O conteddo do presente relatério é de (nica responsabilidade do(s) autor(es).
(The contents of this report are the sole responsibility of the author(s).)

Using Versions in GIS

Claudia Bauzer Medeiros
Genevieve Jomier

Relatério Técnico DCC-94-05

Junho de 1994



Using Versions in GIS

Claudia Bauzer Medeiros* Genevieve Jomier!

Abstract

Geographic information systems GIs have become important
tools in public planning activities (e.g, in environmental or util-
ity management). This type of activity requires the creation and
management of alternative scenarios, as well as analysis of tempo-
ral data evolution. Existing systems provide limited support for
these operations, and appropriate tools are yet to be developed.

This paper presents a solution to this problem. This solution
is based on managing temporal data and alternatives using the
DBV version mechanism. It provides efficient handling and storage
of versions, and supports the creation of alternatives for decision-
making activities.

A reduced version of this report appeared in the Proceedings
of the DEXA’94 Conference — bth International Conference on
Database and Expert Systems Applications, Athens, Greece.

Keywords: versions, GIS, georeferenced data evolution.

1 Introduction

Geographic Information Systems (GIs) are automated systems that ma-
nipulate georeferenced data — data about geographic phenomena associ-
ated with their spatial relationships and location on the terrestrial sur-
face. The term georeferenced entity, in this paper, refers to any type of

*DCC-UNICAMP - Campinas, Brazil. cmbm®@dcc.unicamp.br

' Université Paris IX Dauphine - Paris, France. jomier@lamsade.dauphine.fr



entity whose components are georeferenced (be it a house, a residential
plot or a geographic region).

The number and type of applications and analyses that can be per-
formed by a GIs are as large and diverse as the available geographic data
sets [Aro89]. Examples are urban planning, natural resources adminis-
tration, facility management, demography, cartography, and archaeology
[MGRI1].

GIs data contains spatial and thematic components [KBS91]. The-
matic (non-spatial) components are alphanumeric values related to geo-
referenced entities, e.g., the name of a mountain, or the type of vegetation
cover. Texts or images are considered to be unconventional thematic
data. Spatial data has two different properties: geometric properties
such as spatial location, size and shape of spatial objects; and topological
properties such as connectivity, adjacency, inclusion and containment,
modelling relationships between geometric data.

Data of different natures are stored in thematic layers — also called
themes or chloropeth maps. These layers are combined in different ways
in order to process a query. Layers contain alphanumeric data and spatial
information. A fauna layer of an area, for instance, contains textual data
(e.g., animal species) and spatial information (area occupied by species).

GIS queries involve one or more of the following issues [Aro89, Flo91,
Peu93]:

1. What kind of phenomenon is this? (describe non-spatial character-
istics of an entity).

2. Where is this phenomenon located? (describe the spatial character-
istics of a given georeferenced entity, which comprises its location,
topological and geometrical characteristics, and often its relation-
ships with other entities).

3. When was this data collected? (determine data validity period).

4. What did this entity look like at some past period? What will
happen to it in some future period? (examine previous states of an
entity and predict its future evolution, given its recorded behavior).



5. What would happen to an entity if certain events were to take
place? (simulation and comparison of alternative scenarios based
on changing existing data).

Database research for GIs support has been centered on spatial databases,
especially in what concerns algorithms for storing and accessing spatial
data (e.g., [Sam8&9, Fra91]). Spatial structures usually support geomet-
ric operations, which treat geographic phenomena as if they were points,
line segments and polygons (the so-called vector format). Related re-
search includes geographic query languages (e.g., [RFS88, 00i90]) and
the development of GIs prototypes using new generation databases (e.g.,
[vOV91, SV92, MMS93, LL93, SA93)).

Thus, database researchers are concerned with providing users with
fast access to georeferenced data by means of spatial indices. They are,
furthermore, developing different types of query languages and mecha-
nisms in order to allow processing the first two kinds of queries (i.e.,
what, where). Existing systems also provide different facilities for han-
dling these two questions. These facilities usually consist of combining
a query processor, a spatial data handler and graphical display tools on
top of a data management system.

The remaining kinds of queries, however, involve other types of knowl-
edge and distinct storage and indexing facilities. When processing (queries
3 and 4) involves temporal database management, itself a matter of in-
tensive research (see, for instance, the bibliography in [So091] or the
discussion of open issues in [JCGT92]).

The simulation of scenarios (query 5) is supported by some systems
for specific situations, in a limited scale, using controlled parametrization
of data values (see, for instance, a description of how this can be done
in [HQGW93]). The combination of simulation results is, however, not
allowed, especially when the user wants to compare alternatives. Users
have to store the different scenarios in separate files, and have to handle
themselves the management of these files, by embedding appropriate
code into their applications.

This paper extends the work of [MJ93], presenting and detailing a
framework which allows processing queries 1 through 5. This solution is



based on the notion of database versions, and adopts the DBV version
model of [CVJ94]. This model, now being simulated on the O2 database
system, allows efliciently keeping track of data versions in a database.

The DBV model enables the simultaneous management of distinct al-
ternative scenarios, which can be compared for planning purposes. Geo-
referenced feature evolution through time can be managed by this model
with considerable savings in space. As well, the DBV model can be em-
bedded in any database system and does not require that the end-user
control the different data configurations.

The main contributions are:

e analysis of the problem of georeferenced data evolution from a
database point of view, rephrasing this problem in a versioning
framework;

e description of how the DBV version model can support the man-
agement of this evolution, using concrete examples. So far, GIs
have not considered version mechanisms, given the complexity of
the factors involved.

The research discussed in this paper is part of the boMUs! environ-
mental planning project, which uses real-life data layers from non-settled
areas in the state of Sdo Paulo, Brazil.

The rest of this paper is organized as follows. Section 2 characterizes
GIS applications demands from a database point of view, and points out
problems in database support to these applications. Section 3 gives an
overview of the DBV mechanism. Section 4 presents a detailed example
of how this mechanism can support management of scenarios and data
evolution. Section 5 shows how other version mechanisms are unable to
perform this task satisfactorily. Finally, section 6 presents conclusions
and directions for future research.

1DOMUS(the latin for home — the Earth) is a joint project of researchers of the
Computer Science Department and the Geosciences Institute at Unicamp.



2 GIS application requirements

¢1s demand that DBMS keep track of massive amounts of georeferenced
data, of different natures, collected using heterogeneous devices, and at
different time periods. The fundamental question is how to embed the
spatial aspects in a data model and support this by a DBMS such that
acceptable interfaces (query languages and pictorial interfaces) can be
developed, and temporal data and alternatives can be managed [GB90,
MJ93].

The rapid growth in Gi1s has resulted in a large number of systems,
each of which with its own data storage and handling characteristics. In
the early systems, data was organized in flat files. New systems are based
on relational database management systems (DBMsS). However, several
of the requirements of GIs applications are not provided by standard
relational pBMs. Thus, special data handlers have been developed to
interact with the stored relations and allow the management and display
of georeferenced data. Nevertheless, these commercial systems still lack
the extensibility and flexibility desired by end-users, especially in what
concerns support for planning activities.

The coupling of database systems to GIs data processing requirements
has been done according to the following architectures [MP94]:

e proprietary systems — a special-purpose relational data base is
tightly coupled with spatial data processing modules. Users can-
not access the database directly and data cannot be migrated to
standard relational systems;

e relational systems — a standard DBMS is used as a basis for spatial
data access functions. Users can access the database directly, and
data can be ported into other systems. Nevertheless, most special
purpose features (e.g., geometric and image processing modules)
are implemented by external packages — e.g., [Mor92].

e extensible systems — these use the facilities provided by extensible
relational or object-oriented DBMS embedding the spatial dimen-



sion in the system. The formulation of spatial queries is directly
supported in the extensible query language.

Relational databases do not provide an adequate underlying model
to support most types of geographic data [Ege92]: the use of tables with
fixed number of attributes does not allow flexibility in the management
of georeferenced data, nor the incremental development of applications.
Thus, researchers have directed their attention to new architectures.

New architectures rely on extensible relational (e.g., [HC91, vOV91]),
object-oriented (e.g, [KT92, ZM92, SV92]) or rule-based (e.g., [SA93,
SRD™91]) systems. A comparison in performance and flexibility of re-
lational and extended relational systems is found in [SFGM93]. Object-
oriented systems are presented as a solution to the need for representing
the dynamics of the real world (using methods). The possibility of pro-
gressively building up complex entities by the repeated application of
orthogonal constructors helps constructing complex scenarios. Finally,
rule-based systems are designed with specific applications in mind, and
aim to help users in their queries, by limiting the size of the query uni-
verse.

In all of the above, there is no consideration for temporal queries or
comparison of scenarios (such as queries 3 through 5 of section 1). The
difficulties posed to answering these queries involve factors that cannot
be handled adequately by present Gis. The first issue is due to the nature
of G1s data, which requires special indexing and buffering techniques.
This is aggravated by the introduction of the time element, not supported
in commercial databases. Thus, users are forced to manage time values
themselves, if they want to analyze data evolution.

Another issue concerns data integration over time. Georeferenced
data may be collected at different time periods. This creates another
type of value inconsistency, which is due to the temporal evolution of
georeferenced entities. Thus, if the mapping of a region takes several
months (or sometimes years), differences will occur which must be taken
into consideration. As pointed out by [Flo91], another related problem
is the difference in time scales. Some phenomena (e.g., vegetation) fluc-
tuate according to a seasonal cycle, whereas others (e.g, temperature)



may vary on a daily basis. Thus, when posing queries that consider the
evolution of georeferenced phenomena for a given region, these factors
must be taken into consideration.

GIS use basically two data formats: vector and tesselation. The tes-
selation format is usually called raster, which is a specific form of tesse-
lation. In this format, spatial objects are described as polygonal units
of space — cells — in a matrix. Fach cell contains one thematic value
(i.e., there cannot be two types of soil for a given cell). The vector for-
mat treats spatial entities as points, lines and polygons, using lists of
coordinate pairs. Boundaries of regions are stored precisely, and several
attributes can be associated to a single element.

The type of data used in an application depends on its domain and on
user requirements, as well as on the scale of the problem analyzed. Utility
management (e.g., telephone or electricity planning) or cartography use
primarily vector data. Environmental control and natural resource plan-
ning use mostly raster data. Nevertheless, there is no clearcut definition
of which type of format is more adequate for a given application, and
recent results show that both should be provided in a database system
[Cou92, Goo9l].

In this paper we assume that the vector-raster conversion poses no
problem, and that data is kept in vector format. This type of format
allows the identification of entities (by means of keys in the relational
model or oids in an object model). It is, therefore, more adequate for
index keeping and managing of individual georeferenced phenomena by
a DBMS.

3 The DBV Version Mechanism

As seen in the previous section, present GIs still lack facilities for pro-
viding the following services:

e automatic representation and management of data evolution in
time;

¢ management of alternative scenarios for planning purposes.



These are the same type of problems that are faced by version mech-
anisms (even though the latter have not yet considered georeferenced
data). Thus, it is only natural to examine the feasibility of adopting
versions to allow such services.

3.1 Versions in databases

Versions are a means of storing different states of a given entity, thereby
allowing the control of alternatives and of temporal data evolution. The
management of versions in databases has centered on different ways for
keeping files. Research has appeared mostly in the context of software
management (CASE systems) and CAD/CAM projects (e.g., [KSW86,
Kat90, BBA91, TG92, KS92, L.ST93]). The subjects discussed cover
the creation and manipulation of entity versions, their identification, the
handling of time, status, authorization, and concurrency mechanisms. In
object-oriented systems, this is aggravated by the intricate composition
relationships between objects. Versions are also commonly proposed for
dealing with concurrency control, especially for long transactions. In this
last context, different users are granted access to copies (i.e., versions)
of the same set of data, thus allowing them to work in parallel.

An important issue is the maintenance of configurations. A configu-
ration is a set of versions of entities that represent some identifiable unit
in the universe modelled. This is often the case of CAD environments.

3.2 An overview of the DBV mechanism

Version mechanisms must put together entity versions to reflect a given
state of the modelled universe. Existing approaches support this by
means of chains of pointers, which keep track of connections among ver-
sions of a given entity, as well as among entities that belong to a given
version state. Thus, the database is perceived as a set of entities con-
nected by several linked chains. There is furthermore often confusion
between version management and the underlying data model.

The DBV mechanism [CJ90, CVJ94] has a different approach. The
main principles of this model are the following [GJ94]:



e The user should always be able to manage entity versions within a
specific, identifiable, context. This context is called database ver-
ston— Dv for short. Dvrepresents in fact a “version”, or identifiable
state, of the modelled universe.

e Each Dv contains a logical version of each (identified) entity of the
database. The value of this version may be nil, meaning that it
does not exist in a given Duv.

o If several logical versions of an entity have the same value, there
is no physical replication. Rather, these logical versions share the
same physical version. The mechanism of mapping logical /physical
versions of entities is transparent to the user.

Thus, instead of considering versions of an entity in isolation, the model
allows managing them within their appropriate framework.

Rather than keeping track of versions of individual entities, the prob-
lem is treated from a point of view where the unit of versioning is the
Dv context, which corresponds to a state of the universe modelled by the
database, regardless of the underlying data model. The notion of ver-
sion as seen by the user (the logical database versions) is independent of
what is actually stored (physical versioning), and there is no replication
of data.

From a logical point of view, the database is perceived as a set of
consistent database versions Dv, which can evolve independently of each
other. The user works in this augmented database by selecting the Dv
context(s) of interest. Omnce the desired Dv is selected, the user can
treat it as a database on its own, querying and updating it. Logical
operations on Dv are translated into actual physical versioning operations
by the version management system. Temporal and alternative data are
naturally managed by this model.

The versioning of an entity is logically performed by versioning the
entire logical database to which it belongs. The logical independence of
Dv allows defining two types of update transactions: those that manip-
ulate some Dv; and transactions that derive a new Dwv. The latter can



be described in two steps. Let £ be an entity of a given Dw, for which
the user wants to create a new version £..:

e first, a (logical) copy of Dvis created, corresponding to a new Duvy
database version, identical to Dv;

e second, Duvy is updated (i.e., £ is created from &, and additional

updates are performed in order to maintain the consistency inside
D?]l).

Thus, a multiversion database is a set of logical consistent states, each of
which corresponds to a different version of the world, created by the user.
Each Duvis, therefore, a unit of consistency and can evolve independently.

Physically, in order to properly associate an entity with its versions,
the DBV mechanism relies on the notion of identity: each Dv has an
associated identifier which is used for managing purposes. The identifier
mechanism associates every logical entity version ¢ to its proper context
Du;.

The retrieval of each Dvis automatically ensured by the version man-
ager by examining tables of identifiers. Implementation details appear
in [CJ90].

For instance, time may be supported by mapping timestamps into
the DBV identifiers. Thus, temporal queries do not require handling of
special attributes; rather, they are processed by the versioning mech-
anism, which puts together data that belongs to the same identifiable
temporal state.

4 Applying the DBV model to GIS

This section shows an extended example of how the DBV approach allows
handling ¢1s queries for evolution of data and comparison of alternatives.
Consider the following sequence of queries:

o Analysis of temporal data evolution: “What has been the observed
modifications of the forest cover in a given area for a specific time
period?”

10



e Prevision of future based on recorded past: “ What is the prob-
ability of this forest cover decreasing in area, given information
collected along this period? What are the possible damages — ex-
tent and intensity?”

e Comparative analysis between actual data and simulated scenarios:
“Given the actual state of the forest cover in the area, how accu-
rate were simulations performed along this period to determine its
evolution during the same period?

All these queries concern the same type of theme — vegetation — for
the same geographical area. They require searching through different
(historical) scenarios, first identifying the area and then its forest cover.

The first query requires doing a statistical analysis of a historical se-
quence of vegetation data. The second query requires using the previous
analysis to perform prediction of phenomena. The third query assumes
that the two other queries were periodically posed in the past, and that
their results were stored. Thus, it demands comparison of predicted be-
havior and actual observed behavior for several periods in the database’s
history.

As explained in the previous section, in the DBV approach, the user is
provided with an integrated view of the world: it is perceived as a set of
database states (Dv), each corresponding to an independent consistent
version of the user’s universe. The evolution of georeferenced entities is
accompanied by the corresponding evolution of Dv states. For the user,
there is no predefined link between different Dv, which allows working
either over one single context or navigating across contexts. This corre-
sponds to what the user manipulates in reality, since no georeferenced
phenomenon can be treated in isolation.

There is no difference in treatment for actual (measured) data values
or (alternative) predicted values. Thus, several Dv may exist for the
same time period, each describing a state of the world — either an actual
recorded state or some alternative artificial state generated for planning
purposes. Therefore, for any time period, the database may contain a
set of logical databases: the modelled real world and different simulated

11



scenarios. For vegetation cover, for instance, one can keep track of sev-
eral parallel scenarios by modifying distinct parameters, e.g,, rainfall or
evolution of human settlements.

Thus, for any of the three queries, the processing is performed as:

e (i) Select all Dv within the specified time period;

(The version manager performs this operation by accessing the
identifier of each Dwv, which in this case will contain a timestamp
identification )

e (ii) For each such Du, select the area and its cover, by performing
standard GIs (nontemporal) database queries;

(Each Duv selected in the previous step is seen by the user as an
independent consistent database. Thus, it can be queried indepen-
dently of the rest of the DBV database, regardless of other existing
versions. )

e (iii) Perform the simulation operations on the set of areas and
covers obtained from the execution of the two previous steps.

Physically, the creation of a logical database does not require physical
duplication of entities, just creation of identifiers and recording of data
changes (differential information). These changes and the corresponding
identifiers are used to build the complete (logical) database states Du.

The Dv are built by gathering together all entities present at a given
database state, by means of special index structures. This means re-
trieving all entities that have compatible identifier values.

In addition, query processing may be speeded up by using the notion
of configuration. In fact, a configuration characterizes a unit of work
inside a context (and thus of consistency). Thus, users may decide to
specifically identify a configuration containing the area and its cover
(requested in the three queries). This will speed up version processing
for this type of query (in a way similar to precomputed views).

Finally, for specific situations, the user may also require the creation
of a constellation. This is a set of multiversion entities together with

12



all their components. Constellations can vary in size and be created
dynamically by the user. Thus, in the example of the vegetation cover
queries, the user may specify that a constellation be created for the
specific area and its vegetation cover. Then, further queries of the same
nature will be simplified to retrieving one constellation, which will have
all the recorded versions of the area and its vegetation cover across all
Dv (both real and alternative scenarios). For details on constellation
management the reader is referred to [CVJ91].

5 Other version mechanisms and GIS

A good introduction to the problems of handling spatio-temporal data in
G1s are the set of papers in [FCF92], which cover different issues. They
range from problems in database support of time [Sn092] to discussing
the concept of a region in creating study scenarios [Gut92]. The need
for flexible mechanisms to allow managing of these scenarios is stressed
in several papers.

Database research on versions has not dealt with problems related
to ¢1s, and there are very few reports of GIs using version mechanisms
(e.g., [Bat92, NTE92]). The main reasons for this are:

e Most version management mechanisms available in database sys-
tems become cumbersome when it comes to managing the evolu-
tion of instances. They require the maintenance of complex data
structures to allow following data evolution.

e GIS data is complex and occupies considerable space. Thus, its
management already presents so many challenges to a DBMS that
there is no question of coupling it to the usual version mechanisms.

e In many cases, it is impossible to follow the evolution of phenom-
ena across time periods, since entities may disappear or suffer un-
expected modifications.

Thus, even though versioning solves users’ problems, it has not, so far,
been seriously considered in the GIs context, and is used at most to

13



support parallel access to data. Their use as a means to manage temporal
data evolution is not considered. Rather, researchers consider (historical)
versions of entire files — e.g., the sequence of file versions for a given
thematic layer. Finally, when versions are associated with georeferenced
entities, there is no concern with how to manage them from a database
point of view.

The GFIS [Bat92] system uses a standard relational DBMS coupled to
a geographic data manager. Version management is left to the database
system, and is geared towards controlling parallel access. There is no
possibility of selecting versions for queries, or of handling sequences of
past states.

[NTE92] discuss different data structures for implementing versions
on top of tables using an object-oriented language. The paper provides
a comparative analysis of these structures, but does not apply them to
real data.

We now briefly review how traditional version schemes would cope
with the queries discussed in section 4. In such schemes, two types of
approach are possible:

¢ Snapshot view The complete data files (layers, with spatial and
thematic information) are stored, together with time stamp indi-
cation. (L.e., the database is in fact a set of database snapshots,
where each snapshot contains several thematic layers.)

Thus, in order to answer the first two queries, the system has to:

— (i) retrieve the entire layer files for the time period;

— (ii) for each layer, select the desired area and determine its
forest cover;

— (iii) produce the time series analysis desired.
In order to answer the third query, the database must contain not

only the entire layers for every period of interest, but also layer
files describing simulation results.

This first solution, though relatively simple to process, entails mas-
sive occupation of storage, and is therefore not feasible for practical

14



purposes. The snapshot approach requires the actual recording of
the entire database, and thus the variety and periodicity of stored
phenomena is limited, due to size constraints.

¢ Historical chain view The history of entities is maintained through
a linked list of data values and timestamps: only differential values
are kept. (The database is seen as a conglomerate of linked chains
in all directions.)

In this case, queries can only be answered for entities whose his-
tory has been maintained through chains. This requires that the
database designer has previous knowledge of all possible queries
that will involve version manipulation. Alternatively, these chains
can be maintained for every entity and value in the database.
Whereas the first alternative limits user exploratory activity, the
second alternative requires a heavy overhead of pointers.

Supposing the historical chain of the designated area is available,
then the queries are processed by the following procedure:

— (i) find the area and its vegetation cover in the present;

— (ii) follow back pointers of this area and cover, retrieving past
information;

— (iii) produce the time series analysis desired.

Finally, the third query requires that not only actual historical
chains be maintained, but also prevision chains for the same entity.
This, again, complicates the housekeeping algorithms.

The pointer version mechanisms soon become too cumbersome to
manage when each time period contains many entities that vary in
different ways, as is typically the case in geographical applications.

It is interesting to compare these approaches to the DBV solution. The
snapshot approach favors users who need to access entire contexts. How-
ever, it does not automatically support navigation through these con-
texts, since there is no sharing of entities across the snapshots. For

15



instance, any update to an entity in a given snapshot must be manually
performed by the user in the other snapshots. The historical chain ap-
proach is geared towards management of versions of individual entities,
through manipulation of their chains. However, it does not automati-
cally support the building of contexts, which must be performed by the
user.

The DBV model, on the other hand, automatically supports both
working within a context and comparing entity versions across contexts.
This is achieved thanks to the fact that this model allows separating the
logical versioning from the physical versioning level. It thus combines
the advantages of the other approaches, without the inconvenients: it
does not imply the waste of space of the snapshot approach, and neither
does it demand the complex computation procedures of the historical
chain approach.

6 Conclusions

This paper presented a solution for the management of evolution of geo-
referenced data in Gis which consists in using the DBV version mecha-
nism. This solution allows the development of automated tools to keep
track of different versions of the same georeferenced entity through time.
This facility enables users to create and manage alternative scenarios,
as well as to keep track of temporal data evolution. This type of sup-
port has so far been unavailable in commercial Gis, though required by
different kinds of planning applications.

The use of a version mechanism, as discussed in this paper, seems
to be an obvious choice to cope with GIs users’ demands. However,
¢1s databases do not consider this type of facility, since the handling
of georeferenced data presents in itself many problems. Furthermore,
available version management systems are complex and cannot readily
satisfy GIs requirements.

The DBV mechanism, on the other hand, allows efficiently keeping
track of data and schema versions in a database, with considerable sav-
ings in space and computation time, as compared to other database

16



version mechanisms. It allows dissociating the issues of context and con-
figuration consistency from version maintenance, which is not possible
in other version models.

Its main advantage, from a GIS point of view, is that it allows users to
access entire consistent database states for any given entity version. Thus
users can create different scenarios by just modifying individual entities,
and need not worry about keeping them within their appropriate con-
text. This is achieved without additional overhead, by the appropriate
management of version identifiers (as opposed to traditional mechanisms
that require handling pointer chains). Finally, the pBv model is orthog-
onal to the underlying data model and to concurrency control, which are
complicating factors in other version models.

We intend testing this solution against spatio-temporal data available
in the boMUS project, as part of an environmental planning project.
Tests will use georeferenced data about the Cantareira region in the Sao
Paulo state (roughly, 2.000 km2) [PMB93].

Acknowledgements

The research described in this paper was partially financed by grants
FAPESP 91/2117-1, CNPq 453176/91, and CNPq 452357/93-4.

References

[Aro89] S. Aronoff. Geographic Information Systems. WDL Publi-
cations, Canada, 1989.

[Bat92] P. Batty. Exploiting relational database technology in a
GIS. Computers and Geosciences: An international journal,
18(4):453-462, 1992.

[BBA91] M. Borhani, J-P Barthes, and P. Anota. Versions in Object-
Oriented Databases. Technical Report UTC/GI/DI/N 83,
Universite de Technologie de Compiegne, 1991.

17



[CJ90]

[Cou92]

[CVJI91]

[CVJ]94]

[Ege92]

[FCF92]

[F1091]

[Fradl]

[GBY0]

W. Cellary and G. Jomier. Consistency of Versions in
Object-Oriented Databases. In Proc. 16th VLDB, pages
432-441, 1990.

H. Couclelis. People Manipulate Objects (but Cultivate
Fields): Beyond the Raster-Vector Debate in GIS. In Proc
International Conference on GIS - From Space to Territory:
Theories and Methods of Spatial Reasoning, Springer Verlag
Lecture Notes in Computer Science 639, pages 65-77, 1992.

W. Cellary, G. Vossen, and G. Jomier. Multiversion Object
Constellations for CAD Databases. Technical Report 9105,
Justus-Liebig Universitat Giessen, 1991.

W. Cellary, G. Vossen, and G. Jomier. Multiversion Object
Constellations: a new Approach to Support a Designer’s
Database Work. To appear, Fngineering with Computers,
1994.

M. Egenhofer. Why not SQL! International Journal of Ge-
ographical Information Systems, 6(2):71-86, 1992.

A. Frank, I. Campari, and U. Formentini, editors. Theories
and Methods of Spatio-Temporal Reasoning in Geographic
Space. Lecture Notes in Computer Science 639. Springer-
Verlag, 1992.

R. Flowerdew. Geographical Information Systems - volume
I chapter Spatial Data Integration, pages 375-387. John
Wiley and Sons, 1991.

A. Frank. Properties of Geographic Data: Requirements for
Spatial Access Methods . In Proc. 2nd Symposium Spatial
Database Systems, pages 225-234. Springer Verlag Lecture
Notes in Computer Science 525, 1991.

O. Guenther and A. Buchman. Research Issues in Spatial
Databases. ACM Sigmod Record, 19(4):61-68, 1990.

18



[GJ94]

[G0091]

[Gut92]

[HCO1]

[HQGW93]

[JCGT92]

[Kat90]

[KBS91]

S. Gancarski and G. Jomier. Le Modele de Versions de Bases
de Donnees: Formalisation. In Submitted for publication,

1994.

M. Goodchild. Spatial Analysis with GIS: Problems and
Prospects. In Proc GIS/L1S°91, volume 1, pages 4048,
1991.

J. Guttenberg. Towards a Behavioral Theory of Regional-
ization. In Proc International Conference on GIS - From
Space to Territory: Theories and Methods of Spatial Rea-
soning, Springer Verlag Lecture Notes in Computer Science
639, pages 110-121, 1992.

L. Haas and W. Cody. Exploiting Extensible DBMS in Inte-
grated Geographic Information Systems . In Proc. 2nd Sym-
posium Spatial Database Systems, pages 423-449. Springer
Verlag Lecture Notes in Computer Science 525, 1991.

N. Hachem, K. Qiu, M. Gennert, and M. Ward. Managing
Derived Data in the GAEA Scientific DBMS. In Proc 19th
VLDB, pages 1-12, 1993.

C. Jensen, J. Clifford, S. Gadia, A. Segev, and R. Snodgrass.
A Glossary of Temporal Database Concepts. ACM Sigmod
Record, 21(3):35-43, 1992.

R. H. Katz. Toward a Unified Framework for Version Mod-
elling in Engineering Databases. ACM Computing Surveys,
22(4):375-408, 1990.

H. Kriegel, T. Brinkhoff, and R. Schneider. The Combina-
tion of Spatial Access Methods and Computational Geom-
etry in Geographic Database Systems. In Proc 2nd Sympo-
sium Spatial Database Systems, pages 5—22. Springer Verlag
Lecture Notes in Computer Science 525, 1991.

19



[KS92]

[KSWS6]

[KT92]

[LL93]

[LST93]

MGRO1]

[MJ93]

[MMS93]

[Mor92]

W. Kafer and H. Schoning. Mapping a Version Model to
a Complex-Object Data Model . In Proc IEFE Data Engi-
neering Conference, pages 348-357, 1992.

P. Klahold, G. Schlageter, and W. Wilkes. A General Model
for Version Management in Databases. In Proc XII VLDB,
pages 319-327, 1986.

7. Kemp and R. Thearle. Modelling Relationships in Spatial
Databases . In Proc 5th International Symposium on Spatial
Data Handling, pages 313-322, 1992. Volume 1.

Y. Leung and K. S. Leung. An Intelligent Expert System
Shell for Knowledge-based Geographical Information Sys-
tems: 1 - the tools. International Journal of Geographical
Information Systems, 7(1):189-200, 1993.

G. Landau, J. Schmidt, and V. Tsotras. Efficient Support of
Historical Queries for Multiple Lines of Evolution. In Proc.
IEFFE Data Engineering Conference, pages 319-326, 1993.

D. J. Maguire, M. F. Goodchild, and D. W. Rhind, edi-
tors. Geographical Information Systems - volume Il - Appli-
cations. John Wiley and Sons, 1991.

C. B. Medeiros and G. Jomier. Managing Alternatives and
Data Evolution in GIS. In Proc. ACM/ISCA Workshop on
Advances in Geographic Information Systems, pages 34-37,
1993.

P. Milne, S. Milton, and J. Smith. Geographical Object-
oriented Databases: a Case Study. International Journal of
Geographical Information Systems, 7:39-56, 1993.

S. Morehouse. The ARC/INFO geographic information sys-
tem. Computers and Geosciences: An international journal,
18(4):435-443, 1992.

20



[MP94]

[NTE92]

[00i90]

[Peud3]

[PMB93]

[REFSSS]

[SA93]

[Sam8&9]

[SFGMO3]

C. B. Medeiros and F. Pires. Databases for GIS. ACM
Sigmod Record, 23(1):107-115, 1994.

R. Newell, D. Theriault, and M. Easterfieldy. Temporal GIS
- modeling the evolution of spatial data in time. Computers
and Geosciences: An international journal, 18(4):427-434,
1992.

B. C. Ooi. Efficient Query Processing in Geographic Infor-
mation Systems. Springer Verlag Lecture Notes in Computer
Science, 1990.

D. Peuquet. What, Where and When - a Conceptual Ba-
sis for Design of Spatiotemporal GIS Databases. In Proc.
ACM/ISCA Workshop on Advances in Geographic Informa-
tion Systems, pages 117-122, 1993.

F. Pires, C. B. Medeiros, and A. Barros. Modelling Ge-
ographic Information Systems using an Object Oriented
Framework. In Proc XIII International Conference of the
Chilean Computer Science Society, pages 217-232, 1993.

N. Roussoupolos, C. Faloutsos, and T. Sellis. An Efficient
Pictorial Database System for PSQL. IEFE Transactions
on Software Engineering, SE-14(5):639-650, 1988.

R. Subramanian and N. Adam. Ill-defined Spatial Operators
in Geographic Databases: their Nature and Query Process-
ing Strategies. In Proc. ACM/ISCA Workshop on Advances
in Geographic Information Systems, pages 88-93, 1993.

H. Samet. The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, 1989.

M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The
Sequoia 2000 Benchmark. In Proc ACM SIGMOD Confer-
ence, pages 2—11, 1993.

21



[Sno92]

[S0091]

[SRDT91]

[SV92]

[TG92]

[vOV91]

[ZM92]

R. Snodgrass. Temporal Databases. In Proc International
Conference on GIS - From Space to Territory: Theories and
Methods of Spatial Reasoning, Springer Verlag Lecture Notes
in Computer Science 639, pages 22-63, 1992.

M. Soo. Bibliography on Temporal Databases. ACM SIG-
MOD RECORD, 20(1):14-23, 1991.

A. Skidmore, P. Ryan, W. Dawes, D. Short, and
E. O’Loughlin. Use of an Expert System to Map Forest
Soils from a Geographical Information System. International
Journal of Geographical Information Systems, 5(4):431-446,
1991.

M. Scholl and A. Voisard. Building and Object-oriented Sys-
tem — the Story of 02, chapter Geographic Applications — an
Experience with 02. Morgan Kaufmann, California, 1992.

V. Tsotras and B. Gopinath. Optimal Versioning of Objects
. In Proc IFEF Data Engineering Conference, pages 358—
365, 1992.

P. von Qosterom and T. Vijlbrief. Building a GIS on Top
of the Open DBMS POSTGRES. In Proc Furopean GIS
Conference, 1991.

F. Zhan and D. Mark. Object-Oriented Spatial Knowl-
edge Representation and Processing: Formalization of Core
Classes and their Relationships. In Proc 5th International
Symposium on Spatial Data Handling, pages 662-671, 1992.
Volume 2.

22



92-01

92-02

92-03

92-04

92-05

92-06

92-07

92-08

92-09

92-10

92-11

92-12

Relatdorios Técnicos — 1992

Applications of Finite Automata Representing Large Vo-
cabularies, C. L. Lucchesi, T. Kowaltowski

Point Set Pattern Matching in d-Dimensions, P. J.
de Rezende, D. T. Lee

On the Irrelevance of Edge Orientations on the Acyclic
Directed Two Disjoint Paths Problem, C. L. Lucchesi,
M. C. M. T. Giglio

A Note on Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi Diagrams,
W. Jacometti

An (l,u)-Transversal Theorem for Bipartite Graphs,
C. L. Lucchesi, D. H. Younger

Implementing Integrity Control in Active Databases,

C. B. Medeiros, M. J. Andrade

New Experimental Results For Bipartite Matching,
J. C. Setubal

Maintaining Integrity Constraints across Versions in a
Database, C. B. Medewros, G. Jomier, W. Cellary

On Clique-Complete Graphs, C. L. Lucchesi, C. P. Mello,
J. L. Szwarcfiter

Examples of Informal but Rigorous Correctness Proofs for
Tree Traversing Algorithms, T. Kowaltowski

Debugging Aids for Statechart-Based Systems, V. G. S.
Elias, H. Liesenberg

Browsing and Querying in Object-Oriented Databases,
J. L. de Oliveira, R. de O. Anido

23



93-01

93-02

93-03

93-04

93-05

93-06

93-07

93-08

93-09

93-10

Relatérios Técnicos — 1993

Transforming Statecharts into Reactive Systems, Antonio
G. Figueiredo Filho, Hans K. F. Liesenberg

The Hierarchical Ring Protocol: An Efficient Scheme
for Reading Replicated Data, Nabor das C. Mendonga, Ri-
cardo de O. Anido

Matching Algorithms for Bipartite Graphs, Herbert A. Baier
Saip, Claudio L. Lucchesi

A lexBFS Algorithm for Proper Interval Graph Recog-
nition, Celina M. H. de Figueiredo, Jodo Meidanis, Célia P. de
Mello

Sistema Gerenciador de Processamento Cooperativo,
Ivonne. M. Carrazana, Nelson. C. Machado, Célio. C. Guimardes

Implementacao de um Banco de Dados Relacional Dotado
de uma Interface Cooperativa, Nascif A. Abousalh Neto, Ari-

adne M. B. R. Carvalho

Estadogramas no Desenvolvimento de Interfaces, Fabio N.
de Lucena, Hans K. FE. Liesenberg

Introspection and Projection in Reasoning about Other
Agents, Jacques Wainer

Codificagdo de Sequéncias de Imagens com Quantizagio
Vetorial, Carlos Antonio Reinaldo Costa, Paulo Licio de Geus

Minimizag¢do do Consumo de Energia em um Sistema para
Aquisi¢ao de Dados Controlado por Microcomputador,
Paulo Cesar Centoducatte, Nelson Castro Machado

24



93-11

93-12

93-13

93-14

93-15

93-16

93-17

93-18

93-19

93-20

An Implementation Structure for RM-OSI/ISO Transac-
tion Processing Application Contexts, Fldvio Morais de Assis
Silva, Edmundo Roberto Mauro Madeira

Boole’s conditions of possible experience and reasoning
under uncertainty, Pierre Hansen, Brigitte Jaumard, Marcus
Poggi de Aragdo

Modelling Geographic Information Systems using an Ob-
ject Oriented Framework, Fatima Pires, Claudia Bauzer
Medeiros, Ardemiris Barros Silva

Managing Time in Object-Oriented Databases, Lincoln M.
Oliveira, Claudia Bauzer Medeiros

Using Extended Hierarchical Quorum Consensus to Con-
trol Replicated Data: from Traditional Voting to Logical
Structures, Nabor das Chagas Mendonga, Ricardo de Oliveira
Anido

LL — An Object Oriented Library Language Reference
Manual, Tomasz Kowaltowski, Fvandro Bacarin

Metodologias para Conversao de Esquemas em Sistemas
de Bancos de Dados Heterogéneos, Ronaldo Lopes de Oliveira,
Geovane Cayres Magalhdes

Rule Application in GIS — a Case Study, Claudia Bauzer
Medeiros, Geovane Cayres Magalhdes

Modelamento, Simulac¢ido e Sintese com VHDL, Carlos Ger-
aldo Kriger e Mdrio Licio Cortes

Reflections on Using Statecharts to Capture Human-
Computer Interface Behaviour, Fdbio Nogueira de Lucena e
Hans Liesenberg

25



93-21

93-22

93-23

93-24

93-25

93-26

93-27

93-28

93-29

Applications of Finite Automata in Debugging Natu-
ral Language Vocabularies, Tomas:z Kowaltowski, Cldudio
Leonardo Lucchesi e Jorge Stolfi

Minimization of Binary Automata, Tomasz Kowaltowski,
Cldudio Leonardo Lucchesi e Jorge Stolfi

Rethinking the pNa Fragment Assembly Problem, Jodo
Meidanis

EGOLib — Uma Biblioteca Orientada a Objetos Graficos,
FEduardo Aguiar Patrocinio, Pedro Jussieu de Rezende

Compreensao de Algoritmos através de Ambientes Dedi-
cados a Animacgao, Rackel Valadares Amorim, Pedro Jussieu de
Rezende

Geolab: An Environment for Development of Algorithms
in Computational Geometry, Pedro Jussieu de Rezende, Wel-
son R. Jacometti

A Unified Characterization of Chordal, Interval, Indiffer-
ence and Other Classes of Graphs, Jodo Meidanis

Programming Dialogue Control of User Interfaces Using
Statecharts, Fdbio Nogueira de Lucena e Hans Liesenberg

EGOLib — Manual de Referéncia, Fduardo Aguiar Patrocinio e
Pedro Jussieu de Rezende

26



94-01

94-02

94-03

94-04

Relatdorios Técnicos — 1994

A Statechart Engine to Support Implementations of Com-
plex Behaviour, Fdbio Nogueira de Lucena, Hans K. F. Liesen-
berg

Incorporacao do Tempo em um SGBD Orientado a Objetos,
Angelo Roncalli Alencar Brayner, Claudia Bauzer Medeiros

O Algoritmo KMP através de Automatos, Marcus Vinicius
A. Andrade e Cldudio L. Lucchesi

On Edge-Colouring Indifference Graphs, Celina M. H. de
Figueiredo, Jodo Meidanis, Célia Picinin de Mello

Departamento de Ciéncia da Computacdo — IMECC
Caiza Postal 6065

Universidade Fstadual de Campinas

13081-970 — Campinas — SP

BRASIL

reltec@dcc.unicamp.br

27



