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Abstract

Environmental planners take advantage of Spatial Decision Support
Systems (SDSS) to deal with data and models for problem solving. How-
ever, these kinds of software usually provide generic models, which require
considerable effort to be specialized to fit particular situations. This pa-
per explores a solution which couples Case-Based Reasoning (CBR) to an
existing SDSS, named WOODSS, to help planners to profit from others’
experiences. WOODSS is based on a Geographic Information System, and
interactively documents planners’ modeling activities by means of scien-
tific workflows, that are stored in a database. This paper described how
CBR has been used as part of WOODSS’ retrieval and storage mecha-
nisms, to identify similar models to reuse in new decision processes. This
adds a new dimension to the functionality of available SDSS.

Keywords: Environmental decision support, Case-based reasoning, Scientific
workflows, GIS

1 Introduction

Decision Support Systems (DSS) are software that help users apply analytical
and scientific methods to decision making [6]. DSS that focus on the environ-
mental domain are referred to as Environmental or Spatial DSS (EDSS/SDSS),
providing analysis tools to handle spatio-temporal data found in environmental
processes [41, 16]. An environmental simulation model may be defined as a
computer-based technique to imitate, or simulate, the behavior and the reac-
tions of various kinds of real-world processes [45].

EDSS/SDSS must provide support for model specification and construction.
However, they usually provide only generic models, which need to be adapted to
fit particular situations. This requires considerable effort and expertise, which
includes the appropriate choice of models, and of data to instantiate them.
Indeed, model suitability and data selection are sensitive to the geographic
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context, and often depend on the region and on the environmental constraints
for which the solution scenarios are being built.

The construction of solutions usually requires cross-disciplinary work and
is reached only after intensive collaboration of groups of experts. However,
decision making processes are frequently performed in an ad hoc manner, with
insufficient documentation and very little support for interchange of expertise
among groups of planners. Thus, a considerable amount of time is spent in
reinventing solutions to problems, while money and time would be saved in
profiting from past experience.

This paper discusses a software tool under development at the Institute of
Computing of the University of Campinas (UNICAMP), Brazil. The goal of this
tool is to help decision makers in the environmental domain to collaboratively
exchange their experience, and profit from learning about past solutions to sim-
ilar problems. This tool, named WOODSS (WOrkflOw-based spatial Decision
Support System), works in conjunction with a Geographic Information System
(GIS) and is based on two concepts: (i) the use of scientific workflows [47, 2]
to represent environmental models that decision makers have designed and (ii)
several kinds of retrieval mechanisms to help users choose the most adequate
models from those available in the WOODSS database. In special, the work
presented in this paper concerns the the use of Case-Based Reasoning (CBR)
[38] as a retrieval mechanism.

This approach combines work on database systems, artificial intelligence and
workflows. The database contribution lies in managing WOODSS’ modelbase
using database techniques. Classical architectures for decision support systems
consider two kinds of storage entities, managed separately: the Modelbase,
where models are stored; and the Database, containing field data, metadata
and administrative information. In WOODSS, both Database and Modelbase
storage units are handled in a unified way within a single database management
system. This allows adopting compact storage policies, as well as flexibility
in model handling, with support to update and expansion of the modelbase.
Models are represented as scientific workflows, stored in this base, and can be
progressively enhanced and combined.

Artificial intelligence research is used in the context of CBR, whose retrieval
techniques are added to the retrieval mechanisms of WOODSS, offering context
sensitive similarity analysis. Decision makers can either reuse existing mod-
els, or combine/adapt them to their specific needs, thereby solving problems
incrementally.

The main contributions of this research are: (a) a discussion of the theoretical
and pratical capabilities of CBR in environmental decision support; (b) analysis
of the process of eliciting requirements for using CBR in this domain; and (c)
presentation of implementation issues concerning the combination of CBR, and
scientific workflows in WOODSS.

The rest of this paper is organized as follows. Section 2 presents an overview
of related work by discussing the applicability of CBR in environmental mod-
eling and decision support. Section 3 introduces WOODSS. Section 4 presents
the use of CBR in WOODSS, showing the CBR schemes adopted in this work.



Section 5 illustrates implementation issues through a pratical example. Finally,
section 6 presents conclusions and future work.

2 CBR in environmental modeling and decision
support

2.1 An overview of case-based reasoning

Case-Based Reasoning (CBR) is a model of reasoning which consists in solving
new problems by adapting solutions that were used to solve old problems [38].
CBR research is tightly connected with artificial intelligence, within the domain
of knowledge management [48].

The principle of CBR is based on a cognitive model named Dynamic Memory
[43]. This model states that human memory is dynamic because it is continu-
ously changing according to the new experiences one is exposed to. These indi-
vidual experiences, or cases in the CBR terminology, encompass lessons learned
in a specific context, which can be used to face new situations. Thus, knowledge
in CBR is embedded into particular cases, and in their interrelationships.

A case is a contextualized piece of knowledge representing an experience
[30]. It can be for instance an account of an event, a story, or some record.
Even though there is a lack of consensus in the CBR community as to what to
represent in a case, its description typically comprises at least:

e The problem, that states a case and describes the state of the world when
it occurred; and

e The solution, that states the solution derived for that problem.

The basic processing cycle of CBR comprises four tasks (nicknamed the
four REs) [1], as illustrated in figure 1. This cycle assumes that there exists
a case "memory” (the Case Base) that contains knowledge of situations/cases
previously encountered. The cycle consists of iteratively executing the following
steps, given a problem to be solved:

1. REtrieve from the Case Base the set of cases most similar to the input
problem;

2. REuse the solutions of these retrieved cases. If necessary, adapt their
solution to solve the input problem, thereby creating a solution tailored
to it;

3. REvise the correctness and usefulness of the solution adopted in step 2;
and

4. REtain the new solution in the Case Base as part of this new case, for
future utilization.
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Figure 1: Basic processing cycle of CBR: The “four RE”.

There is a whole range of CBR systems proposed in the literature, At the
two extremes are fully automated systems and retrieval-only systems [30]. Fully
automated systems are those that solve problems without user intervention and
have some means of interacting with the world (e.g. sensors) to receive feedback
on their decisions. Retrieval-only systems work interactively with a person to
solve a problem. Their role is to augment a person’s knowledge, providing cases
for the person to consider that he or she might not be aware of; the person will
be responsible for the actual decisions. There are very few fully automated CBR
systems, all of which focused on very strict domains. Most CBR tools usually
require human intervention, especially in the reuse phase [49].

2.2 CBR applicability in modeling and decision support

This section discusses the theoretical suitability of using CBR in environmental
modeling and decision support. A close parallel can be traced between the way
experts build models and the CBR, process. First of all, model development usu-
ally fits the basic principle of CBR, which consists in recurring to old situations
to solve a problem. Environmental modeling relies heavily on past experience,
frequently improving old models and/or assembling parts of them to construct
new ones.

Second, because of the inherent complexity of natural processes, experts usu-
ally build environmental models founded on experimental results and hands-on
experience. Even though some generalizations may be suitable, many situations
represent exceptions. By the same token, in CBR knowledge is not formally
modeled, but it is defined extensively, through a set of instances [1, 35]. Each
case is stored in a Case Base and individually represents knowledge on a specific
instance of the modeled problem. A set of cases may be needed to encompass
the domain knowledge needed to solve the given problem. Thus, CBR offers
the flexibility required by environmental modeling, storing instances of random
processes, and states in distinct instants.



Besides its suitability to modeling, CBR is also interesting in decision sup-
port because it intrinsically deals with problem solving. Knowledge acquisition,
sometimes called knowlegedge harvesting [31], is part of the process of problem
solving. Improving knowledge of an environmental process in the CBR. context
can be acommodated by storing new cases in the Case Base, to be retrieved
subsequently to solve similar problems. Furthermore, CBR can be employed
not only in problem solving, but also in experimentation - e.g. in simulation of
scenarios.

CBR applications can be broadly classified into two main types: (i) classifi-
cation tasks, and (ii) synthesis tasks.

Classification tasks cover a wide range of applications which are primarily
concerned with case retrieval. This encompasses prediction, assessment, diagno-
sis and process control. Examples of classification CBR applications in the envi-
ronmental context are the CAse-based Range Management Adviser (CARMA)
[7], which deals with grasshopper infestations, the Water Quality Simulation
Module (WQSM) [46], that controls oxygen emissions in a plant waste water
treatment environment, the ZONATION system [23], which is focused on soil
classification, and the NEMO system [25], for air quality prediction in urban
areas. Fuzzy techniques can also be employed in this context — e.g., [39], for
weather prediction.

Synthesis tasks attempt to create a new solution by combining parts of previ-
ous solutions, usually in design, planning and configuration applications. Most
systems of this type must make use of adaptation and are commonly hybrid sys-
tems, combining CBR with other techniques. Examples of these kind of tools
for environmental problems are CHARADE [37] and CARICA [3], which aim
at supporting the user in the process of fire-fighting including both situation as-
sessment, planning activities, and training support for fire-fighting intervention.
Related work in the environmental context concerns developing CBR~associated
techniques for knowledge capture and reuse — e.g., the work of [50, 8] concerning
satellite image retrieval for spatial knowledge management.

Finally, CBR can be used to provide mechanisms to help decision makers
choose the right models to apply according to the problem faced. This is the
main motivation that is behind the use of CBR in our research. The subsequent
sections present WOODSS and its use of CBR.

3 The WOODSS system

The WOODSS system (WOrkflOw-based spatial Decision Support System) [44]
is an open and extensible SDSS which is being built at the LIS laboratory in
UNICAMP, Brazil. It is founded on two basic concepts: the use of scientific
workflows to document decision support processes in the environmental domain,
and the premise that in this domain decision making processes are sequences of
activities that lead to the production of a set of maps as a fundamental part of
the planning output. Each map in the set may reflect an alternative solution
scenario for a given problem, or the map set may illustrate complementary



actions to be taken in a given situation. The map set is accompanied by a set
of documents that contain directives and policies to be enacted in the region
depicted therein. The enactment of the plan consists in implementing these
policies in the region, following the spatial constraints shown in the maps.

A spatial decision process is prompted by a problem where location and
spatial distribution are relevant factors. This process is solved by combining
distinct kinds of spatial analyses on the region of interest, associated with other
non-spatial information. The process can be described as a sequence of steps
involving creation and combination of maps, to produce a final set of maps.
This whole cycle may be repeated over the years for a given region — e.g., as
the plan is enacted, environmental changes will prompt plan revisions, and thus
new maps and directions.

For spatial analysis and map production, Spatial DSS (SDSS) rely on a
Geographic Information System (GIS). For the purpose of this paper, it suffices
to assume that a GIS is an information system that manages geographic data
and provides sophisticated spatial analysis and visualization tools, including
cartographic renderings. Geographic data may comprise maps, satellite and
radar images, and a variety of datasets and attributes about phenomena of
given regions.

3.1 Using scientific workflows to document models and
cases

From a SDSS perspective, each map resulting from a spatial decision process is
the result of the execution of a spatial model. Under this perspective, models
can be specified in terms of their inputs (constraints, data files and parameter
values), outputs (materialized in maps) and execution states [40]. Map gen-
eration using a GIS is a partially ordered sequence of activities, followed by
sucessive adjustments, using the GIS’ functions [44].

This structure for organizing the solution of a decision problem is very similar
to that of workflows. The notion of a workflow originated in business domains
to specify the “flow of work” to execute business procedures. A workflow can be
defined as a set of tasks involved in a procedure along with their interdependen-
cies, inputs and outputs. Each task is called an activity, and can be executed
by one or more agents, in a given role; thus, an activity is a unit of work[22].

Environmental decision making has a strong component of empirical experi-
mentation, with a long cycle of sucessive approximations through trial-and-error.
Traditional workflows do not provide such flexibility in specification. The idea
is to use a special kind of workflow to support the representation of spatial
decision making processes — the scientific workflow.

Scientific workflows [47, 2] are a special kind of workflow suited to docu-
menting and specifying scientific experimental activities within a laboratory.
Whereas office workflows are concerned about goals, scientific workflows are
centered on data and process management. Scientific work is characterized by
a great degree of flexibility and presents a much higher amount of uncertainty



and exceptions than business work. Scientific workflows are concerned with sup-
porting the activities of collecting, generating, and analyzing large amounts of
heterogeneous data, obtained from various experiments, models and statistical
analyses; furthermore, they describe the experiments themselves. In particular,
their execution must allow deviation from the specification while the workflow
is being executed, as is often the case in scientific experiments.

While having the same basic components of business workflows, the speci-
fication and management of scientific workflows allows undoing activities, un-
finished executions and on-the-fly ad-hoc specification (e.g., letting a workflow
start execution before its specification is finished). In order to achieve these
goals, the specification of a scientific workflow must describe the data sources
used, the processes activated, their temporal and data relationships, their exe-
cution constraints, the agents involved and their roles. Furthermore, they can
be updated during their execution, which requires implementation of specific
execution control and monitoring techniques [2].

The work of [44] shows how environmental decision processes can be ade-
quately modeled in terms of scientific workflows. These workflows offer a clean
view of the whole decision process, helping experts to control and plan the next
steps of the process. Furthermore, they can facilitate model execution, because
workflows are parameterized specifications, and can control the interactions of
distinct analysis tools. With the emergence of the notion of Semantic Web and
Web Information Systems [17], scientific workflows are being disseminated as
the means to organize cooperative scientific experiments — e.g. in geosciences
[9] or in bioinformatics [5]. Furthermore, they are being widely used in the
context of Web scientific computation and Grid architectures - e.g., [32].

3.2 Overview of WOODSS

WOODSS aims to provide mechanisms to handle and manage models, support-
ing the development of decision solutions. WOODSS interacts with a Geograph-
ical Information System (GIS) by capturing user interactions with the GIS and
documenting them by means of scientific workflows. These workflows are used
by WOODSS in three roles: (i) as a means for documenting a decision process;
(ii) as high-level specifications of an environmental simulation model; and (iii)
as executable parametrized specifications of decision procedures, which can be
reused and adapted for similar situations.

WOODSS’ modelbase is a database that stores scientific workflows and as-
sociated data. Decision makers can query this modelbase to retrieve the models
most relevant to the problem faced, and reuse or adapt them, by adding or
removing activities, changing the flow of data among these activities, or reset-
ting their internal parameter values. Furthermore, workflows can be directly
launched to execute in the coupled GIS. In this sense, besides documenting
decision processes on the fly, the storing of new workflows in WOODSS also
constitutes a means of progressively enriching the modelbase.

Figure 2 illustrates WOODSS’ three kinds of user interaction modes: (1)
user-GIS; (2) user-WOODSS; and (1-2) user-GIS-WOODSS, which combines
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Figure 2: User interactions with WOODSS.

the previous ones. In the first mode, users ignore WOODSS and interact with
the GIS, to define and implement some model, whose execution is materialized
into a map. WOODSS monitors this interaction in real time and generates the
corresponding scientific workflow specification. In the second interaction mode,
also called workflow construction/editing, users access WOODSS to query its
modelbase and update and/or combine retrieved models, constructing a new
model, which can be subsequently executed in the GIS. Typically, this second
kind of interaction mode occurs when decision makers want to find out about
previous solutions to a similar problem. These kinds of interaction enact the
three main goals of WOODSS: (a) documentation of decision processes; (b)
support for decision making; and (c) modelbase construction.

The architecture of WOODSS, conceptually illustrated in figure 3, depicts
its main functional modules: Interface, Monitor, Update, Query and Workflow
Manager. The Monitor captures users’ interactions with the GIS, translating
them into a workflow which is passed on to the Workflow Manager. The latter is
responsible for managing the modelbase. The Interface allows decision makers
to graphically visualize and create planning processes and models in terms of
workflows. It mediates user requests for browsing (Query module) and update
(Update module) the modelbase.

The figure shows two distinct storage units - Modelbase and Geographic
database. They are shown separately to distinguish the kinds of data stored.
However, unlike standard decision support system architectures, both modelbase
and database are handled together by a single relational database management
system. This improves system performance and helps users in managing their
models, which are associated with the relevant geographic data.

More details about the functionality and design of WOODSS are outside the
scope of this paper, and can be found in [44]. The next section concentrates on
describing how WOODSS has been enhanced with CBR.
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Figure 3: Architecture of WOODSS.

4 CBR in WOODSS

The first version of WOODSS, described in [44], did not count on CBR. It of-
fered model development and management facilities to improve knowledge reuse.
However, retrieval facilities were limited, and users had no help in identifying the
model to use in a given situation. The model retrieval mechanism was restricted
to keyword match, which could only identify exact (syntax) matches. Thus, in
order to find some solution to a problem, a user would have to know what key-
words had been employed in defining this problem and associated workflows.

Keyword match has several other limitations. One is that it ignores simple
correspondences, e.g. synonyms and concept abstractions. This limitation is
enhanced when groups of experts want to share experiences (e.g. see comments
in [9]). They may use slightly different vocabularies and distinct points of view
to document their models. Another limitation is that all features of a given
problem have the same weight, while most times it is necessary to prioritize
features when describing a problem [27, 28].

The approach investigated to overcome these limitations was to integrate
CBR mechanisms into WOODSS to help users choose the most useful models
(or parts thereof) at the right time. Thus, this work concentrated in the retrieval
and retainment phases of the CBR process (which are complementary to each
other). The main issues to be faced in these steps are case representation,
indexing, similarity analysis and storage and retrieval algorithms, each of which
is discussed in the subsequent sections.



4.1 Case representation

The first implementation issue, from a CBR point of view, is how to represent
a case in a computer system to promote better reuse. Related work mentions
“case memory” and “case database” to store cases, without detailing the repre-
sentation structures adopted. We recall that a case is a contextualized piece of
knowledge representing an experienced situation, and is usually formed by two
components: problem description and solution.

Our approach, as will be seen, consisted in representing each case by a pair
< scientific workflow, associated metadata >. The workflow specifies the model
— the solution component used to solve a problem — while the metadata describe
the problem and the parameters used to instantiate the workflow. From an
internal implementation point of view, this pair corresponds to a set of pointers
(i-e., database record identifiers) — one pointer to a workflow, and three other
pointers to associated metadata records. Workflow and metadata records are,
in turn, stored in database relations. There are five main relations to man-
age workflow data (Activity, Data, Dependency, Workflow, Actor). Metadata
records are explained at the end of this section, and detailed in 4.2. Further
details on the database schema appear in [26].

Since a WOODSS workflow can be seen as a graph that represents an al-
gorithmic execution, the first idea was to use the workflow’s topology to help
derive its semantics. This was soon abandoned, because though workflows have
a well-defined structure, this structure does not clearly denote the semantics
of the implicit decision process, because the same workflow patterns occur for
distinct purposes.

Figure 4 gives an example of why workflow topology does not suffice to
identify a case. Consider the generic problem of deciding on planting strategies
in agricultural planning, where management practices must preserve environ-
mental conditions. This kind of activity is called agri-environmental planning.
Suppose that part of the plan involves solving the subproblem portrayed in Fig-
ure 4(a): “determine the most appropriate areas in a region to plant a crop
x, given that its best yield is for soil type y, and where the potassium rate in
the soil moisture is within a range of 2%”. This problem has two constraints -
soil type and potassium rate. Its solution requires identifying the areas which
satisfy each constraint. In a GIS-based DSS, this is achieved by an operation
called classification, which partitions a region according to some predicate. In
this case, Figure 4(a) shows classifications based on soil type and on potas-
sium content, resulting in two different maps — Soil’, K’ — for the same region.
The combination of both constraints is achieved, in a GIS, by using the over-
lay operation, which provides as output a map where the areas satisfying both
constraints are outlined. Figure 4(b) shows a solution to another subproblem
whose statement is: “determine the appropriate recommendation of potassium
fertilizer over a given region in order to plant crop x, considering that the region
presents spatial variability both of the potassium rate and soil types”. Here,
it is necessary to determine the demanding fertilizer quantity (map reclassifica-
tion based on the nutrient rate), and adjust it to each soil type (weighted map
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Figure 4: Topologically identical workflows but with different purposes.

overlay).

Both workflows in Figure 4(a) and 4(b) have the same topology and use the
same inputs (soil map and potassium spatial distribution map). Both use the
same GIS operations (reclass and overlay). However, the goals are distinct. In
other words, different — though related — problems can be solved /implemented
very similarly, and thus their workflows will be essentially identical, but answer-
ing to very different needs. By the same token, a given environmental-related
problem may have very different solutions, depending on the region under study
and the experts involved. In this case, the resulting workflows/models will be
completely different, and their topology cannot be used in case-based retrieval.

As a consequence, we opted to adopt metadata to define the problem com-
ponent of a case. These metadata are associated to each workflow to state the
problem focused and describe its meaning. The drawback to this solution is that
users must intervene to provide the appropriate metadata, to enhance workflow
semantics. On the other hand, it is semantically richer than alternatives that
consider automatic metadata extraction.

There remained the issue of defining the appropriate metadata components
to describe a problem. The set of attributes chosen combine two kinds of knowl-
edge: features elicited from common descriptions available in the environmental
decision making field; and a classification of the most common queries during
environmental decision making. This classification divides experts’ concerns
into the following categories [44]:

e Area-based queries. The basic predicate specifies a region. Users search for
decision processes and/or models executed involving a specific geographic
area. This allows finding out, for instance, all studies conducted in a given
region.

e Problem-based queries. The predicate concerns a problem. Users look
for decision processes developed to solve problems with similar objectives,
to take advantage of experience acquired in the resolution of the same
problem over other geographic areas. This allows retrieving, for instance,
all solutions stored concerning nutrient balance for a given type of soil and
Crop.

e Process-based queries. The predicate involves a model, and users request
to see its distinct implementations. This could show possible variations in
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the solutions of a problem, with their causes and consequences — e.g. the
kinds of products used to implement a given nutrient balance procedure.

We point out that there are already several metadata standards proposed
for the environmental domain (e.g. FGDC [15] or [34], which is suited for eco-
logical sciences). The main difference is that these standards adopt atomic (non
descriptive) metadata fields. We instead opted for two kinds of metadata fields:
free text attributes and atomic attributes. Free text fields serve as documenta-
tion for a case, whereas atomic attributes are descriptors used for indexing (see
section 4.2). Our free text metadata consist of the following attributes:

e Goals. Summary of the problem, including the contraints considered.

e Theoretical model. Theoretical basis of the implementation and biblio-
graphic references.

e Study area. Description of the geographic location and the environmental
characteristics of the region (e.g. climate, soil, vegetation).

e Input data. Enumeration of the kinds of input data, citing the methodol-
ogy used in gathering data and the date of collection. Often, maps used in
GIS have associated documentation files which already provide this kind
of information.

e Qutcome. Textual analysis of the effectiveness of the solution represented
by the workflow. This is not meant for use by the retrieval mechanism
but to help to discriminate between good and bad solutions to a problem.
This kind of metadata is very useful, but is seldom, if ever, available.

e Expert or institution. General information about the persons responsible
for the model.

The next section discusses the indexing scheme employed.

4.2 Indexing

Stored cases should be indexed to be retrieved efficiently. The same case can
be “remembered” in several different ways. Ideally, this requires establishing as
many indexing schemes as there are ways in which a case can be remembered,
which is obviously unfeasible.

Free-text metadata complicate indexing and require instead the use of In-
formation Retrieval techniques [4] to adequately process the metadata fields of
every case. For performance reasons, we restricted our indexing structures to
atomic metadata fields (named the case descriptors). The indexing scheme pro-
posed is based on two kinds of user-provided case descriptors: goal descriptors
and constraint descriptors. Goal descriptors are used to define to what problem
a case is related, acting as a first filter over the case set, since there can be var-
ious solutions related to a given problem. Constraint descriptors differentiate
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Figure 5: Goal and constraint descriptors partitioning of the set of cases.

among cases that treat a problem and represent characteristics specific to this
problem. Figure 5 illustrates the organization behind this idea.

Goal descriptors are keyword expressions for a problem statement —e.g. “fer-
tilizer application”. Constraint descriptors are predicates composed by triples
of the form < attribute, operator,value >. The attribute field is the name of a
well-defined variable/characteristic of a particular problem, and can have string
or numeric values. The operator fiels is a relational comparison operator (e.g.
=, >). For string-valued attributes, the only valid operator is equality (=).

An example of a constraint descriptor is < culture,'=’, soybeans > A <
soilTexture,'>’,50% >. The operator and value fields differentiate among the
existing cases related to a problem. All goal descriptors are unweighted. Con-
straint descriptors, on the other hand, have relevance weights, set by users.

Case indexing consists in constructing a set of data structures linking these
descriptors to a case. First, the terms encapsulated in the descriptors (goal
descriptors and names of attributes and string values of constraint descriptors)
compound a thesaurus, which is augmented by users when necessary. Next,
terms are interrelated to represent their semantic context through hierarchical
and equivalence links, organized as a forest of n-ary trees, where each node is a
term.

The concept of hierarchical (vertical) and equivalence (horizontal) linked
structures has been, for instance, used for many years by experts of agriculture
to standartize the vocabulary employed in documentation tasks. Examples of
agricultural thesauri are AGROVOC [20], developed by the Food and Agricul-
ture Organization of the United Nations, and THESAGRO [11], developed by
the Brazilian Ministry of Agriculture. Figure 6 portrays how the term “maize”
is represented in AGROVOC. It shows that ”maize” is a kind of “cereal”, “corn”
is a term equivalent to "maize”, and “dent maize” and “popcorn” are narrower
(more specialized) terms. The notion of thesauri is now being incorporated into
the use of ontologies to classify domains. Ontology management is receiving in-
creased acceptance by people working on geographic problems (e.g. [19, 21]). In
particular, the OntoWEDSS prototype [10] presents an example of integration
of ontologies to case-based and rule-based reasoning for wastewater treatment.

Metadata, descriptors and indexing are the basis for establishing our retrieval
scheme, discussed in the next section.
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Figure 6: Representation of the term “maize” in AGROVOC.

4.3 Similarity based retrieval and analysis

Similarity retrieval and analysis implies finding, for a given user query, the
database objects that are the “most similar” to the user criteria. This is a huge
task, because similarity is highly domain dependent. Similarity-based retrieval
is an open issue in several domains, such as image databases e.g., [33]. The
approach requires defining the notion of “similarity”, by determining similarity
functions and associated metrics. One of the problems encountered in this
context is that queries are imprecise, since the user has a general idea of desired
characteristics, but exact matching is usually impossible.

Santini [42] distinguishes between queries where users know what they are
looking for, though without an exact description, and queries where users just
have a general idea of what they are looking for, and refine their search criteria
interactively. This last kind of search procedure is called feedback similarity
based retrieval.

Similarity criteria are usually associated with distance metrics, which are
applied to compute the distance between the query goal and what is stored.
Stored objects are associated with descriptors that are used to compute the
distance between a user request and the retrieved database objects. In our
context, cases (< scientific workflow, metadata > pairs) are the stored objects.
Case descriptors used for retrieval are part of a case’s metadata. Global de-
scriptors are those that describe an entire case, while local descriptors describe
parts of a case. The notion of partial and global descriptors is also common
in other similarity based retrieval studies - image or multimedia databases, but
also textual information retrieval as well. Several mathematical models have
been proposed for similarity metrics, some of which started from psychological
studies. A taxonomy of such proposals is presented in [24].

The general process of similarity analysis employed in CBR systems can be
described as follows [30]:

1. Find correspondences. This step has the intention of aligning the at-
tributes of the input problem and the stored cases to be compared, when
they are not directly mapped into each other;

2. Compute the degree of similarity of corresponding features. This step
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combines many evaluation metrics to compare corresponding sets of dif-
ferent kinds of attributes; and

3. Assign importance values to features.

This whole process is intrinsically complex. First, finding semantic corre-
spondences requires interpretation of the relationships among features to iden-
tify their functional role, which is very costly and knowledge-intensive. Second,
the function(s) that compute similarity among features must be tuned accord-
ing to the domain considered. For instance, two geographic features one meter
apart can be very close or very far away, depending on the situation. Finally, it
is not easy to quantitatively define the relevance of each problem characteristic,
especially for non structured domains, as is our case.

Minkowski’s r-metrics are amongst the most common metric-based similarity
measurements used in databases:

n 1/r
Lr(xay) = [Z |"L"l - sz] T > 1 (1)
=1

Loo(z,y) = maz;|z; — yi (2)

where x,y are multidimensional descriptors of two database objects. For r =1
and r = 2 we respectively have the so-called city-block and Fuclidean metrics.
These metrics satisfy a set of well known axioms:

Self-similarity: d(Sq,Sq) = d(Ss, Sp)

Minimality: d(Sa,Ss) < d(Sa,Sh) 3)
Simmetry: d(Sa,Sp) = d(Sh, Sa)

Triangular inequality: d(S,, Ss) + d(Ss, Sc) > d(Sa, Se)

where S,, Sy describe two database objects, and d their distance.

Euclidean metrics, for instance, are often applied to compare two images in
terms of color features, since they are appropriate to model the human notion
of similarity in this context. The similarity evaluation method employed in
WOODSS’ CBR mechanism is based on the nearest-neighbor idea [30], which
uses city-block metrics. This method can be expressed by the equation:

Similarity(I,S) = sz x f(I;, S;) (4)
=1
Where:
e [ is the input case;

e S is a stored case;

e 1 is the number of attributes in each case and 7 is an individual attribute;
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e f is a similarity function defined for computing similarity between cases
I and S; and

e w; is the importance weight of attribute ¢ in computing the similarity of
I and S.

Similarity values are usually normalized to fall within a range of 0%-100%,
where 0% means totally dissimilar and 100% is an exact match. Limitations of
this method are that potentially the whole case set needs to be analysed and
that it considers only direct correspondences among features. Advantages are
that it is relatively simple to implement and it never discards a good match
prematurely.

In WOODSS, the user provides parameters for goal and constraint descrip-
tors (input case) and the system returns the cases closest to this input, using
the function given in (5).

Similarity(I,S) = simGoal(I, S) + simConstr(I,S) (5)
Where:
e [ is the input case;
e S is a stored case;

e simGoal(I,S) is the similarity value of the goal descriptors of I and S;
and

e simConstr(l,S) is the similarity of the constraint descriptors of I and S.

Both simGoal and simConstr are computed using equation (4).

Similarity analysis is performed in two steps, following the idea presented in
figure 5. First, the algorithm identifies the stored problems related to the input
case. This is the role of the simGoal calculation. simGoal uses cases’ goal
descriptors (unweighted keywords), comparing each goal descriptor of the input
case with all of the selected stored cases, and selecting the greatest similarity
value for each input goal descriptor. The final simGoal value is given by the
average of the selected similarity values of the input goal descriptors. The output
of this first step are the cases with the largest value for simGoal.

The second step evaluates the similarity among the constraints (simConstr)
of the input case and of the cases identified in the first step. We recall that
constraints are predicates composed by conjunctions of triples of the form <
attribute, operator,value >, where each triple has a particular relevance weight,
assigned by the user who created the model. For each triple, the algorithm
calculates the similarity between the value fields of corresponding (identical)
attribute names, and simConstr is given by the weighted average of these values.

The similarity between two goal descriptors when they are string constraints
is based on computing their distance in the thesaurus (the number of edges tra-
versed in the path between them). Zero edges traversed (the node is compared
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to itself) means an exact match. When the path is not encountered traversing
the maximum number of edges stipulated (in the current implementation, five
edges), there is a total mismatch.

The similarity between two numeric constraints requires considering their
operator field (for strings, only the operator ‘=’ is permitted). Numeric con-
straint operators define intervals, with one side limited by the constraint value
field (e.g. < slope,‘ <',0.05 > has an upper bound limit of 0.05). When the
operator is ‘=’ this interval is a point. The similarity between two constraints
is given by the percentage of the interval defined by the input constraint which
falls within the interval defined by the stored case’s constraint. Thus, if the
input interval is completely contained in the stored case’s interval, there is an
exact match, and when they are disjoint, there is a total mismatch.

4.4 Retainment and retrieval mechanisms

Having defined case indexing and similarity computation, the last task in con-
structing a CBR mechanism is to define its retainment and retrieval schemas.
A retainment mechanism must: (1) decide if a new case is to be retained; (2)
request user intervention to provide indexing descriptors; and (3) store the case
in the Case Base (WOODSS’ modelbase). A new case should only be retained
if it is sufficiently “different”, in its semantics, from the others in the Case Base.
Because of the inherent complexity of automatically taking this decision, user
input is required. To help the user in this decision, WOOQDSS takes the descrip-
tors initially defined for the new case and browses the modelbase, retrieving the
most similar cases. These retrieved cases help the user to decide whether to
store the new case and also to refine the initially defined descriptors. Each new
case is stored in the modelbase in terms of database tuples. Cases are stored
only upon user request.

The retrieval mechanism was defined according to a standard procedure.
It starts by taking the input problem descriptors (provided by the user) and
returning the most similar cases, using the similarity metrics already presented.

4.5 Comparison to other CBR systems

Case based reasoning has traditionally been applied to business situations —e.g.,
in handling work processes or in the customer service area. This kind of applica-
tion domain is more structured than environmental applications, and constraints
are well defined. In this kind of scenario, the case base is not supposed to grow
indefinitely, and thus case storage management is less crucial. We, on the other
hand, had to consider the issue of multiple applications and users, in a less
structured context, and thus to handle cases within a database management
system. Indeed, since most CBR situations deal with specific applications, the
focus is on case learning and construction, and thus case representation and
storage are often not described, or treated at the memory (algorithmic) level.
Section 2 pointed at examples of the use of CBR in the environmental context
-e.g., [7, 46,23, 3, 37, 25, 10]. Each of these systems is concerned with a specific
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kind of application, and their algorithms have been optimized to deal with it —
they are centered on executing a set of models using different input parameters.
We, on the other hand, present a generic framework, where the cases can grow
indefinitely. This flexibility was achieved at the cost of several simplifications.
One such simplification was to require user intervention at the input or update
of every case to provide metadata and descriptors. Another simplification was
to limit descriptor indexing to atomic metadata and constraints.

The approach we take — using workflows as a basis to represent cases — is
close to the work of Kim et al. [29], in the sense that they also retrieve workflows.
However, their study is geared towards business situations. Furthermore, it is
strongly based on retrieval by keywords, whereas WOODSS also allows retrieval
according to problem constraints.

CBR research — and, more particularly, the work surveyed on environmental
CBR systems — is highly influenced by artificial intelligence techniques. It is thus
concerned with algorithms that foster case learning (e.g., the neural networks
of [12], the graphs of [28]) or the combination of ontologies and rules of [10].
WOODSS instead focuses on robustness of case storage and retrieval, taking
advantage of database management techniques. This enhances flexibility in
case management, and allows easy updating and extending the casebase. On
the other hand, this presents drawbacks in terms of case learning, with a larger
burden placed on the user.

5 Example of use

As mentioned in section 3, the first version of WOODSS was centered on
database exact match retrieval. A new version of WOODSS was implemented to
include the described CBR-based retrieval and storage mechanisms. It uses the
Java®™ language and is coupled to the Idrisi GIS [14], sold by Clark University.
Similar to other CBR-related systems, it needs this specific software to run,
since cases are related to planning within Idrisi (e.g., see [28] that is coupled
to Microsoft Project). This section presents experiments conducted using CBR
through a practical example, from the agro-environmental domain.

5.1 Problem description

The problem analysed in this example is referred to as “variable rate lime and

fertilizer recommendation for crops”. It corresponds to defining procedures for
applying variable rates of nutrients in a given region to optimize crop produc-
tivity. Some nutrients in soil moisture are essential to plants (e.g. nitrogen,
phosphorus, potassium). To guarantee a good yield these nutrients need to be
continuously restored, since they are consumed by crops and lost by erosion.
Furthermore, soil acidity reduces the availability of these nutrients and must
be neutralized, by improving soil pH. Fertilizers and lime are the substances
respectively applied to solve these problems.
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This kind of procedure is recurrent in all kinds of crop management situ-
ations. Thus, it is a typical case to be stored, since it describes models and
activities that need to be performed when one deals with agro-environmental
planning. For instance, fertilizers may produce undesirable side effects in the
environment (such as pollution of water sources), and thus their use is subject
to control. Distinct experts recommend different kinds of products/brands to
achieve nutrient balance, and consider various algorithms. Moreover, products
and policies are highly crop and region-dependent. Therefore, this problem
comprises a large number of cases and is a good example to present in the CBR
environmental context.

The decision on amounts of fertilizer to apply is based on soil samples of
the focused region as well as on its geographical characteristics (e.g. latitude,
rainfall). Lime calculation considers the balance of ions in the soil moisture such
as AT, H* Ca®>t, Mg?>* and K?*. Fertilizer amount calculation identifies
the lack of these nutrients, and the estimated response of the culture. Both
recommendations vary according to many features, among others: the region,
the type of culture, the class of soil, climate, the crop rotation policy and the
residual effect of previous lime and fertilizer applications.

The traditional method consists in uniformly applying the same quantity
of product - fertilizer or lime - everywhere. In a precision farming environ-
ment, product application is localized, considering the spatial variability of the
features considered, and is specified via maps generated by decision processes.
Maps are developed using a GIS and embarked in special agricultural machinery
equipped with location sensors (e.g. tractors) which applies the correct amounts
of product at each spot.

This example focuses in the first part of this process: the generation of the
recommendation maps. A solution process to this problem is composed of two
main steps: (a) generation of a map for lime quantity recommendation, and (b)
generation of maps of fertilizer quantities, one for each nutrient considered.

5.2 Variable rate lime and fertilizer recommendation us-
ing a GIS
(a) Generation of the map of lime quantities. There are many available

models to calculate the adequate quantities of lime. Consider that the best
model for the region under study is [36]:

CEC x (V2% — V%)
10 x RTPN

Lime(ton/hectare) = (6)
Where:

e CEC: Cation Exchange Capacity of the soil, given by CEC' = Ca+ Mg+
K + H + Al mmol,/dm?;

e V%: the current Base Saturation of the soil, which expresses the percent-
age of Ca, Mg, and K ions on the CEC (V% = 100 x SoEMatK),
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e V2%: the desired percentage of base saturation; and

e RTPN: Relative Total Power of Neutralization, which is the expected
reaction of the kind of lime employed.

The following algorithm describes an implementation of this equation in the
Idrisi GIS. The inputs are maps with the distributions of Ca, Mg, K, H and
Al for the region, and the given values of V2% and RTPN.

The following steps are performed in Idrisi:

1. Calculate the CEC, by successively overlaying the maps of Ca, Mg, K,
H and Al (summation option of the module overlay);

2. Compute V%, by obtaining the amount of Ca, Mg, and K ions on the
CEC (division option of overlay) and translating to percentage (multipli-
cation by value option of the module scalar);

3. Calculate CEC x (V2% — V%), using the subtraction by value of scalar,
and next combine the resulting map with the CEC map (multiplication
option of overlay); and

4. Finally, obtain the lime recommendation map, by adjusting the value cal-
culated in the previous step to the kind of lime used (divide by RT PN x 10
using the division by value option of scalar).

(b) Generation of maps of fertilizer quantities. This example consid-
ers only potassium (K) and phosphorus (P), which are, in conjunction with
nitrogen, the nutrients usually most consumed by plants. The fertilizer recom-
mendation is based on tables provided by institutes of agriculture research that
relate the availability of the nutrient in the soil with the adequate quantity of
product to be applied, according to the culture, climate and soil type consid-
ered. The values provided by these tables need to be adjusted to the chosen
fertilizer, since different products and brands have distinct concentrations of the
nutrient. One algorithm to generate this recommendation in Idrisi, taking as
inputs the maps of distribution of K and P, is given by:

1. Process the nutrient maps (K and P) setting the adequate quantities of
fertilizer, using values in the respective recommendation tables (reclass
module); and

2. Adjust the recommendation to the fertilizers to be applied, according to
the concentration of the product (division by value option of the module
scalar).

5.3 User interaction with WOQODSS

Assume now that a user wants to develop fertilizer and lime recommendation
maps for soybean in a region in the Campinas county (Brazil), using WOODSS.
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First the user will want to verify if previous solutions to this problem have been
developed. The user browses WOODSS’ modelbase to check for similar cases.
Figure 7 shows the main menu of the CBR version of WOODSS. By clicking on
“Load model” in menu “File” the user launches the search process and provides
the problem descriptors. The “Enter query” field in figure 8 shows a screen copy
of a query for similar cases, where the goal descriptors entered are “fertilization”
and “variable rate” and the (string-valued) constraint descriptors are “culture
= soybeans” and “region = Sao Paulo”. The system returns the most similar
cases reached, using the retrieval scheme described previously. The user has
then two possibilities: (a) to select one or more of the returned cases and open
them in individual workflow handling windows, or (b) to refine the search.

If one of the cases returned satisfies the user, the user can then execute
the corresponding workflow in Idrisi and generate the desired output maps. If
the user identifies one case that satisfies only partially his/her needs, the user
reuses this case by adding or removing activities and dependencies and adjusting
activities’ parameters via WOODSS’ user interface.

In this specific situation, suppose that no returned case satisfies user needs,
and thus the bottom part of the search screen is blank (see figure 8). Here,
the user has two alternatives: (1) start the modeling process in the Idrisi GIS,
or (2) start the modeling process through the definition of a new workflow in
WOODSS. In either case, the model will be represented by a workflow, and
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Figure 9: Workflow corresponding to the example.

the case by an instantiation of the workflow together with associated metadata.
Figure 9 shows the result of the definition of this workflow.

After finishing the construction of the model, the user may want to store
it in the modelbase. By clicking on button “Save case” (figure 9) the system
requests the user to fill the metadata fields to be associated with the new case,
and to provide the goal and constraint descriptors to index the new case. Figure
10 portrays the forms to define metadata and descriptors for a case.

Considering the given descriptors, the system queries the modelbase and
returns the cases most similar to the new one. Next, the user analyses these
cases to decide if the new case should be retained or not. We recall that all
terms used as descriptors need to be in the thesaurus, thus the user may have
to add new terms to it. Thesaurus term entering and querying is done through
a tree structure, as shown in figure 11. The basis for the WOODSS thesaurus
was the Brazilian Agriculture Ministry Thesagro [11]. This structure permits
handling synonims and abstractions of terms, leading to a more context sensitive
descriptor comparison.
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6 Concluding remarks and future work

This paper presented the CBR-centered implementation of a computational tool
named WOODSS (WOrkflOw-based spatial Decision Support System), devel-
oped at the LIS laboratory of the Institute of Computing of UNICAMP in
Brazil. The main goal of this tool is to help decision makers to profit from
past problem solving and collaboratively exchange their experience using CBR
to lever sharing. This work combines research on database systems, artificial
intelligence and workflow management.

WOODSS is centered on dynamically monitoring user activities in a GIS and
documenting them using scientific workflows. Besides documenting decision
processes on the fly, these workflows can be used to guide experts in solving
analogous problems, or as partial solutions to a bigger problem, allowing a
global view of the current state of a decision process, and helping to justify
decisions.

This paper discussed workflow retrieval and storage mechanisms designed us-
ing CBR techniques in order to provide context sensitive analysis. This scheme
helps users to identify the most adequate past solutions to support a new deci-
sion process, minimizing the reuse/adaptation effort to fit this solution to the
new situation. This approach is proving useful to end-users, whose work habits
require checking alternative solutions, but who have little support for this kind
of verification.

Ongoing work involves various directions. At the moment, we are enhancing
WOODSS to allow associating metadata at several levels, to improve retrieval
and documentation. We are also working with domain experts to extend the
modelbase. Another possible improvement is to provide algorithms to support
weight assignment to constraints.

The presented retrieval scheme considers only metadata descriptors. Thus,
it must be extended do handle also georeferenced data, using GIS functions in
the similarity evaluation. We are now working on coupling domain ontologies
to WOODSS, which will also help the vocabulary issues already mentioned [18].
Another extension that might be considered refers to the performance of the
nearest neighbor similarity function, which degrades as the number of stored
cases increases. Nearest neighbor evaluation would be improved using scalable
indexing structures. One alternative structure is the M-tree [13], extensively
used in image databases. This structure indexes objects based in their simi-
larity distances in a multidimensional metric space. Thus, its use might prove
interesting in WOODSS and other CBR applications.

Finally, the implementation was conducted in a single-user environment. We
are now extending it to a multiple-user situation, for workflow design and test-
ing, with support for participatory planning involving distinct experts. In this
sense, workflows can act as a communication means, where partial workflows
developed by distinct (groups of) users can be combined to compose a coop-
erative solution. Groups of users can develop partial or alternative solutions
at different times, and keep track of what everyone is doing by looking at the
respective workflows.
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The CBR facilities within WOODSS have been coded in JAVA, and use
WOODSS’ database (coded in the commercial product FoxPro). It runs coupled
to the Idrisi GIS [14], on Windows98. The JAVA code is available upon request.
In order to work properly, it needs to be coupled to this GIS and DBMS.
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