
Integrating and Processing Events from Heterogeneous Data
Sources

Ivo Koga1, Claudia Bauzer Medeiros1

1Institute of Computing – State University of Campinas (UNICAMP)
13083-852 – Campinas – SP – Brazil

{koga,cmbm}@ic.unicamp.br

Abstract. Environmental monitoring studies present many challenges. A huge
amount of data are provided in different formats from different sources (e.g.
sensor networks and databases). This paper presents a framework we have
developed to overcome some of these problems, based on combining aspects of
Enterprise Service Bus (ESB) architectures and Event Processing mechanisms.
First, we treat integration using ESB and then use event processing to transform,
filter and detect event patterns, where all data arriving at agiven point are
treated uniformly as event streams. A case study concerningdata streams of
meteorological stations is provided to show the feasibility of this solution.

1. Introduction

Sensor network applications present countless challengesin environmental monitoring.
These networks can be composed by many sensors with different types, models and ma-
nufacturers. They can monitor many aspects of the environment, e.g., motion, sound,
temperature, humidity and light. An open problem is how to obtain, filter and validate
data. As the amount of data sources and heterogeneity increases, the difficulty to manage
environmental data also increases.

There are several approaches to deal with sensor data. At oneend, proposals con-
centrate the processing at the sensor side,e.g., defining sampling rates inside the sensor
network (i.e. without using an external database). At the other end, studies concentrate
on receiving all data and processing it at the server side. In-between, there is a vast range
of studies,e.g., creating hierarchies of processing/storage nodes.

On environmental studies, most of these solutions are concerned with solving he-
terogeneity issues –e.g., when there is a set of distinct networks of different kinds of
sensors providing data. Solutions vary from limiting the types of sensors (and thus having
control over data sources) to defining some kind of filtering module that will smooth out
differences in data values.

Our proposal is to attack the heterogeneity problem using Enterprise Service Bus
(ESB) and Event Processing theory to deal with sensor data. Under this perspective,
we consider sensor networks as event producers and manage their events with filtering,
matching, derivation and consumption of events. We can thenprocess not only the sensor
data, but also events they raise, taking actions and selecting events to monitor.

Event processing for treating sensor data is normally foundin industrial settings.
Here, we adapt this to the environmental monitoring scenario. The main contribution is
therefore to extend Event Processing theory to this context, and to combine it with an



architectural approach that supports integration of heterogeneous data streams (sensors
and other sources).

2. Basic Concepts

2.1. Enterprise Service Bus

An Enterprise Service Bus (ESB) is a distributed infrastructure that uses messages and
open standards to provide integration of systems [Menge 2007]. The ESB provides rou-
ting, invocation, mediation and other capabilities to facilitate integration. To integrate a
new system using the ESB, it is only necessary to provide an adapter that fits the new
system message format to couple with the ESB.

Since there are many different transport protocols used by systems, there are
adapters to support the most common protocols (e.g. HTTP, FTP, SMTP) in most of
the available ESBs. If a system provides messages using one of those transport protocols
it is easier to integrate them. If it is not the case, one can implement a customized adapter
which can be used and reused. According to [Rademakers and Dirksen 2009] some of
the core functionalities of an ESB include location transparency, transport protocol con-
version, message transformation (e.g. from SOAP to a custom XML format), message
routing and enhancement, security, monitoring and management.

2.2. Complex Event Processing

Complex Event Processing (CEP) [Magid et al. 2010, Dunkel 2009] has several common
features with Stream Processing [Babu and Widom 2001]. However, the latter usually fo-
cus on fast querying of data in streams while the former concentrates on extracting infor-
mation from clouds of events (i.e., lots of streams with many events not always ordered)
[Luckham, D. C. 2006]. CEP deals with reaction rules such as the ones in active databases
and also with events’ causal relationships, providing waysto create multi-layered archi-
tectures of events.

In CEP, an event is an object signifying an activity with three aspects (Form, Sig-
nificance and Relativity) that a computer can process [Luckham 2001]. Events can be
matched by anevent patternthat is a template that describes the event and all the appro-
priate context descriptions such as causal dependencies, timing, etc. Event Patterns can
produce aggregation of events, creating a hierarchy with a sequence of levels. Each level
has its own rules that specify how one can infer the higher layer events from lower level
ones.

To process events, one has to deal at least with three entities: event producer,
event consumer and event processing agent (EPA). The producer (e.g.a sensor network)
introduces events into the system while the consumer (e.g. user application) receives
events. In-between producer and consumer there is the EPA, which monitors system
execution to detect patterns and process events.

[Etzion and Niblett 2011] proposed a hierarchy of EPA types.The higher layer
is an abstract definition (Event Processing Agent). Below that abstract definition there
is the Filter, Transformation and Pattern detect EPAs. A “Filter” EPA takes an event and
decides whether it will be selected or not. It is used when there is need to remove irrelevant
events from the event processing stream. When the event is incompatible with the filter



expression (i.e., the expression cannot evaluate the event), it is considered non-filterable.
To transform an event,i.e. take events and create different output events based on a
derivation expression, [Etzion and Niblett 2011] show manypossibilities. Consider the
following sensor events written under the schema<Sensor ID, Timestamp, Temperature,
Humidity, Air Pressure>:

• <1999, 10:00:00, 25, 57, 1025>
• <2000, 10:01:00, 25.2, 57, 1025>

Table 1 exemplifies the result of applying each EPA to these events.

Table 1. Transformation EPAs

For instance, line 1 shows that the “translate” EPA eliminated attributes times-
tamp, temperature, humidity, air pressure and inserted a new attribute called condition,
derived from the attributes in the input event. The “enrich”EPA can take input from the
input event as well as from an external data source. The “project” EPA shows only some
attributes from an input event, similar to the relational algebra project operation.

There is also the possibility to detect patterns. The Pattern Detect EPA type pro-
vides means to detect basic event patterns (logical operators, threshold, subset selection,
etc) which do not depend on timing and ordering of events, anddimensional patterns
(temporal, spatial and spatiotemporal) which rely on time,space or both.

3. Framework description

Our framework, shown in Figure 1, uses ESB and event processing to facilitate the inte-
gration of events produced by sensor networks and other types of data sources. At the
left there are data providers. At the right, there are the data/event consumers that are in-
terested in the output of our framework. Between them, steps(A, B, C, D, E, F and G)
handle data integration and processing. All interactions between the framework producers
and consumers can be held by ESB adapters (e.g., out1andoutn in Figure 1), steps “A”
and “G”.

Data providers and consumers provide and expect data in manydifferent ways
such as Web Services, database connections, file system, streams, etc, and using diffe-
rent protocols (e.g. SOAP, JDBC, FTP). To get/provide data, it is necessary to useeach
of these different types of communication possibilities. Since there are many available
ESB adapters (for the most common types of protocols), the communication between the
framework and data providers/consumers is easier.

Once data are obtained from the provider(s), it is possible to filter or continue pro-
cessing them (step “B”). Filtering consists in deciding whether a message will be selected
or not,i.e. if it will continue inside the processing flow or will be discarded – see Section
2. This is used when there is a need to remove irrelevant messages from the providers.



Figure 1. Architecture of the framework

After the filtering process, messages may have to be translated. To do that, the
message passes through aContent Based Router(CBR) in step “C”. A CBR is an Enter-
prise Integration Pattern [Hohpe and Woolf 2003] which reads the message content and
routes the message to the appropriate message translator based on the message content.

Step “D” has some message translators to translate each different type of message
format to a common message format inside the framework, following the suggestion of
[Hohpe and Woolf 2003]. This homogenizes the data treated within the framework and
provides another level of independency among other steps. Once messages are filtered
and standardized, event processing, in step “E”, can be applied (as discussed in section
2.2). Events can be processed by a network of EPAs and each EPAcan nest several other
EPAs.

Event consumers can be any human, software or machines interested in the events
output by the framework. The output can be in many formats, sowe put another trans-
lation step “F” so that the output can be translated into the consumer’s expected format.
Figure 1, at the right, shows examples of consumers: subscriber, database, file system,
Web Service, another Event processing system, etc.

As an example, let us assume that we are retrieving data from aWeb service and
a sensor network using adaptersin1 and in2 respectively (step “A”). Both providers are
providing temperature sensor readings of the same place at the same time. Once the
connection is established, only data that satisfy an SQL or an EPL (Event Processing
Language) query go to the next step. After the filtering process (step “B”), in step “C”
the CBR routes messages to the appropriate message translator (step “D”). Events can
be detected by a pattern,e.g. a temperature property in the sensor stream different from
a temperature property in the SQL query (step “E”) indicatesa possible failure. The
framework translates the event message format to the subscriber expected format in step
“F” and then sends a notification using an adapter,e.g. out1in step “G”.

4. Case Study
Our case study concerns sensor data that cover over 30 types of variables, provided by the
Cooxupé coffee cooperative, the largest coffee cooperative in the world. Figure 2 gives an



overview of data collection and transmission, with the Cooperative data collecting center
at “C”. As shown in the Figure, this center centralizes data collection, and our lab, LIS,
shown in “D”, retrieves sensor data from the center via its FTP interface, which cooxupé
created for us.

Figure 2. Case study: data processing workflow.

In more detail, sensors are deployed in weather stations, located at 13 locations in
the states of Minas Gerais and São Paulo. Table 2 shows the 28types of measurement
collected by the Cooxupé weather stations and their description. Eleven of the 13 stations
provide 28 types of measurement, and 2 stations (located at Guaxupé and Alfenas) provide
26 types of measurements (excluding internal moisture content and internal air density).
They monitor meteorological variables at strategic locations, covering a large percentage
of the areas where the cooperated farms are located1.

The sensors at each station collect data at one hour intervals. The Cooperative’s
data collecting center fetches data from the stations at 15 minute intervals to prevent
synchronization problems, and stores them in a flat table, which is then incrementally
retrieved by us.

The framework is deployed at LIS (D). This was based on the selection crite-
ria as of [Rademakers and Dirksen 2009]: core functionalities, quality of documenta-
tion, market visibility, active community, flexibility andlower development effort, trans-
port/connectivity options, integration with other open source projects and support for im-
plementation through an IDE. We chose Mule ESB [MuleSoft Inc. 2012] to provide the
ESB functionalities inside our framework due to its good documentation, active commu-
nity and good support for implementation.

We deployed a Mule ESB at LIS and used its FTP adapter to retrieve Cooxupé
data. We configured a Mule adapter to pool FTP every 15 minutes. After connecting, we
filter by file type and translate data inside the incoming stream to our internal message
format. Once data are standardized, we deal with event processing detecting patterns and
insert data in a database to save historical data.

To provide CEP capabilities we used Esper due to its good available documenta-

1The cooperative congregates over 12,000 small farms.



Table 2. Cooxup é Weather stations measurements, within one hour time windo w.

tion, active community and open source license. Esper is used by many customers and is
the CEP engine in the Oracle Complex Event Processing [EsperTech Inc. 2012].

One example of event pattern is a basic logical operator withthreshold to detect
the temperature range between 19 and 22 degrees Celsius (theideal temperature range to
cultivate Arabica coffee):

select temperatureOut from CooxupeData.win:length(5)
having avg(temperatureOut) > 19.0 and avg(temperatureOut) <
22.0

The second is a basic threshold pattern that detects when it rains. It is important
to know the occurrence and the rain rate since water balance affects coffee growth:

select rainRate from CooxupeData.win:length(3) having
avg(rainRate) > 0.0

Both are written using the Event Processing Language (EPL) from Esper which
resemble SQL, but instead of querying tables it queries streams. The EPL written in (i)
queries the average outside temperature within a window of length of 5 measurements. If
there are data returned, the framework will produce a new event showing that the ideal
temperature was reached. In (ii), the query uses the window length of 3 measurements
and returns data if the average rainfall in the period is greater than zero.

Within this framework, Cooxupé can provide information ondemand or use notifi-
cations when something unexpected happens. This can alert farmers about meteorological
changes and trigger reactive solutions to avoid damages to coffee production.

5. Related Work

An example of an approach for event processing in a sensor context appears in
[Dunkel 2009]. With EPAs that filter, split, aggregate, transform and enrich events. EPAs



are used to propagate more complex and/or abstract events todownstream systems. Sen-
sors are deployed in a physical environment and emit their measurements continuously to
EPAs that perform pattern matching and event processing.

Our solution provides another layer of abstraction and adapts Dunkel’s proposal
using integration capabilities of the ESB before the EPAs can process events or situations.
Through this approach it is possible to capture events not only from different devices (e.g.
sensors), but also from other event sources such as static files, services and databases
using the ESB adapters.

Supervisory Control and Data Acquisition (SCADA) [Bailey and Wright 2003]
are systems that provide means to acquire data and allow one to perform remote control
and event processing. The difference with our proposal is that SCADA focuses primarily
in data acquisition and interoperability in the same system. In contrast, we deal with
the acquisition of data from different providers and once these data are retrieved provide
means to transform, combine and correlate these data.

SensorBUS [Broering et al. 2010] uses the message bus architecture pattern to
provide the integration between sensors and services that use the SWE standard spe-
cifications. It allows services and sensors to publish messages and to be notified in a
publish-subscribe communication. Our proposal is different from SensorBUS because
our framework provides not only integration between sensorsystems but also between
other data providers and uses the CEP to process events.

SAPHE [Churcher and Foley 2010] is a wireless sensor networkproject in the
health care domain that uses SWE specifications and CEP to face access and processing
optimization problems. The difference between SAPHE and our approach is that we are
interested in dealing not only with sensor data provided by SWE standard services, but
we also envisage to use other different data sources.

SStreaMWare [Gurgen et al. 2008] is a service-oriented middleware that aims at
dealing with the dinamicity caused by various operations onsensors and their effect on
concurrent continuous queries. It uses a specific template data schema and a query lan-
guage for sensor data called SStreaM. SStreaMWare providesan abstraction to locate,
query and aggregate sensor data, but does not deal with othertypes of data nor treat the
events as our approach does.

6. Conclusions

This paper presented our framework to process events from heterogeneous data sources.
Our work combines the advantages of using ESB (to deal with integration and extensi-
bility) and CEP (to provide clear and straightforward eventprocessing capabilities). Our
case study shows the feasibility of our solution.

There are many possibilities of extensions from the architectural point of view.
The first is to develop sensor specific custom transport components to deal with sensor
specific (e.g. SWE specifications) message formats. Another possibility is to provide
easier means to build and deploy new event patterns inside the framework. Yet another
involves using semantics in event handling –e.g.[Teymourian and Paschke 2010].
Acknowledgements Work partially financed by FAPESP (grant 09/52336-7), the Mi-
crosoft Research Fapesp Virtual Institute (eFarms project), CNPq, INCT in Web Science



(CNPq 557.128/2009-9) and CAPES.

References

Babu, S. and Widom, J. (2001). Continuous queries over data streams.SIGMOD Rec.,
30(3):109–120.

Bailey, D. and Wright, E. (2003).Practical SCADA for Industry. IDC Technologies.

Broering, A., Foerster, T., Jirka, S., and Priess, C. (2010). Sensor bus: an intermediary
layer for linking geosensors and the sensor web. InProc. COM.Geo ’10, pages 12:1–
12:8.

Churcher, G. E. and Foley, J. (2010). Applying complex eventprocessing and extending
sensor web enablement to a health care sensor network architecture. InSensor Sys-
tems and Software, volume 24 ofLecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, pages 1–10. Springer.

Dunkel, J. (2009). On complex event processing for sensor networks. In Autonomous
Decentralized Systems, 2009. ISADS ’09. International Symposium on, pages 1 –6.

EsperTech Inc. (2012). Esper website. http://www.espertech.com/partners/partners.php
(Accessed Apr, 2012).

Etzion, O. and Niblett, P. (2011).Event Processing in Action. Manning.

Gurgen, L., Roncancio, C., Labbé, C., Bottaro, A., and Olive, V. (2008). Sstreamware: a
service oriented middleware for heterogeneous sensor datamanagement. InProc. 5th
Intl conf. on Pervasive services, ICPS ’08, pages 121–130.

Hohpe, G. and Woolf, B. (2003).Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley Professional.

Luckham, D. C. (2001).The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Luckham, D. C. (2006). What’s the Difference Between ESP andCEP?
http://www.complexevents.com/2006/08/01/what’s-the-difference-between-esp-
and-cep/ (Accessed Jun, 2012).

Magid, Y., Sharon, G., Arcushin, S., Ben-Harrush, I., and Rabinovich, E. (2010). Indus-
try experience with the IBM Active Middleware Technology (AMiT) Complex Event
Processing engine. InProc. 4th ACM DEBS ’10, pages 140–149.

Menge, F. (2007). Enterprise service bus.Free and Open Source Software Conference.

MuleSoft Inc. (2012). Mule website. http://www.mulesoft.com/ (Accessed Apr, 2012).

Rademakers, T. and Dirksen, J. (2009).Open-Source ESBs in Action. Manning Publica-
tions Co., Greenwich, CT, USA.

Teymourian, K. and Paschke, A. (2010). Enabling knowledge-based complex event pro-
cessing. InProc. EDBT/ICDT Workshops, EDBT ’10, pages 37:1–37:7, New York,
NY, USA. ACM.


