I ntegrating and Processing Events from Heter ogeneous Data
Sources

lvo Koga!, Claudia Bauzer M edeiros!

lInstitute of Computing — State University of Campinas (UKINP)
13083-852 — Campinas — SP — Brazil

{koga, cnbm}@ c. uni canp. br

Abstract. Environmental monitoring studies present many challengebuge
amount of data are provided in different formats from défersources (e.g.
sensor networks and databases). This paper presents awWarkeve have
developed to overcome some of these problems, based omaagrdspects of
Enterprise Service Bus (ESB) architectures and Event Bsing mechanisms.
First, we treat integration using ESB and then use eventgssing to transform,
filter and detect event patterns, where all data arriving agjigen point are
treated uniformly as event streams. A case study concedaits streams of
meteorological stations is provided to show the feasipditthis solution.

1. Introduction

Sensor network applications present countless challeingesvironmental monitoring.
These networks can be composed by many sensors with diffigyees, models and ma-
nufacturers. They can monitor many aspects of the envirohneey, motion, sound,

temperature, humidity and light. An open problem is how ttaoh filter and validate

data. As the amount of data sources and heterogeneity segeihe difficulty to manage
environmental data also increases.

There are several approaches to deal with sensor data. Anah@roposals con-
centrate the processing at the sensor ®dg, defining sampling rates inside the sensor
network {.e. without using an external database). At the other end, ssutbhncentrate
on receiving all data and processing it at the server sidbetween, there is a vast range
of studiesg.g, creating hierarchies of processing/storage nodes.

On environmental studies, most of these solutions are ecnadeavith solving he-
terogeneity issues e.g, when there is a set of distinct networks of different kindls o
sensors providing data. Solutions vary from limiting theey of sensors (and thus having
control over data sources) to defining some kind of filteriradoie that will smooth out
differences in data values.

Our proposal is to attack the heterogeneity problem usirigriarise Service Bus
(ESB) and Event Processing theory to deal with sensor datadetJthis perspective,
we consider sensor networks as event producers and maregeénts with filtering,
matching, derivation and consumption of events. We can phecess not only the sensor
data, but also events they raise, taking actions and ssjeetients to monitor.

Event processing for treating sensor data is normally faonddustrial settings.
Here, we adapt this to the environmental monitoring scendrhe main contribution is
therefore to extend Event Processing theory to this contaxd to combine it with an

architectural approach that supports integration of bgemeous data streams (sensors
and other sources).

2. Basic Concepts
2.1. Enterprise Service Bus

An Enterprise Service Bus (ESB) is a distributed infradtrces that uses messages and
open standards to provide integration of systems [Meng&J20the ESB provides rou-
ting, invocation, mediation and other capabilities to litatie integration. To integrate a
new system using the ESB, it is only necessary to provide aptad that fits the new
system message format to couple with the ESB.

Since there are many different transport protocols usedybiems, there are
adapters to support the most common protocelg.(HTTP, FTP, SMTP) in most of
the available ESBs. If a system provides messages usingf@hese transport protocols
it is easier to integrate them. If it is not the case, one cgsiement a customized adapter
which can be used and reused. According to [Rademakers aksedi2009] some of
the core functionalities of an ESB include location tramepay, transport protocol con-
version, message transformatiang. from SOAP to a custom XML format), message
routing and enhancement, security, monitoring and managem

2.2. Complex Event Processing

Complex Event Processing (CEP) [Magid et al. 2010, Dunké&b26as several common
features with Stream Processing [Babu and Widom 2001]. Kewéhe latter usually fo-
cus on fast querying of data in streams while the former catnates on extracting infor-
mation from clouds of events.€., lots of streams with many events not always ordered)
[Luckham, D. C. 2006]. CEP deals with reaction rules suchashes in active databases
and also with events’ causal relationships, providing waysreate multi-layered archi-
tectures of events.

In CEP, an event is an object signifying an activity with thesspects (Form, Sig-
nificance and Relativity) that a computer can process [LaokB001]. Events can be
matched by amvent patterrihat is a template that describes the event and all the appro-
priate context descriptions such as causal dependenioi@sgf etc. Event Patterns can
produce aggregation of events, creating a hierarchy witdgaence of levels. Each level
has its own rules that specify how one can infer the highesrlayents from lower level
ones.

To process events, one has to deal at least with three entieent producer,
event consumer and event processing agent (EPA). The mo@ug. a sensor network)
introduces events into the system while the consurady. (user application) receives
events. In-between producer and consumer there is the ERshvmonitors system
execution to detect patterns and process events.

[Etzion and Niblett 2011] proposed a hierarchy of EPA typ&ke higher layer
Is an abstract definition (Event Processing Agent). Beloat #bstract definition there
is the Filter, Transformation and Pattern detect EPAs. AtéFi EPA takes an event and
decides whether it will be selected or not. Itis used wheretleeneed to remove irrelevant
events from the event processing stream. When the evertaompatible with the filter

expressioni(e., the expression cannot evaluate the event), it is consldeye-filterable.

To transform an eveni,e. take events and create different output events based on a
derivation expression, [Etzion and Niblett 2011] show manogsibilities. Consider the
following sensor events written under the schen&ensor ID, Timestamp, Temperature,
Humidity, Air Pressure-:

e <1999, 10:00:00, 25, 57, 1025
e <2000, 10:01:00, 25.2,57, 1025

Table 1 exemplifies the result of applying each EPA to thesatsv

Table 1. Transformation EPAs
Transformation EPAs Input Output
1|Translate Translate (<1999, 10:00:00, 25, 57, 1025>) <1999, condition=normal>
1.1 Enrich Enrich (<1999, 10:00:00, 25, 57, 1025>, location) <1999, location=Campinas>
1.2 Project (temperature) |Project (<1999, 10:00:00, 25, 57, 1025>, temperature) |<1999, 25>
Aggregate (<1999, 10:00:00, 25, 57, 1025>, <2000, -
2|Aggregate 10-01-00, 25.2, 57, 10255, average. temp) avg temp = 25.1
3|split Split (<1999, 10:00:00, 25, 57, 1025>, temperature,

P humidity)

Compose (<1999, 10:00:00, 25, 57, 1025>, <2000,
10:01:00, 25.2, 57, 1025>, humidity = humidity)

<1999, 25>, <1988, 57>

4|Compose Humidity = 57

For instance, line 1 shows that the “translate” EPA elinedaattributes times-
tamp, temperature, humidity, air pressure and insertedwaatigibute called condition,
derived from the attributes in the input event. The “enri&#PA can take input from the
input event as well as from an external data source. Theé&ptbEPA shows only some
attributes from an input event, similar to the relationgleddra project operation.

There is also the possibility to detect patterns. The Rafatect EPA type pro-
vides means to detect basic event patterns (logical opsrdatweshold, subset selection,
etc) which do not depend on timing and ordering of events, dintensional patterns
(temporal, spatial and spatiotemporal) which rely on tispgce or both.

3. Framework description

Our framework, shown in Figure 1, uses ESB and event praugssifacilitate the inte-
gration of events produced by sensor networks and othestypdata sources. At the
left there are data providers. At the right, there are tha/daéent consumers that are in-
terested in the output of our framework. Between them, stap8, C, D, E, F and G)
handle data integration and processing. All interactieta/ben the framework producers
and consumers can be held by ESB adapeig, Qutlandoutnin Figure 1), steps “A”
and “G”.

Data providers and consumers provide and expect data in dif#feyent ways
such as Web Services, database connections, file systeamstr etc, and using diffe-
rent protocols €.g. SOAP, JDBC, FTP). To get/provide data, it is necessary tceasé
of these different types of communication possibilitiesnc® there are many available
ESB adapters (for the most common types of protocols), thenmanication between the
framework and data providers/consumers is easier.

Once data are obtained from the provider(s), it is posstbfdtér or continue pro-
cessing them (step “B”). Filtering consists in deciding e a message will be selected
or not,i.e. if it will continue inside the processing flow or will be digd®d — see Section
2. This is used when there is a need to remove irrelevant mess$eom the providers.

________ &
| v 3 : : ; ™ (Subscriber]
Web I 1 | 1 | | :
service :Fmering : Routing Translation : : Translation : :
} I oo d 1 I | -
@ @ .. »[nd i S ah -Ei 1 Event Processing | _E::I Qh d:outb —
% " 1| Me;;age i Message Message] | Message poccagd | ™ m
] : [I Translator | | | | Transiator | . Database :<
: Database | || Fmer |y » i i | o
LB mEl {i= IR YN
& - 57 = ! | lessage o -
F B 08~ F e |G| | row2> b 3
% I lessage | Lol I I
i | | (e e RN
Network | ! i -2a2=d ! = ! ! g
i i i| Rowuter sage 1 DL | Message o | @
| | | I Message T Saleti \ | | Transiator Message| |
h i | i - 1 | |
N 1 R 1 | T Web
T % IEZI 1] 10Ut > carvice
' @ 00 nn /| messag | - 1 || “essage % i
E : e Fliter : Message #:::;g:r : : Transiator MesSag :
Satellite i 1
Al B 1 C I D I E | F | G || Evem
| 1 | 1 | 1 : | Processing
i| System

Figure 1. Architecture of the framework

After the filtering process, messages may have to be traasldio do that, the
message passes througantent Based RoutéCBR) in step “C”. A CBR is an Enter-
prise Integration Pattern [Hohpe and Woolf 2003] which sedte message content and
routes the message to the appropriate message translagal twathe message content.

Step “D” has some message translators to translate eaehethifftype of message
format to a common message format inside the frameworlgatig the suggestion of
[Hohpe and Woolf 2003]. This homogenizes the data treatédinvine framework and
provides another level of independency among other stepse @essages are filtered
and standardized, event processing, in step “E”, can beeap(ds discussed in section
2.2). Events can be processed by a network of EPAs and eaclecd&PAest several other
EPAs.

Event consumers can be any human, software or machinesstedrin the events
output by the framework. The output can be in many formatsyasgut another trans-
lation step “F” so that the output can be translated into thesamer’s expected format.
Figure 1, at the right, shows examples of consumers: sulescilatabase, file system,
Web Service, another Event processing system, etc.

As an example, let us assume that we are retrieving data frdfebaservice and
a sensor network using adapténdé andin2 respectively (step “A’). Both providers are
providing temperature sensor readings of the same pladeeatame time. Once the
connection is established, only data that satisfy an SQLnoERL (Event Processing
Language) query go to the next step. After the filtering pssastep “B”), in step “C”
the CBR routes messages to the appropriate message toar{stap “D”). Events can
be detected by a pattere.g. a temperature property in the sensor stream different from
a temperature property in the SQL query (step “E”) indicatgsossible failure. The
framework translates the event message format to the shbsexpected format in step
“F” and then sends a notification using an adapeg, outlin step “G”.

4. Case Study

Our case study concerns sensor data that cover over 30 tiypasables, provided by the
Cooxupé coffee cooperative, the largest coffee cooperatithe world. Figure 2 gives an

overview of data collection and transmission, with the Geragive data collecting center
at “C”. As shown in the Figure, this center centralizes datidection, and our lab, LIS,

shown in “D”, retrieves sensor data from the center via it® iiterface, which cooxupé
created for us.

(B)| Weather (C

. Cooxupé
Station

Data Collecting
Center

D)

Sensor 1

()
Sensor 2 \)
"y . Y
Sensor n

Fe]
® | o
subscriber LIS
Y E
-
L s) Adapter T
Cooxupé) " noti tiop 95
Weather Stations fequester ‘ EI—-E‘—- : l_. E ‘
locations — —
uest/reply g ﬁ
—

Figure 2. Case study: data processing workflow.

In more detail, sensors are deployed in weather statiooatdd at 13 locations in
the states of Minas Gerais and Sao Paulo. Table 2 shows thg@8 of measurement
collected by the Cooxupé weather stations and their detgmmi Eleven of the 13 stations
provide 28 types of measurement, and 2 stations (locatedatupé and Alfenas) provide
26 types of measurements (excluding internal moistureetrand internal air density).
They monitor meteorological variables at strategic lansj covering a large percentage
of the areas where the cooperated farms are lotated

The sensors at each station collect data at one hour inderVake Cooperative’s
data collecting center fetches data from the stations at ibhiten intervals to prevent

synchronization problems, and stores them in a flat tabléghwis then incrementally
retrieved by us.

The framework is deployed at LIS (D). This was based on thecseh crite-
ria as of [Rademakers and Dirksen 2009]: core functiomaljtiquality of documenta-
tion, market visibility, active community, flexibility anldwer development effort, trans-
port/connectivity options, integration with other opemisie projects and support for im-
plementation through an IDE. We chose Mule ESB [MuleSoft R®12] to provide the
ESB functionalities inside our framework due to its goodwuentation, active commu-
nity and good support for implementation.

We deployed a Mule ESB at LIS and used its FTP adapter to vet@moxupé
data. We configured a Mule adapter to pool FTP every 15 minét#sr connecting, we
filter by file type and translate data inside the incomingastréo our internal message
format. Once data are standardized, we deal with event psowgdetecting patterns and
insert data in a database to save historical data.

To provide CEP capabilities we used Esper due to its goodadlaidocumenta-

1The cooperative congregates over 12,000 small farms.

Table 2. Cooxup & Weather stations measurements, within one hour time windo w.

Metric name Description
1[Temp Out external temperature
2[Hi Temp highest temperature
3|Low Temp lowest temperature
4|Out Hum external humidity
5|Dew Pt. temperature to which a velume of humid air must be cooled to condense into liquid water
6|Wind Speed wind speed
7|Wind Dir wind direction in cardinal peints
8|Wind Run total distance traveled of the traveled wind over a period of time
9|Hi Speed highest value of wind speed
10|Hi Dir Most frequent wind direction
11 [Wind Chill effect of wind on temperature humans perceive
12|Heat Index combines air temperature and relative humidity to determine human-perceived temperature
13| THW Index Temperature Humidity and Wind Index — calculates apparent temperature
14| THSW Index Temperature Humidity and Sun Wind Index — calculares apparent temperature
15|Bar barometric pressure
16|Rain measured liquid precipitation
17|Rain Rate amount of accumulated rain over a period of time
18[Solar Rad. amount of solar radiation
19|Solar Energy amount of accumulated solar radiation energy over a period of time
20|Hi Sclar Rad. highest measured solar radiation
21|Head D-D heat amount to keep the structure when the out temperature is one degree low
22|Cool D-D cool amount to keep the structure when the out temperature is one degree above
23|in Temp internal (weather station) temperature
24|In Dew internal (weather station) dew point
25|in Heat internal (weather station) heat
26|In EMC internal equilibrium moisture content
27|In Air Density internal (weather station) air density
2B|ET evapotranspiration

tion, active community and open source license. Esper @ ligenany customers and is
the CEP engine in the Oracle Complex Event Processing [Esplerdnc. 2012].

One example of event pattern is a basic logical operator thishold to detect
the temperature range between 19 and 22 degrees Celsiudd@héemperature range to
cultivate Arabica coffee):

sel ect tenperatureQut from CooxupeData.w n:|ength(5)
havi ng avg(tenperatureQut) > 19.0 and avg(tenperatureQut) <
22.0

The second is a basic threshold pattern that detects whaim&. rit is important
to know the occurrence and the rain rate since water baldfer#sacoffee growth:

sel ect rai nRate from CooxupeData.w n: | ength(3) having
avg(rainRate) > 0.0

Both are written using the Event Processing Language (EfID) Esper which
resemble SQL, but instead of querying tables it queriesastse The EPL written in (i)
gueries the average outside temperature within a windoengfth of 5 measurements. If
there are data returned, the framework will produce a newteslgowing that the ideal
temperature was reached. In (ii), the query uses the windagth of 3 measurements
and returns data if the average rainfall in the period istgraaan zero.

Within this framework, Cooxupé can provide informationdemand or use notifi-
cations when something unexpected happens. This canai@ifs about meteorological
changes and trigger reactive solutions to avoid damagesffeecproduction.

5. Related Work

An example of an approach for event processing in a sensatextoappears in
[Dunkel 2009]. With EPAs that filter, split, aggregate, sgorm and enrich events. EPAs

are used to propagate more complex and/or abstract evesbsvitstream systems. Sen-
sors are deployed in a physical environment and emit thesisomements continuously to
EPAs that perform pattern matching and event processing.

Our solution provides another layer of abstraction and sdBpnkel’s proposal
using integration capabilities of the ESB before the EPAsgracess events or situations.
Through this approach it is possible to capture events ngtfoom different devices€.g.
sensors), but also from other event sources such as stas¢ $iérvices and databases
using the ESB adapters.

Supervisory Control and Data Acquisition (SCADA) [BaileydaWright 2003]
are systems that provide means to acquire data and allowoqrexform remote control
and event processing. The difference with our proposabisSICADA focuses primarily
in data acquisition and interoperability in the same systémcontrast, we deal with
the acquisition of data from different providers and onasthdata are retrieved provide
means to transform, combine and correlate these data.

SensorBUS [Broering et al. 2010] uses the message busextthi pattern to
provide the integration between sensors and services t#smathe SWE standard spe-
cifications. It allows services and sensors to publish ngessand to be notified in a
publish-subscribe communication. Our proposal is difiefeom SensorBUS because
our framework provides not only integration between selsystems but also between
other data providers and uses the CEP to process events.

SAPHE [Churcher and Foley 2010] is a wireless sensor netwooject in the
health care domain that uses SWE specifications and CEPd@émess and processing
optimization problems. The difference between SAPHE arrchpproach is that we are
interested in dealing not only with sensor data provided WESstandard services, but
we also envisage to use other different data sources.

SStreaMWare [Gurgen et al. 2008] is a service-oriented levdare that aims at
dealing with the dinamicity caused by various operations@msors and their effect on
concurrent continuous queries. It uses a specific tempkteesthema and a query lan-
guage for sensor data called SStreaM. SStreaMWare prosid@dstraction to locate,
query and aggregate sensor data, but does not deal withtggiesr of data nor treat the
events as our approach does.

6. Conclusions

This paper presented our framework to process events froéendgeneous data sources.
Our work combines the advantages of using ESB (to deal wtdgmtion and extensi-
bility) and CEP (to provide clear and straightforward evertcessing capabilities). Our
case study shows the feasibility of our solution.

There are many possibilities of extensions from the archital point of view.
The first is to develop sensor specific custom transport coems to deal with sensor
specific €.9. SWE specifications) message formats. Another possibsitp iprovide
easier means to build and deploy new event patterns inseddmework. Yet another
involves using semantics in event handling.g.[Teymourian and Paschke 2010].
Acknowledgements Work partially financed by FAPESP (grant 09/52336-7), the Mi
crosoft Research Fapesp Virtual Institute (eFarms prpj€dNPq, INCT in Web Science

(CNPq 557.128/2009-9) and CAPES.

References

Babu, S. and Widom, J. (2001). Continuous queries over degamss. SIGMOD Rec.
30(3):109-120.

Bailey, D. and Wright, E. (2003Practical SCADA for IndustrylDC Technologies.

Broering, A., Foerster, T., Jirka, S., and Priess, C. (20B¥nsor bus: an intermediary
layer for linking geosensors and the sensor welPrvc. COM.Geo '10pages 12:1—
12:8.

Churcher, G. E. and Foley, J. (2010). Applying complex eyeatessing and extending
sensor web enablement to a health care sensor networkeatcing. InSensor Sys-
tems and Softwareolume 24 ofLecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineenpages 1-10. Springer.

Dunkel, J. (2009). On complex event processing for senstvarks. In Autonomous
Decentralized Systems, 2009. ISADS '09. International®gmm onpages 1 —6.

EsperTech Inc. (2012). Esper website. http://www.espkro®m/partners/partners.php
(Accessed Apr, 2012).

Etzion, O. and Niblett, P. (2011Event Processing in ActioManning.

Gurgen, L., Roncancio, C., Labbé, C., Bottaro, A., and IW. (2008). Sstreamware: a
service oriented middleware for heterogeneous sensomnuatagement. IRroc. 5th
Intl conf. on Pervasive servicekCPS '08, pages 121-130.

Hohpe, G. and Woolf, B. (2003)Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutiomsddison-Wesley Professional.

Luckham, D. C. (2001).The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systersidison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Luckham, D. C. (2006). What's the Difference Between ESP dDHEP?
http://www.complexevents.com/2006/08/01/what’s-thierence-between-esp-
and-cep/ (Accessed Jun, 2012).

Magid, Y., Sharon, G., Arcushin, S., Ben-Harrush, I., an@iRavich, E. (2010). Indus-
try experience with the IBM Active Middleware TechnologyN#T) Complex Event
Processing engine. Rroc. 4th ACM DEBS ’'10pages 140-149.

Menge, F. (2007). Enterprise service bigsee and Open Source Software Conference
MuleSoft Inc. (2012). Mule website. http://www.muleso@im/ (Accessed Apr, 2012).

Rademakers, T. and Dirksen, J. (200@pen-Source ESBs in ActioManning Publica-
tions Co., Greenwich, CT, USA.

Teymourian, K. and Paschke, A. (2010). Enabling knowleldgged complex event pro-
cessing. InProc. EDBT/ICDT Workshop€DBT '10, pages 37:1-37:7, New York,
NY, USA. ACM.

