model presented in this paper — TOD — is an attempt to solve
these issues. Like most models, ToD supports the temporal dimension
by extending a non-temporal model (in this case, object-oriented) with
new attributes and functions. Unlike previous proposals, it allows several
degrees of freedom in the temporal evolution of objects, by supporting
data, behavior and schema modifications in time, for two independent
time dimensions. As will be seen, though this enables the representation
of a broad spectrum of real life situations, it introduces many problems
for the correct maintenance and querying of temporal data.

The main contributions presented are:

e Support of the object-oriented framework

TOD is fully object-oriented, which means that it takes composi-
tion, inheritance and behavior into account when modelling tem-
poral evolution. Other models consider only object composition,
and inheritance treatment is limited to special cases.

Temporal composition involves the process of building temporal
objects from other (temporal) objects with varying lifespans and
temporal characteristics. It considers issues such as determining
the validity of a composite object whose components are valid in
different time periods (e.g., when modelling office documents).

Inheritance issues concern defining appropriate rules for determin-
ing the temporal behavior of objects of a class when this behavior
is inherited from other classes.

Temporal modelling of behavior implies supporting the evolution
of methods along time. Thus, an object may change in time not
because its data values change, but because its behavior is modi-

fied.
e Temporal querying

Temporal queries in TOD can return either time values or database
states, and can navigate through and combine database states in



time. Query constructs also extend previous work in the sense that
they may return sets of database states over time (instead of one
state at a given point in time). Thus, TOD queries can be used as
a means for creating new temporal databases.

e Temporal schema evolution

Unlike previous research, we consider not only the evolution of
data (extension) but also of the schema. Thus, the maintenance
of previous database states involves keeping track of the associ-
ated schema. Schema evolution is subject to temporalization rules,
which are integrity constraints that determine valid schema modi-
fications given temporal inheritance and composition constraints.

TOD is being implemented as a layer on top of the O2 object-oriented
system. This includes providing new builtin methods and functions for
defining and querying temporal objects. The implementation is still
under way, and is not discussed in this paper. We restrict ourselves to
describing the model and the query language constructs.

The rest of this paper is organized as follows: section 2 presents
the terminology adopted in this paper, and discusses recent results in
the area; section 3 presents TOD , comparing it to other object-oriented
temporal data models; section 4 discusses the query language; finally,
section 5 presents the conclusions and comments on the present state of
the implementation effort.

2 Temporal databases - an overview

This section presents an overview of recent research on temporal databases.
We chose to analyze the aspects of temporal modelling which we consider
important to the understanding of the problem, and to allow presenting
our approach.

An attempt to establish a common terminology basis for temporal
research in relational systems appeared in [JCGT92]. This paper adopts



the same terminology, adapting it, when necessary, to the object frame-
work.

2.1 Data Model

Most proposals on modelling temporal databases are based on the re-
lational model. Relational temporal models are usually obtained by
adding special (time-related) attributes to a relation. These attributes
are subject to a specific semantic interpretation. There are few non-
relational proposals: two that are based on the entity-relationship model
[KL83, AQ86], one that does not depend on a particular data model
[SS87, SS88], and some recent proposals that extend the object-oriented
data model [SC91, KS92, WD92, DW92, PM92].

[SCI1]’s proposal does not consider all the implications of introducing
temporal issues into the OO paradigm, like inheritance. [WD92]’s model,
though more comprehensive as far as object-orientation is concerned, is
based on a functional paradigm, and leaves to the database designer the
definition of great part of the temporal data model, without providing
specific temporal primitives. [KS92] base their proposal on the molecule
object model (MAD), and do not consider method or schema evolution.
[PM92] treat time as an added attribute in an object model that was
designed for information systems support, and which is therefore not
general.

2.2 Temporal Dimensions

Most authors agree on the need to support at least one of two types
of time — wvalid time and transaction time. Transaction time is system-
generated, and records when a fact was actually stored in the database,
by means of timestamp generators. Valid time is user-provided, and
represents the actual time when a fact occurs in the real world. It allows
recording information not only about the past, but also about the future.
Thus, whereas transaction time increases monotonically, valid time can
vary arbitrarily. Another type of time, user-defined time, corresponds
to a data type whose domain is defined on time values, but does not



have any special meaning to the DBMS. Valid time and transaction time
can be seen as two orthogonal dimensions of time, over which the data
evolves independently.

Most proposals consider only one kind of time (usually valid time).
Only [SA85, MS90], [ABN87], [KRS90] and [Sar90b] provide support
to two temporal dimensions (valid and transaction time). [Ari86] and
[Gad88] furthermore present proposals to generalize the concept to an
arbitrary number of temporal dimensions. Our model supports transac-
tion and valid time. The only object-based model that considers more
than one dimension is [WD92].

Some authors discuss the need for more than one temporal dimension,
but do not explain how they provide support to them or describe how to
take advantage of them. Examples are [LDET84], [MNAS&7], [SC91] and
[KS92].

2.8 Value Evolution over Time

Database entities (attributes, tuples, components, objects) can vary over
time in several ways. The classification presented by [SS88] summarizes
the proposals in the literature. Entities that vary following a step-wise
constant keep their values unchanged during the period between two
updates. In case of discrete value modification, the value assigned to an
entity is valid for only one instant and there is no connection among the
entity values in distinct instants. Continuous and user-defined evolution
is modeled by interpolating stored values using a curve fitting function
provided, respectively, by the DBMS or by the user.

The step-wise constant variation of values is supported by default
in all models analyzed, except [KL83]. In this model the user must
define a set of functions to determine values not stored. [SA86], [Sar90a]
and [LJ88] support furthermore discrete value evolution. [LJ88] uses an
operator to simulate other types of interpolation. TOD , like [SS87, SS88]
and [KRS90], provides support to the four types of value modification.



2.4 Algebraic Operators and Query Language

Most models introduce either an algebra or a query language to manip-
ulate temporal constructs. Only three models ([LDE*84], [KL83] and
[ABNS8T]) propose neither. Algebras are usually extensions to the re-
lational algebra and differ in the set of temporal operators and in the
manner in which they treat the traditional relational operators.

Most proposals provide an operator to perform wvalid time slicing,
i.e., an operator that returns the state of a database entity at some
specific valid time interval. Examples are [CC88]’s owngN, Tar, and
TaA operators, [Sar90b]’s FROMTIME and TOTIME, [Gad88]’s DURING,
[Ari86]’s AT, WHILE, DURING, BEFORE and AFTER and [SC91]’s WHEN
clauses. TOD provides the operator (vsLICE) for this purpose.

The most common operation concerning transaction time is the roll-
back operation, which returns a database state that was current at some
point in time. Snodgrass’ operator p [MS90] and clause As-OF [Sno87],
and [Ari86]’s As-OF clauses are examples of that operation. In our model
we generalize this operation using operator TSLICE to select data over a
set of time intervals instead of at a single instant.

A third kind of operation yields a set of time values according to some
conditions on the data. It is executed either directly enabling access to
the timestamp values or by defining specific operators, like [CC88]’s
operator or [Gad88]’s TpoM clause. Our model provides two operators
(TWHEN /VWHEN ) for this purpose.

In a few models the temporal dimension is manipulated by operators
analogous to the nested relational operators. [Tan86]’s PACK/UNPACK,
[Sar90b]’s EXPAND/COALESCE and [LJ88] FOLD/UNFOLD operators are
examples of this.

Temporal object models provide similar operations, and are influ-
enced by the underlying data model. [WD92]’s language differs from
all of the above by allowing temporal operations without extending the
query language. Their functional model supports storing and querying
of time by adding functions to the database. Thus, there is no difference
between temporal and nontemporal query syntax.



2.5 Other Aspects

Besides the issues discussed, there are other relevant aspects in temporal
modelling. The level of time versioning, i.e., the choice of associating
time to entities or entity components (in the relational model, to at-
tributes or tuples) and the choice of the timestamp characteristics —
time points, time intervals or sets of time intervals — are extensively
discussed. TOD associates time to object components (which resembles
attribute stamping); time can be stored as points, intervals or sets of
time intervals.

Maintaining past states of the database brings up the issue of schema
evolution. In spite of the importance of this topic, it is totally ignored in
most the proposals. Only few models emphasize this topic (e.g. [MS90]
and [MNAS87]). In our model we support schema evolution by associ-
ating the schema to transaction time (treating the problem as that of
maintaining schema versions over time).

Implementation is another issue to be considered. Several models are
supported by an implementation, usually modifying an existent DBMS.
Those implementations only aim at demonstrating that the models are
implementable, without worrying about efficiency. Our model is being
implemented as a layer on top of the O4 system.

2.6 Synoptic Tables

In the annex, we summarize the topics analyzed. The topic Schema
FEvolution only denotes if the topic was mentioned, which does not mean
the model treats this issue in a satisfactory way.

3 TOD - Temporal Object oriented Data model

There is no standard definition for an object-oriented model. TOD re-
lies on [Bee89]’s class-based framework. An object is an instance of a
class. It is characterized by its state (contents) and behavior (methods),
and is subject to inheritance and composition properties. Objects can



be composed into more complex objects using constructors. Users may
also define functions, which operate on values. The database schema
is defined by its composition and inheritance graphs, as well as the ap-
plicable methods. TOD extends [Bee89]’s object model with valid and
transaction time dimensions. From now on, these times will be denoted
TT and VT. The main characteristics of ToOD that make it more general
than other object oriented temporal models are:

e Temporal categories — simultaneous maintenance of different types
of temporal classes;

e The TIME hierarchy — representation and maintenance of the time
dimension by means of objects of a special class hierarchy;

e Schema evolution — definition of a set of integrity rules that define
valid schema transitions in time.

3.1 Temporal categories

Similar to the classification of temporal relations in [JCGT92], in TOD
there are four categories of temporal classes according to the type of time
supported:

e Snapshot classes — traditional non-temporal classes.

e Valid time classes — classes that support only vT . They allow
describing the history of object states as known in the present.

¢ Transaction time classes — classes whose objects support only
TT . They maintain past (recorded) database states, but not va-
lidity information.

¢ Bitemporal classes — classes that support both vT and TT .

Paraphrasing [JS92]’s definition of a temporal relation, we define a TOD
temporal database to be a “sequence of historical database states indexed
by transaction time”. Thus, a database can be visualized as a sequence



of (logical) temporal slices, where each slice is the database’s state for a
given TT , and where the real world historical evolution of an object is
given by vT . The most recent slice in the TT sequence corresponds to
the present time, and is indexed by a special TT value — Now . The past
cannot be updated —i.e., updates can only be applied to the Now slice.
With this definition, the schema of a temporal database needs no longer
to be fixed, since for each TT slice there may exist a different database
schema.

Figures 1 and 2 show two examples of the slice concept. In Figure 1,
the schema evolution of a class hierarchy is displayed. Initially, at TT =
TT1, there was only class C'. At TT = TT2, the C'1 subclass of ' was
created. Finally, C'2 was defined. Figure 2 shows the TT states for a
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bitemporal object O. At TT = TT1, the object has two values: a (for vT
= vtl) and b (for vT = vt2). In the second slice, the knowledge about
the history of O has changed, and now there are three values. In the
third slice, this knowledge has changed again. Section 3.4 contains a dis-
cussion about the values of O for this picture. Unlike previous research
on temporal object oriented databases, we allow a database to simul-
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taneously have the four categories of classes. This imposes restrictions
on the valid temporal state transitions (from one slice to its temporal
successor). A temporal database without TT support will have only one
slice (Now ) with snapshot and valid time classes. A database without
vT support will not allow valid time or bitemporal classes.

Suppose that at TT = NOW there are four classes in the database: C'g
(snapshot), Cry (valid time), Cr7 (transaction time) and Cpr (bitem-
poral). Suppose furthermore that all classes have extensions. If the
extensions of C'pp or C'pr are updated, this will imply the creation of a
new TT slice!. This new slice corresponds to a new Now state. Temporal
state transitions leading to a new slice obey the following rules:

1. all classes and their extensions are (logically) copied to the new
NOW slice;

2. updates are applied to this Now slice (thus maintaining past in-
formation unchanged in the previous slice);

'In practice, the user may want to define the granularity of TT . Thus, a new
TT slice is not necessarily created at each update of a class that supports TT .
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3. all information about C's and C7y is destroyed in the previous
slice. It will only preserve the classes that support TT — C'py and
C'pr. The other two classes exist by definition only in the present.
Thus, a rollback operation will not recover all class extensions as
stored in a given TT , only those that support this dimension.

We note that there may exist other interpretations of time seman-
tics — e.g., that snapshot and valid time classes are immune to
TT variation, and thus should exist in all slices. We chose how-
ever to adopt the time semantics used by all other other temporal
models that support both vT and T7T .

We stress that this copying of slices is a logical operation, and that
it does not actually require copying the whole database. Our “slicing”
model is based on [CJ90]’s object version management model, where we
substitute TT for the version identificator. The use of a version man-
agement framework allows TOD to handle versions as well as time. Fach
slice corresponds to a version of the database.

3.2 Representing the time dimension - the TIME hierarchy

The representation of time is a central issue in all temporal models. Most
database researchers represent time as a set of consecutive, equidistant
time points. The distance between two such points is called the minimum
time granularity. A time interval (t1..t2) is a set of time points covering
the period starting in t1 and ending in t2. We use an approach similar to
[WD92)’s to temporally extend an object-oriented model: we maintain
a system-supported set of classes, which model time dimensions.

TOD thus distinguishes between temporal objects and the represen-
tation of time. This representation relies on an atomic type called
Time_Point, and a hierarchy of classes whose root is a class called
TIME, and which is defined as a set of Time_Point. Different sub-
classes of the hierarchy represent different types of time evolution, thus
allowing several time representations inside a single database.

Database objects in TOD are ordinary objects, extended with com-
ponents of the TIME hierarchy. This extension is achieved by means of
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the tuple constructor, present in all object-oriented models. Database
objects may be of three kinds:

e time-invariant objects - do not have a temporal component
e time elements - complex objects of some class of the TIME hierarchy

e time-varying objects - that have at least one component from the
TIME hierarchy

Since complex objects can be recursively built from other objects us-
ing constructors, a complex time-varying object may have time-varying
components as well. This is equivalent to combining attribute and tuple
temporal timestamping in the relational model: the object has temporal
properties, which describe it as a whole; and each of its components may
in turn have specific temporal properties.

The temporal dimension starts at the atomic level, transforming
atomic values into time-varying objects. For instance, an atomic at-
tribute NAME of type string may be temporally represented by a bitem-
poral object TNAME:

TNAME: tuple (Value: string; vT : time_h; TT : time_h)

A temporal object containing sets of TNAMEs may be represented, for
instance as

O1: tuple (Content: set(TNAME); vT : time_h; TT : time_h) (bitempo-
ral)

02: tuple (Content: set(TNAME); vT : time_h) (valid time object)
oreven 03: set(TNAME) (snapshot object, whose components are bitem-
poral)

(We use the notation time_h to denote that members of the TIME
hierarchy. FEach one, however, may belong to a different class in this
hierarchy.) We point out one of the characteristics of ToD : 02 is a valid
time object, but it has bitemporal components (i.e., 02 exists only Now
, but its components may exist in other slices). Queries posed on 02
will ignore the TT dimension of its components; queries posed directly to
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these components may consider this dimension. This approach to query
processing is one of the points in which ToD differs from other models.

This characterizaton allows a given object to be composed of other
objects with different temporal characteristics. Classes of the TIME hi-
erarchy may vary according to time granularity, type and unit.

The type of variation of an object in time is given by four functions
(see [SS8T]) — step, discrete, continuous and user-defined. The granular-
ity can be of three types: points in time, intervals and sets of disjoint
intervals. The unit indicates how time varies (e.g, second, day, month).

TIME hierarchy classes are subject to methods that perform temporal
operations: set operations (e.g., intersection, union, difference), compar-
ison operations (e.g., equality, containment, inequality) and order oper-
ations (e.g., before, after, first, last). These methods are activated on
queries and on schema updates, to maintain (temporal) schema integrity
(see 3.3). There are, moreover, functions that perform temporal con-
versions to allow operations among members of different classes (e.g.,
intersection of a TIME object which is an interval of year units with a
TIME object which is a set of intervals of month units).

Since TT is determined by the DBMS, its properties should remain
fixed for a given database system. In general, it is a step-wise function
with a point or interval granularity. vT depends on the user; thus, several
types of VT can coexist in a single database. This, again, is similar to
[WD92)’s model, except that the latter do not consider automatically
providing builtin temporal data types.

3.3 Schema updates

The schema of a temporal database can be restructured during the
database’s lifetime. This issue is ignored by most temporal data models.
TOD supports these changes by associating to each schema the TT for
which it existed, similar to a version mechanism. We discarded the pos-
sibility of associating vT to a schema, since that would imply allowing
different schemas inside a database slice, with varying validity spans.
We only discuss updates in the context of empty schema elements
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(i.e., classes without extensions). Schema changes of classes with ex-
tensions imply managing the oid. A discussion of this problem involves
implementation assumptions about a database system. For details, the
reader is referred to [Oli93].

3.3.1 Ordering of temporal categories

A database schema contains inheritance and composition links. This
means that the creation of new classes cannot be done arbitrarily, since
there are implicit constraints that must be obeyed.

The constraints that define a temporally consistent state in TOD are
based on a partial order of the temporal categories. This order states that
a class from a given category must accept at least all temporal operators
applicable to its precedessor classes in the order. Let =< denote this
partial order. If C'1 and C?2 are classes, then €'l < (C'2 means that C'2
accepts at least all operators accepted by C'l. In general,

snapshot class < transaction time class < bitemporal class
snapshot class < valid time class < bitemporal class

This order shows, for instance, that a bitemporal class allows any
temporal operation that is allowed by the other categories. This partial
order imposes constraints on inheritance and composition links. For
instance, a transaction time class can be a subclass of a snapshot class,
but not the opposite. A snapshot class can be composed of bitemporal
classes, but not otherwise. Since the temporal dimension corresponds to
adding components in a tuple, changing the category just implies adding
or eliminating TT /vT from a class type.

3.3.2 Update operations

Temporalization is the process by means of which a database schema is
made temporally consistent by forcing changes in existing classes when
a schema update is performed. Schema updates can be classified in the
following groups
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e class creation or removal

¢ modification of the composition graph (deletion or addition of com-
ponent, or change of component temporal characteristics)

¢ modification of the inheritance graph (addition or deletion of edges)
e changes in the temporal characteristics of a class

e behavior changes (methods)

Class creation or removal

Class creation is subject to the partial order constraints (e.g., all sub-
classes of a bitemporal class must be bitemporal; subclasses of a valid
time class may be bitemporal or valid time classes). This extends other
time inheritance models, which assume a single temporal category for all
members of a hierarchy.

Class removal only eliminates the class description from the NOw
slice. If it is a bitemporal or transaction time class, its description re-
mains in the past database slices.

Changes in the composition graph

The only change in the composition graph that may alter temporal char-
acteristics is the addition of a new component (class C7) to a class C'. If
this component is an already defined class C'1, this may force alterations
in 1 (and recursively to its component classes) to obey the partial or-
der constraints: the temporal category of the C'y component must be at
least the same as the category of composite class C'. For instance, if a
snapshot component C'g is added to a transaction time class, then the
(s disappears and a new transaction time class is created, with the same
components as C'g, and which will acquire the TT dimension.

Notice that the temporalization process may have to iterate between
hierarchy and composition compatibilization until a consistent tempo-
ral schema is achieved. For instance, if C's had any subclasses, they
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might have to change their temporal properties after the change in their
ancestor.

Changes in the inheritance graph

Two cases must be considered: the addition of an edge and the elimina-
tion of an edge. Edge elimination does not require temporal adjustment.
The addition of an edge requires compatibilization only if the new in-
heritance edge links existing classes. In this case, the subclass must be
made temporally compatible with the superclass, following the partial
order.

Changes in behavior

We consider methods to be part of the database schema. Methods may
suffer changes in code. Furthermore, the objects to which they apply
may also change in time. Finally, methods may become invalid if the
class to which they are attached changes its temporal characteristics.

A method is allowed to change temporally by adding TT and/or vT to
its signature. The method can only be applied to objects whose TT and
VT values are compatible with its signature values. This compatibility
is defined as follows: the object’s corresponding time dimensions (VT or
TT components) must have an intersection with the method’s vr and
TT components (i.e., return a positive answer to one of the operators
overlaps, intersects, contains).

3.4 Value determination

Until now we have not considered the question of evolution of data values
in time. The semantics of vT demands definition of this evolution, in
order to allow composition of objects with different TIME properties.
Again, this is an extension not considered by other models. This only
applies to valid time (since we assume that all TT objects in a database
belong to the same TIME class).
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Consider again object O in figure 2, for slice TT = TT1. Its value is
a as of v =wtl, and b as-of v =wt2. Its value between those two times
depends on the temporal characteristics of the class to which O belongs.
If it varies according to a discrete function, then O’s value between vtl
and vt2 is null. If according to a continuous or user-defined function,
the corresponding interpolation function will be used. If the variation is
given by a step-wise function, then the value «a is valid from vtl to vt2.

Inheritance and composition links do not affect the temporal proper-
ties of a value. In the case of composition, the composite object’s tempo-
ral properties will determine when its components belong together. For
instance, consider the ascending time point order (vtl, vt2, vt3, vt4)
and objects O (valid from vtl to vt3), O1 (valid from vt2 to vt4) and
02 (valid from vtl to vt2). Suppose O is composed of O1 and O2 (i.e.,
0O =< 01,02 >. Then, the values of O during its validity period are:
O = < null, 02 > (as-of vtl); O = < O1, 02 > (as-of v12); O = < O1,
null > (as-of vt3)

4 The query language

Our temporal query language syntax is based on the O2 database query
language — O2Query. Qur choice of language was influenced by the fact
that we already use the O2 system, and are well acquainted with its
querying facilities.

4.1 Query constructs in TOD

Temporal queries in TOD may return

¢ non-temporal elements (e.g., a string),

e time-invariant values (e.g., results of functions that do not vary in
time),

e temporal elements (time values, and time-varying objects, classes
or databases).
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We will only discuss the third type of query, since the others do not
present any novelty. The most general form of answer to a temporal
query is a (new) temporal database, which restricts the original database
to some set of vT and/or TT temporal intervals. This extends other
temporal query languages, which do not allow the creation of databases.

Queries must take schema modification into account. Thus, when a
query navigates through different database slices, it must consider the
schema for every slice?.

As in several other proposals, the statement of a query depends on the
temporal nature of the database elements being accessed. If the database
contains only snapshot classes it is a standard nontemporal database,
and queries on snapshot classes are standard database queries. We thus
ensure one of the properties desired of temporal systems - that temporal
queries be reduced to their non-temporal equivalents if the database is
not temporal.

By the same token, it makes no sense to look for vT in a transaction-
time class (or, analogously, to apply a query involving TT to a valid-time
class). Finally, bitemporal classes support queries in vT and/or TT .

Queries on temporal elements use special operators, which can be
either comparators (return a boolean value) or constructors (return a
new temporal element). These operators are methods applied to the
TIME components of objects of temporal elements. The complete set of
operators is described in [Oli93].

Temporal queries that return temporal elements can be of two kinds:

e queries that return objects of the TIME hierarchy (e.g., intersec-
tion ([1990 .. 1992], [1991 .. 1993]) is a temporal query that
returns the interval [1991 .. 1992])

e queries that return time-varying objects (e.g., displaying a tempo-
ral class extent)

2This can be achieved by a mechanism similar to [CJ90]’s version support.
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4.2 Queries returning objects of the TIME hierarchy

These are the queries that answer when questions. VWHEN determines
when a given fact was valid in the real world; TWHEN returns the set
of transaction times in which the fact was stored.

A “when” query over TT is stated as

TWHEN (non-temporal predicate on database objects)
FROM { source classes}
VALID (temporal predicate)

This query returns the set of TT for which the predicate was valid during
the vT specified in the VALID clause.
Its result is obtained through the following three steps

1. obtain the set of TIME objects that satisfy the VALID clause

2. restrict the database to the set of temporal elements that satisfy
the predicate

3. return the transaction times at which the elements found in (2)
were valid at the times determined in (1).

Analogously, a “when” vT query is obtained as:

VWHEN (non-temporal predicate on database objects)
FROM (source classes)
INDB (temporal predicate)

This query returns the set of v for which the predicate is valid in the
real world at all the TT values specified in the INDB clause. The result
can be described in three steps, similar to the previous VWHEN query.
A temporal predicate may be a condition on TIME objects (e.g., VALID
(NOow) ) or on time-varying objects. For instance,

TWHEN (predicate X)
FROM source classes
VALID (during (Y.age = 25) )
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requires in fact two temporal queries of the database: the first to de-
termine what was the time interval for which the age of Y was 25; the
second to determine the TT values in which X was true at the same time
periods.

4.3 Queries returning temporal objects

These queries return the state(s) of a database that satisfy certain con-
ditions during a vT or TT period. Queries that return objects are called
timeslice queries. They can be seen as operations that slice the database
at specific TT and/or vT intervals.

In the first case, we say that one is applying a valid timeslice — V-
LICFE operation; in the second case, a transaction timeslice — TSLICFE
operation. Both types of slicing must be applied simultaneously in the
more general type of query. Unlike slices described by most researchers,
(which contain one state of each object), our temporal slices correspond
to a set of temporal states of a database.

TSLICE operators are applicable to any class that contains TT (i.e.,
transaction and bitemporal classes). For each TT in the argument, they
return the state of the objects that satisfy the query and which existed
at the time. This is similar to [MS90] rollback operator (in the sense that
it returns database TT slices given a transaction time). However, unlike
that operator, it may return a set of states whenever the time argument
contains a set or interval of TT values. The result of a TSLICE operator
can therefore be a temporal database covering a set of TT values.

VSLICE operators are applicable to classes that contain vT (i.e., valid
time and bitemporal classes). They operate in a way similar to trans-
action timeslice operators, with the difference that the time argument
is based on vT instead of TT . Again, this operator generalizes [MS90]
valid timeslice operator.

When the TSLICE (or VSLICE) argument is restricted to one TT or
VT span, our timeslice operators are reduced to the rollback and valid
timeslice operators of [MS90].

Time slice operators are stated as
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Standard database query without temporal operators
(returns values or objects)

TSLICE (temporal expression)

VSLICE (temporal expression)

Their results can be described as obtained in the following way:

1. obtain TIME hierarchy objects that satisfy TT (TSLICE) and/or vT
(VSLICE)

2. obtain the database temporal state restricted to the spans deter-
mined in (1), for objects satisfying the query

Figure 3 shows an example of a query combining TSLICE, VSLICE.

4.4 General temporal queries

General temporal queries are those where the time expressions apply
both to the predicate and to the desired objects. They can be expressed
as

SELECT (goal) [ { TSLICE VSLICE } ]

FROM (target classes)

WHERE (predicate ) [ { VALID | 1INDB } clauses ]

(restrict predicate to objects within a specified time period)

First, the set of objects satisfying the predicate are determined (being
restricted by the temporal expressions associated with the predicate).
Next, the answer is given from the state of these objects, given the goal
restricted by the VSLICE /TSLICE operators.

5 Conclusions

This paper presented TOD - a temporal object-oriented model, which
considers the evolution of objects and behavior — inheritance, composi-
tion and schema — over two time dimensions.
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TT1 TT2 TT3
Transaction Tine

o, @ - bi t enporal objects

... Vslice query for VT = (t1..t2)

I:I Query result for Tslice (TT1l, TT2 ) and Vslice (tl1..t2)

. Final result - object values for the slices selected
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Though many temporal models exist in the literature, there are few
proposals for object-oriented systems. TOD extends these proposals by
allowing the simultaneous existence of different class categories, evolu-
tion of behavior and of schema, and providing constraints for database
evolution.

We stress that most of the problems we have treated have not been
considered before, since they are due to our having combined two factors
which are usually ignored in the literature:

o allowing different class categories in the same database; and
¢ allowing schema evolution.

These factors have ensured TOD a greater freedom in modelling the real
world. It is, therefore, more general than the other temporal object-
oriented models.

This model is now being implemented as a layer on top of the 02
database system. The TIME hierarchy has been created as a standard
02 class, and we are implementing the different temporal methods to
manage its objects.

The semantics of O2Query is helping the implementation work. The
result of a query can be either objects already existing in the database, or
a complex value whose type is defined by the query itself. The result of
a query can be manipulated by a program and can be used to build new
complex objects. This characteristic is very important to our concept of
temporal query. It allows us to use the result of a query to build a new
temporal database, or to incorporate it as a new component of a given
object.
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Data Temporal Value Algebra or
Model Dimensions Evolution Query Lang.
[CW83, CC83] Relational VT Step-wise Algebra
[KL83] ER T User-defined None
[LDE* 84] Relational T Step-wise None
[SA85, SA86, Sno87, MS90] Relational VT/TT Step/Discrete Both
[Tan86] Relational VT Step-wise Algebra
[Gad88, GV85, GY88] Relational Arbitrary Step-wise Both
[AQ86] ER T Step-wise Language
[Ari86] Relational Arbitrary Step-wise Both
[SS87, SS88] Independent vT 4 types Algebra
[MNAS8T7] Relational VT Step- wise Language
[ABNS87] Relational VT/TT Step-wise None
[LI88] Relational VT Step/Discrete Algebra
[Sar90a, Sar90b] Relational VT/TT Step/Discrete Both
[KRS90] Relational VT/TT 4 types Algebra
[GM91] Relational VT Step-wise Both
[SCI1] 00 VT Step-wise Algebra
[WD92] 00 Arbitrary Step-wise Language
[KS92] Complex-Obj vT Step-wise Language
TOD (0]0) VT/TT 4 types Language
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Timestamp Timestamp Schema Implem-

Level Kind Evolution | entation
[CW83, CC83] Attribute Points v =
[KL83] Attribute Points = v
[LDE* 84] Tuple Intervals v ~
[SA85, SA86, Sno87, MS90] Tuple Points/Intervals v v
[Tan86] Attribute Intervals = =
[Gad88, GV85, GY88] Attribute Set of Intervals = =
[AQ86] Variable Points v ~
[Ari86] Tuple Points = ~
[SS87, SS88] Tuple Points = =
[MNAS8T7] Tuple Intervals v =
[ABNS87] Tuple Points = v
[LI88] Tuple Points/Intervals = v
[Sar90a, Sar90b] Tuple Intervals = v
[KRS90] Tuple Points = ~
[GM91] Tuple Intervals v =
[SCI1] Object Intervals v =
[WD92] Variable Intervals = v
[KS92] Object Intervals = v
TOD Object Points/Set Intervals v ~

Mentioned

Not mentioned

Q1<

Implementation in progress or mapping described
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