

 268 Int. J. Bioinformatics Research and Applications, Vol. x, No. x, 200x

 Copyright © 2007 Inderscience Enterprises Ltd.

An ontology-based framework for bioinformatics
workflows

Luciano A. Digiampietri*
Institute of Computing,
University of Campinas,
CP 6176, 13084-971, Campinas, SP, Brazil
E-mail: luciano@ic.unicamp.br
*Corresponding author

José de J. Pérez-Alcázar
EACH, University of São Paulo,
São Paulo, SP, Brazil
E-mail: jperez@usp.br

Claudia Bauzer Medeiros
Institute of Computing,
University of Campinas,
CP 6176, 13084-971, Campinas, SP, Brazil
E-mail: cmbm@ic.unicamp.br

Abstract: The proliferation of bioinformatics activities brings new challenges
– how to understand and organise these resources, how to exchange and
reuse successful experimental procedures, and to provide interoperability
among data and tools. This paper describes an effort toward these directions.
It is based on combining research on ontology management, AI and
scientific workflows to design, reuse and annotate bioinformatics experiments.
The resulting framework supports automatic or interactive composition of tasks
based on AI planning techniques and takes advantage of ontologies to support
the specification and annotation of bioinformatics workflows. We validate our
proposal with a prototype running on real data.

Keywords: bioinformatics workflows; bioinformatics ontologies;
bioinformatics tool composition; bioinformatics data and tool annotation.

Reference to this paper should be made as follows: Digiampietri, L.A.,
Pérez-Alcázar, J.J. and Medeiros, C.B. (2007) ‘An ontology-based framework
for bioinformatics workflows’, Int. J. Bioinformatics Research and
Applications, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Luciano Antonio Digiampietri is a PhD student at the
Institute of Computing, University of Campinas (UNICAMP), Brazil. He has
been awarded a Microsoft Research Fellowship. His research interests are
databases, information systems and bioinformatics.

inderscience
de

inderscience
Pérez-Alcázar, J.J.

 An ontology-based framework for bioinformatics workflows 269

José de Jesus Pérez-Alcázar is a Lecturer at the School of Arts, Science and
Humanities of the University of São Paulo, Brazil. He received his PhD from
the Catholic University of Rio de Janeiro (PUC-Rio). His research interests are
AI planning, semantic web and workflow management systems.

Claudia Bauzer Medeiros received his PhD from the University of Waterloo in
1985 and is full Professor of Computer Science at the Institute of Computing,
UNICAMP, Brazil. Her projects centre on design and development of scientific
database applications, with emphasis on geographic data, agro-environmental
planning, bioinformatics and biodiversity. She has been (co) Principal
investigator of several multi-disciplinary and multi-national projects, involving
partners in Germany, France, Argentina, Chile and the USA, and holds a
visiting scholar cooperation with the Dauphine University, France. She serves
on the editorial boards of the VLDB Journal and GeoInformatica and is a
member of ACM and IEEE and President of the Brazilian Computer Society
(2004–2007).

1 Introduction

Scientific workflows (Wainer et al., 1996) are being increasingly adopted as a means to
specify and coordinate the execution of experiments that involve participants in distinct
sites. Such workflows allow the representation and support of complex tasks that use
heterogeneous data and software (Cavalcanti et al., 2005). They differ from business
workflows in several points. In particular, in bioinformatics they are characterised by
a high degree of human intervention and variability in workflow design for the same task.

Bioinformatics workflows are often specified manually and tasks are redefined
from scratch (e.g., using script languages (Cavalcanti et al., 2005)). With the advent of
distributed execution of workflows (e.g., in grids (Stevens et al., 2004)), task definition
is sometimes being replaced by the invocation of a web service that performs that task
(Gao et al., 2005).

Manual composition is hard work and susceptible to errors. In bioinformatics, due to
the constant evolution of the area and the combinatorial explosion of tools, there are
too many alternatives for workflow construction and choice of appropriate services.
Thus, there is a need for means to help scientists to design appropriate workflows.
Another important issue is that of traceability, to ensure the quality of an experiment.

The main idea behind our work is to take advantage of ontologies to support the
specification and annotation of bioinformatics workflows and to serve as the basis for
tracking data provenance (Fileto et al., 2003). An underlying assumption is that the
problem of automatic or iterative composition of workflow tasks can be seen as an
AI planning problem (Long and Fox, 2003). We extend AI planning techniques
with ontologies to create a semantic framework for design, reuse and annotation of
bioinformatics experiments.

The paper attacks the problem of constructing and annotating scientific workflows,
under the assumption that they are the basis for specifying and executing tasks
in a distributed (laboratory) environment. Each activity within such a workflow can be
executed either by invocation of a web service or of another (sub) workflow.

inderscience
José de

 270 L.A. Digiampietri, J.J. Pérez-Alcázar and C.B. Medeiros

The paper’s main contributions are thus:

• proposing a solution to the problem of composition of services, combining results
from AI and ontology management, thereby helping design scientific workflows,
while at the same time documenting design alternatives

• using ontology repositories to enhance the semantics in automatic workflow
construction and facilitate tracking data and procedure provenance

• validating the proposal by means of a prototype for genome assembly
and annotation.

Our implementation takes advantage of WOrk-flOw-based spatial Decision Support
System (WOODSS) (Medeiros et al., 2005), a scientific workflow infrastructure.
Originally conceived for decision support in environmental planning, it has evolved
into an extensible database-centred environment that supports specification, reuse and
annotation of scientific workflows and their components.

The rest of the paper is organised as follows. Section 2 describes related work.
Section 3 presents our architecture. Section 4 discusses our prototype. Section 5 contains
conclusions and ongoing work.

2 Related work and concepts

2.1 Workflows and web services in bioinformatics

The genome assembly problem consists in joining and matching together pieces of DNA
sequences to create a cogent sequence, much in the way crossword puzzles are put
together. Constituent sequences are created inside a laboratory by procedures that extract
pieces from a species’ DNA and then produce long strings of base pairs (ACGT).
Challenges in this process include the adequate generation and annotation of sequences,
as well as finding the appropriate means of assembling them together into an accepted
genome.

Genome annotation is the assignment of functions to each gene. The empiric
verification of gene functions is a time and money consuming activity. Most functions are
assigned based on the similarity between the DNA sequence of the target gene and the
sequences of already annotated genes. Gene annotation can therefore be partially
automated, but manual data verification is always recommended.

Genome assembly and annotation are composed of several complex activities
involving interactions among basic tasks, human intervention and access to
heterogeneous data sources. A trend in the bioinformatics community is to see each
such experiment as a workflow designed by scientists to help their daily activities
(Oinn et al., 2004). However, this practice has little flexibility, hampering the edition and
reuse of these workflows.

Several other problems are involved in the construction of such workflows.
Among them, this paper is concerned with:

• data and software tool provenance

• tool/task composition, translated into a problem of web service composition

• mechanisms for finding the appropriate tools or services to execute a task.

 An ontology-based framework for bioinformatics workflows 271

We use domain ontologies as the basis for attacking these problems. The first
question – provenance of data and software tools – directly affects the acceptance of the
results of experiments. The quality of bioinformatics experiments depends on properly
identifying data origins and the processes that produced these data (Buttler et al., 2002).
At most times, provenance is indicated by laborious manual annotations, which often
vary across laboratories.

The second issue concerns tool/task composition while constructing the workflows
(Cavalcanti et al., 2005; Yu and Buyya, 2005; Medeiros et al., 2005). We highlight three
kinds of composition: manual (supervised), iterative (using top-down design practices)
and automatic. In a scenario where several software tools are being made available on the
web, the composition problem has become more important. To help this issue, many tools
invoked by such workflows are now encapsulated into web services.

Our third problem is to find tools on the web that execute some task. This search is
typically based on keyword queries (Buttler et al., 2002) that can, however, return several
unwanted results and may not find the desired tools. Even when found, the integration of
a tool with the user’s system is not easy. Thus, laboratories rebuild tools, replicating work
and decreasing tool sharing and reuse.

The Semantic Web has been proposed to solve interoperability and discovery
problems. However, this will require extending the languages to add semantics to service
description and discovery – e.g., using ontologies. The development of Semantic Web
services must address the challenges of automatic discovery, invocation, composition and
monitoring of service execution.

2.2 Planning and composition of web services

Automatic composition of web services is a recent trend to meet some of the
challenges and problems mentioned in the previous section. Users (in this paper,
bioinformatics scientists) should be able to specify ‘what’ they desire from the
composition (high level goals and actions) and the system supplies the ‘how’ – the web
services to be used, how to interact with those services, etc. The process of composing
the services must be transparent to the users and the detailed descriptions of the
composed services must be generated automatically by the system from the users’
specifications.

Among the proposed solutions for the automatic composition problem
we mention those based on planning, exploited by us and those based on workflows.
Workflow-based composition methods can be divided into static and dynamic workflow
generation (Rao and Su, 2004). In the first case, the workflow is specified manually and
only the selection and binding of atomic web services with the workflow is automatic.
Dynamic composition automatically creates the workflow and selects atomic services,
e.g., da Costa et al. (2004) and Fujii and Suda (2004).

The task of presenting a sequence of actions to achieve an objective is called
in AI plan synthesis, or planning (Ghallab et al., 2004; Russel and Norvig, 2003).
Planning is a mature area in AI, with well-studied algorithms. Such techniques are
currently used in mobile robots, manufacturing processes and emergency management,
among others (Munoz-Avila et al., 2001; Nau et al., 1995).

Recent research efforts have investigated the use of planning to solve the problem
of automatic composition of web services (Blythe and Ambite, 2004). According to
Srivastava and Koehler (2003), in order to use planning in this context, AI planning

 272 L.A. Digiampietri, J.J. Pérez-Alcázar and C.B. Medeiros

concepts must be extended to consider factors such as complex control structures with
loops, non-determinism and conditionals.

We highlight other important characteristics, not usually found in AI planning,
such as: the use of non-functional attributes, like cost or quality, which can facilitate the
choice of the plan most adequate to the user’s requirements; the need to support semantic
constructions such as hierarchies (abstractions), as well as compatibility with the different
Semantic Web service description standards, like OWL-S (www.daml.org/services)
and WSMO (www.wsmo.org); and the support of extended goals involving complex
conditions on process behaviour.

Many planning systems and algorithms have been considered as candidates
for supporting composition of web services. For instance, the work of (McIlraith
and Son, 2002) extends Golog (Levesque et al., 1997), a language based on situation
calculus, to allow automatic building of web services. Another option is the use of
Planning Domain Definition Language (PDDL), a widely used formal language,
whose notation is similar to OWL-S and is thus a good candidate to use in specifying
web services composition. Other solutions involve rule based planning methods
(Medjahed et al., 2003) and symbolic model checking, which has also been used to
automatically compose services described in OWL-S (Traverso and Pistore, 2004).

Yet another method is hierarchical planning, to support iterative and automatic
composition of services to specify workflows. Hierarchical planning is an AI planning
methodology that creates plans by task decomposition. One well-known hierarchical
planner is Simple Hierarchical Ordered Planner 2 (SHOP2) (Nau et al., 2003) which is
based on Hierarchical Task Network (HTN) (Russel and Norvig, 2003). SHOP2 won the
prize of one of the four best planners in the 2002 International Planning Competition
(Long and Fox, 2003).

Sirin et al. (2004) use SHOP2 for the automatic composition of web services and
the inputs to their planner are specified in OWL-S. The authors claim that automatic task
decomposition using HTN planning is very similar to the concept of complex process
decomposition used in OWL-S ontologies.

None of the planning proposals mentioned treats complex objects or objects created
dynamically, two very important characteristics within web services. Moreover, planning
algorithms do not consider the existence of relationships among objects which might
result in plan improvement. As will be seen, we solve these issues by extending SHOP2
to take advantage of ontology repositories.

3 An architecture for automatic composition via planning

This section presents our solution to the problem of helping scientists design scientific
workflows. As will be seen, one important issue is the possibility of reusing parts of
workflows constructed by other scientists. Another relevant issue is annotation. Reuse
and annotation are supported by ontologies, which also guide the planning algorithm.

Our plans are specifications of scientific workflows. Thus, in this section, we will
use, indistinctly, both terms.

 An ontology-based framework for bioinformatics workflows 273

3.1 Repositories

Our workflow design and execution process is based on combining AI planning
techniques with information stored in three repositories: Ontology Repository, Service
Catalog and Workflow Repository. While the Ontology Repository contains information
about domains and service types, the Service Catalog stores information about service
instances.

In more detail, the Ontology Repository contains two kinds of ontologies
(Domain and Service) that are used to support automatic composition and annotation of
services and workflows – in our case study, information about genome assembly and
annotation, see Section 4. The concepts in the Domain Ontology describe a given
application domain. The concepts in the Service Ontology describe the different kinds of
services and their relationships. This ontology is used in automatic composition to help
check compatibility among composed tasks (e.g., interface matching). The Service
Ontology does not store descriptions of the services themselves. Rather, it contains what
we choose to call ‘service type’ – i.e., a generic description of each kind of service, its
generic interface, parameters, etc. Thus, it will contain a description of ‘alignment’
services, but no instantiation of this type of service. Service instantiation is left to the
Service Catalog.

Figure 1 shows the ‘is a’ relations of some services in the Service Ontology
(service types) and the services in the Service Catalog (service instances) – e.g., a
FASTA service ‘is a’ service of the type alignment. Our repositories also store
‘aggregation’ relations, for example, the service myAssembly, in the Service Catalog, can
be associated with a workflow, in the Workflow Repository, that is an aggregation of the
services phred and phrap. This kind of relationship is used in our iterative composition
process (in each iteration, the system suggests to the user how to decompose an abstract
activity into more concrete activities).

Figure 1 Parts of our service ontology. Service types appear in white ovals, service instances
in dark ovals

The Service Catalog plays the role of a Universal Description Discovery and Integration
(UDDI) registry, enhanced with extended functionalities. Standard UDDI structures

 274 L.A. Digiampietri, J.J. Pérez-Alcázar and C.B. Medeiros

store information about service providers, the web services they make available
and the technical interfaces which may be used to access those services ports.
Our Service Catalog, besides, stores a service’s non-functional attributes (metadata), such
as execution time, quality, reliability and availability, used to rank workflows. Figure 2
presents the standard UDDI web services register approach and our extension to this
approach. Each service entry in the Catalog is annotated with the ontological concepts of
the Service Ontology. The port types are annotated with concepts from the Domain
Ontology.

Figure 2 Service register approach: UDDI approach and our semantic approach

The Workflow Repository, adopted from WOODSS (Medeiros et al., 2005), stores
annotated (sub) workflows at different abstraction levels, from abstract specifications to
runtime workflows. The Workflow Repository also stores all annotations and information
on data needed to run a given executable workflow. This includes pointers to files
that store intermediate execution results and metadata associated with each execution
(e.g., timestamps, actors involved).

The repositories are interrelated as follows. Workflows and data in the Workflow
Repository are annotated with terms from both ontologies; the services invoked within
concrete workflows come from the Service Catalog. Moreover, concepts of the Service
Ontology are used to annotate terms in the Service Catalog; and concepts in the Domain
Ontology annotate types stored in the Service Ontology. Section 4.1 discusses these
interrelationships for our case study.

3.2 The composition architecture

Our architecture is able to deal with automatic composition of workflows based
in web services. Figure 3 shows this architecture, highlighting the main modules and
their interactions. Only the main connections among modules are represented. Section 4
presents our implementation of this architecture.

 An ontology-based framework for bioinformatics workflows 275

Figure 3 System architecture

The Interface Layer allows the user to design, search, edit and execute a workflow and
store it in the repository. It also allows a user to register services and workflows,
request the execution of a workflow and interact with this execution. Furthermore, it
supports syntax verification and suggestions of activities; automatic specification through
AI planning; and iterative composition.

The Service/Workflow Discovery module is responsible for the search of services
and workflows that meet user requests. Search can be based on context, syntax and
functionality. Search for context is based on ontological annotations of services. Search
on syntactic compatibility is based on the parameters of the services’ interfaces.
Search for functionality is based on keywords and can be local (Repositories) and global
(on the web). Whenever the global search returns a service that is not already registered
in the Service Catalog, the user is required to validate and register the appropriate
answers in the local Repository. Hence, the Repository contains only properly annotated
services, whose provenance and quality are guaranteed by some expert. When no service
or workflow meets the requests, this module will ask the Design module to create new
workflows.

The Design module is responsible for constructing a workflow, which at any time
can be edited by a scientist (the Editor box). The Automatic Composer encapsulates the
Translator-Planner-Evaluator modules of AI planning, see Rao and Su (2004). It receives
a plan request R from the interface and generates workflows automatically or iteratively.
To generate these workflows, the Translator needs first to convert the request to the
planner’s language. Next, the Planner interacts with the Workflow and the Ontology
Repositories to obtain information for plan generation and with the Service/Workflow
Discovery facility to check for existing available services.

Rather than generating executable workflows, our planner produces abstract
workflow specifications. The reason is that plans refer to service types (defined in the
Ontology Repository) rather than to the services themselves (whose specification is
stored in the Service Catalog). This choice was made mainly to improve efficiency and

 276 L.A. Digiampietri, J.J. Pérez-Alcázar and C.B. Medeiros

scalability in the planner (Agarwal et al., 2005). The Evaluator converts these abstract
workflows into concrete ones and chooses from among them the workflow that best suits
the request R. This selection is based on the non-functional attributes (execution time,
quality, reliability, etc.) that annotate services in the Catalog and can be guided by the
user. The workflow can then be forwarded to the Workflow Engine, where the user can
provide the input data and start its execution.

The Editor module supports workflow design. It accesses the workflow repository
and lets the user manually compose, reuse and annotate workflows. Annotations include
free text and references to the ontology repository. This repository can also be updated
(e.g., adding or modifying an ontology). However, this is outside the scope of the
architecture and is left to specialised tools – e.g., Protégé (Knublauch et al., 2004) – since
the architecture’s goal is not to manipulate ontologies but to use them to help experiment
annotation, reuse and specification.

The user interacts with the Service Register module in order to define new
services. These services are described in WSDL and OWL-S and linked to the Ontology
Repository. These services can be those developed and available locally, or those
that are available elsewhere, but whose provenance has been certified by the user. New
service types are registered in the Ontology Repository using an ontology editing tool.
New services are entered into the Service Catalog using the Service Register Module.

3.3 Execution environment

The Workflow Engine follows the specification of the Workflow Management Coalition
(http://www.wfmc.org). It is responsible for workflow execution and supports user
interaction, e.g., to validate or interrupt execution flow. It is responsible for controlling
the execution of all workflow activities. The operations provided by the Workflow
Engine are: interpretation of the complex process definitions; creation and management
executable workflows; and supervisory and management functions. It sends the requests
(and parameters) for service invocation to Service Request.

The Service Request module is responsible for the management of each web service
request, communicating with the web server provider, sending input data and receiving
the results. This module also detects service faults. Faults are registered and used to
calculate service non-functional attributes (such as availability).

There are three alternatives to solve a fault. The first is to try and re-execute the
service that presented the fault. This is useful when a service is unavailable during
a short period of time. The second is to replace the faulty service by an equivalent service
(of the same type but with less ranking, following non-functional attributes, in our
Service Catalog). In this case, the Workflow Engine module can ask the Evaluator
module for the selection of an alternative equivalent service to replace the faulty service.
If these alternatives do not work, the Workflow Engine can request new plans to solve the
problem.

This architecture supports the three kinds of composition presented in Section 2.1.
In manual composition, the system will only let a user combine two activities if their
inputs and outputs are ontologically compatible. Ontological compatibility is based on
subsumption properties, see Fileto (2003). In iterative composition, in each iteration the
system suggests to the user tasks or sub-workflows that have been previously stored in
the repository and that can be used for an already defined task. In automatic composition,
it designs a set of workflows that satisfy the user’s requests.

 An ontology-based framework for bioinformatics workflows 277

3.4 User interaction

Users can interact with the architecture to annotate and design workflows, monitor and
change their execution and register services. One of the most important user interactions
is the request for a plan (i.e., the construction of a new workflow to meet a specific
request). This process starts when a user (human or software agent) makes a request for
a service.

This request can be the description of a goal or task. Starting from here, the Planner
generates alternative plans to meet the request. In this process, the planner accesses the
Domain and Service ontologies to obtain the necessary information for the planning
process. Once the plans are generated, they are passed on to the Evaluator, which chooses
the best plan to meet user needs.

Domain and Service ontologies, stored in the ontology bases, are key concepts
to this process. Initially, they are used by the Translator to generate a request to the
planner, disambiguating the user’s demand for a service. Next, these bases are used by
the Planner to generate the appropriate service compositions. The Planner accesses them
to obtain the functionalities of the services and generates an abstract scientific workflow.
The Planner uses the domain ontology to improve the efficiency of the planning process
and to facilitate the modelling and the management of complex objects. The planner’s
output contains several workflows (the plans) with equivalent or similar functionalities.

4 Case study: genome assembly and annotation

We implemented a prototype of the architecture presented in Section 3 to solve
the problems of genome assembly and annotation. We decided to use SHOP2 in our
implementation because it provides the following benefits:

• it supports embedding domain knowledge to control the search space and improve
efficiency

• it has been successfully used in a variety of real-world planning-based applications

• it allows inclusion of different types of pre-condition constraints for service
operators as well as calls to external systems

• it enables reuse by facilitating selection of appropriate methods from domain-related
operator libraries.

Section 4.2 shows how we extended the SHOP2 language to support complex objects and
enhanced semantics.

4.1 Repository instantiation

In order to implement the architecture, we had to construct the appropriate ontologies.
Ontology editing uses Protégé (Knublauch et al., 2004), a well known ontology editing
tool.

Several bioinformatics ontologies have been proposed (Smith and Schulze-Kremer,
2003; Stevens et al., 2000). Some are very detailed taxonomic ontologies, used to
cluster (Yoo and Hu, 2006) and/or to annotate data (Smith and Schulze-Kremer, 2003).

 278 L.A. Digiampietri, J.J. Pérez-Alcázar and C.B. Medeiros

Others are concerned with describing relationships among bioinformatics tools
(akin to our service ontology) or objects manipulated in bioinformatics (e.g., our domain
ontology). The latter are still under development and are usually defined independently.
This hampers their use in an integrated manner. Ontology management techniques, such
as alignment or integration (Kalfoglou and Schorlemmer, 2003) are not suitable for this
kind of need, since they apply when ontologies cover associated concepts.

Since our goal was to help scientists to specify and manage their experiments,
we developed detailed domain and service ontologies, specific to genome assembly
and annotation, extending a generic bioinformatics ontology (Stevens et al., 2000) and
specifying relationships between these two ontologies. As a consequence, they can be
considered to form a (single) complex ontology covering services and domain aspects.

Using our ontology repository, we annotated bioinformatics data and tools in order to
allow semantic search and automatic composition of services. Figure 4 shows a small
portion of our ontologies and their interrelationships. Domain and Service portions are
separated, thus helping establish distinct relationships among the concepts. In particular,
the figure shows how concepts in the Service Ontology help qualify services and how
concepts in the Domain Ontology help define service parameters. To simplify the figure,
we omitted several relationships.

Figure 4 Small example of the relationships among our repositories

We highlight only the relationships (links among the repositories) involved with
nucleotide alignment. The blastn service entry in the Service Catalog corresponds to
a service that implements a nucleotide alignment, which is an alignment tool description
(Domain Ontology annotation). The nucleotide alignment has as input an identified
sequence and as output an alignment, both concepts of the application domain, duly
annotated by appropriate references in the ontology. The dotted line between nucleotide
alignment and nucleotide sequence indicates a restriction on input data: the identified
sequence input to the blastn service must be a nucleotide sequence.

 An ontology-based framework for bioinformatics workflows 279

In our Domain Ontology, all concepts are atomic data types (integer, strings, etc.)
or, recursively, an aggregation and/or a generalisation (or specialisation) of concepts.
We can observe in Figure 4 that nucleotide alignment is a specialisation of alignment tool
and identified sequence is an aggregation of sequence and identification.

The Domain Ontology also provides semantic annotation for workflows and data.
This is exemplified in Section 4.3.

4.2 Planning with ontologies

A SHOP2 specification (Nau et al., 2003) is composed of three sections: domain
definition (defdomain); problem definition, defining the problem that the planner must
solve (defproblem); and requests to find the plans that solve a given problem (find-plans).

SHOP2 domain definition requires methods and operators. Operators specify
available activities to implement methods. Methods are used in the planning
process – a plan, at its highest level, is a concatenation of method invocations,
recursively refined into methods and operators. Methods provide a convenient way to
write problem-solving ‘recipes’ that are used by SHOP2 in order to solve problems, they
correspond to activity types in our Service Ontology or workflows in the Workflow
Repository. Figure 5 shows part of the translation of our Bioinformatics Domain and
Service Ontologies into SHOP2. This translation is automatic and performed by the
Translator module.

From a high level point of view, our translator produces a defdomain specification
enriched with concepts from the Ontology Repository. Concepts in the Service Ontology
and relationships in the Domain Ontology are translated into operators. Service and
Domain concepts are subsequently translated into methods. Translation works as follows.
We now explain in detail how ontologies are introduced to help planning (i.e., workflow
construction).

Each ‘type of service’ concept in our Bioinformatics Service Ontology generates
a SHOP2 operator whose pre-conditions are the service’s input data types and whose
post-conditions are the output data types. For example, Lines 2, 3, 6 and 7 of Figure 5,
respectively, show the service types ORFFinder, nucleotide alignment, filter and base
calling translated into SHOP2 operators. In more detail, nucleotide alignment is a type of
service described in SHOP2 (Line 3, Figure 5) as an operator whose pre-condition is the
existence of an identified sequence (input) and whose post-condition is the production of
a nucleotide alignment (output). The value of 50.0 for this line indicates that the user
provided this value as an upper bound estimate for the execution time of any nucleotide
alignment service. As will be seen later on, the Evaluator will suggest instantiations for
each service type, and use these values to rank suggestions.

A SHOP2 planner does not support generalisation/specialisation hierarchies of
operators (tasks), neither does it manipulate complex objects. Thus, we had to extend
this planner to fully support both facilities. To allow complex objects, the Translator
creates SHOP2 operators that are used to represent ontological relationships. Complex
objects are structures created from basic objects (basic concepts in our Domain
Ontology). Since our ontologies contain aggregation and specialisation relationships,
we use this knowledge to improve SHOP2 functionalities. For each aggregation
relationship, we created an operation called Compose, with cost zero. Its input specifies
the concepts that will be aggregated and its output is the aggregated concept (e.g., in
Line 5 of Figure 5, an identified sequence aggregates a nucleotide sequence and its

 280 L.A. Digiampietri, J.J. Pérez-Alcázar and C.B. Medeiros

identification). Similarly, we created the converse Decompose (e.g., Line 4 of Figure 5).
To represent specialisations/generalisations, for each concept that is a specialisation,
we create an operation called IsSpecialisationOf with cost zero that, given the specialised
concept, returns the corresponding general concept. Similarly, we created the converse
IsGeneralisationOf. These four operators extend SHOP2’s planning capabilities. Whereas
the other operators are transformed into service invocations by the Evaluator, these four
serve only to help compose complex tasks in a plan.

Figure 5 Part of the SHOP2 definition domain for bioinformatics ontology

 An ontology-based framework for bioinformatics workflows 281

Once all operators have been specified, methods can be defined. For each type of
service in the Service Ontology, the Translator creates a SHOP2 method that describes
which operator (or set of operators) can execute this method. For example, Lines 21, 28
and 35 of Figure 5, respectively, show the headers of the methods alignment, nucleotide
alignment and aminoacid alignment.

In bioinformatics, many times, the user needs to obtain a certain result without
knowing what tasks produce this result (or concept) – for example, starting from
a chromatogram (input concept), he/she wants to obtain an alignment (output concept).
To allow the user to pose such requests, the Translator needs to create additional methods
whose execution will generate concepts in the Domain Ontology.

4.3 Creating and instantiating plans

The SHOP2 problem definition section (see Figure 6(A)) is composed by a problem
name (e.g., problem1), the label of the definition domain (e.g., bioinformatics ontology),
the state of the world (a set of conditions that are true in a given instant) and the
set of methods that must be utilised by the planner (e.g., nucleotide alignment ch1).
The SHOP2 request to find plans (see Figure 6(B)), identifies the problem to be solved
and requirements for the solution plan (such as maximum cost).

Figure 6 Plan synthesis and selection

 282 L.A. Digiampietri, J.J. Pérez-Alcázar and C.B. Medeiros

4.3.1 Plan specification

We now clarify the process of plan specification using an example. The user requests
a plan to transform a chromatogram (input concept) into a nucleotide alignment
(desired concept). Part A of Figure 6 shows the input request (already translated to
SHOP2), indicating that the user wants the system to produce a workflow for a nucleotide
alignment using chromatogram ch1. Notice that the user defines the request, but does not
need to specify how to accomplish it. Part C of this figure shows the four possible plans
(abstract workflows) generated by SHOP2 to answer the request, ordered by increasing
cost order.

Plans are sets of methods that must be executed sequentially to achieve the goal.
For instance, the first plan ((!BASE CALLING CH1) (!NUCLEOTIDE ALIGNMENT
CH1)) shows that a possible solution is to execute a service of type base calling,
using ch1 as input and passing the result of this execution to a service of type nucleotide
alignment. Symbolic variable ch1 is a chromatogram as defined in the defproblem
section – Figure 6(A).

This figure also shows, for instance, (Plans 3 and 4) the need for ontological concept
manipulation. These plans chose the ORFFinder service type, which needs the sequence
concept as input (see Line 2 of Figure 5). However, the problem’s input is a complex data
object of type identified sequence (see Figure 4). Thus, in order to feed it to ORFFinder,
the planner had to use our Decompose identified sequence and Compose identified
sequence ontological relationship operators to, respectively, disaggregate the problem’s
input and re-aggregate the output from ORFFinder.

4.3.2 Plan instantiation

The four plans generated are abstract. For instance, a nucleotide alignment can be
implemented by services blastn or by FASTA. Abstract plans are forwarded to the
Evaluator that will generate an executable workflow by finding the web services that best
fit each abstract service in the plan, using the ontological annotations of the Service
Catalog. Our Evaluator takes several criteria (metadata from the Service Catalog) into
consideration to select the most appropriate plan. These characteristics are retrieved by
the Evaluator from the Service Catalog, together with service description. Figure 6(D)
shows that the Evaluator chose the fourth plan. This plan was chosen because attributes
in the service Catalog state that the use of the filter service increases the quality of the
plan results and, if the user is looking for genes, the use of the ORFFinder service will
improve the result.

Part D of Figure 6 shows a graphical version of the workflow for the selected abstract
plan. Figure 7 shows a concrete (executable) version of this abstract workflow, using our
graphical interface. Activities are rectangles, transitions are arrows and data repositories
are represented as cylinders. Through this interface, the user can create, edit, annotate and
execute workflows.

In manual editing, to insert a new activity in a workflow, the user must select one
activity from the list of available activities from the Service Catalog. The system checks
the consistency of all transitions (linking outputs of one activity to the inputs of another
activity). Inputs can have default values (e.g., ‘60’ is the default value for minimum ORF
size of the myORFFinder activity).

 An ontology-based framework for bioinformatics workflows 283

Figure 7 Workflow graphical representation adopted from WOODSS

To insert new data, the user must select a data type from the list of available concepts of
the Domain Ontology. Other operations allowed by the graphical interface are: embed a
(sub) workflow inside a workflow, save, load, export and import workflows. This allows
scientists to reuse (parts of) stored workflows to create new experiments.

The user can also monitor workflow execution. For instance, he/she can click in the
arrows (transitions) to verify the produced data and the metadata associated (such as
the name and version of the tool that produced this data; the date in which the data were
produced; the origin of the data; etc.).

Scientists can designate which annotated workflows can be stored in the repository,
to be used in subsequent experiments or to be shared with other scientists. When an
experiment is saved, the data produced in each step of workflow execution are also saved.
Moreover, a set of annotations are assigned to each produced data set, taking advantage
of ontology type and service definitions. These annotations describe the origins of the
data and the service (or set of services) that produced that data, facilitating data and
service provenance traceability. In the example of Figure 7, the user, when consulting the
result alignment, sees that the alignment was produced by blastn service, using the blast
database nt and, as input sequence, the ORF produced by myORFFinder service.

5 Conclusions and ongoing work

This paper presented an ontology-based framework to support bioinformatics work.
It helps the user in the three kinds of composition: manual, iterative and automatic.
It takes advantage of AI planning techniques, combined with ontologies and Semantic
Web standards. The solution is based on repositories that store information on
services and their characteristics, on service and domain ontologies and on workflows.
In particular, ontology repositories are extensively used in enhancing plan generation
with semantics and in helping users design better scientific workflows.

 284 L.A. Digiampietri, J.J. Pérez-Alcázar and C.B. Medeiros

Several bioinformatics laboratories have reported the use of scientific workflows
and of a workflow infrastructure to support their experiments – e.g., (Oinn et al., 2004).
Our work extends these approaches in three main directions: first, its use of AI planning
techniques to help design the ‘best’ workflow for a task; second, the use of
ontologies to semantically support workflow construction, both in selecting tasks and
in finding appropriate services; third, the use of these ontologies in annotation and thus
help traceability. We have built a prototype to verify and validate our proposal, for
bioinformatics problems, specifically for genome assembly and annotation.

Ongoing work concerns mechanisms for improving provenance and traceability
support. We also intend to explore other extensions for plan synthesis – e.g., re-planning
and plan repair. We also intend to extend our bioinformatics ontology to reach a wider
context in bioinformatics, such as comparative genomics and metabolic pathways.

Acknowledgements

The work described in this paper was partially financed by Brazilian funding agencies
FAPESP, CAPES and CNPq and a Microsoft Research Fellowship.

References
Agarwal, V., Chafle, G., Kumar, K.A., Mittal, S. and Srivastava, B. (2005) ‘Synthy: a system for

end to end composition of web services’, Journal of Web Semantics, Vol. 3, pp.311–339.
Blythe, J. and Ambite, J.L. (2004) Workshop on Planning and Scheduling for Web and Grid

Services, Whistler, British Columbia, Canada.
Buttler, D., Coleman, M., Critchlow, T., Fileto, R., Han, W., Pu, C., Rocco, D. and Xiong, L.

(2002) ‘Querying multiple bioinformatics information sources: can semantic web research
help?’, ACM SIGMOD Record, Vol. 31, pp.56–64.

Cavalcanti, M.C., Targino, R., Baião, F., Rössle, S.C., Bisch, P.M., Pires, P.F., Campos, M.L.M.
and Mattoso, M. (2005) ‘Managing structural genomic workflows using web services’,
Data and Knowledge Engineering, Vol. 53, No. 1, pp.45–74.

da Costa, L.A.G., Pires, P.F. and Mattoso, M. (2004) ‘Automatic composition of web services with
contingency plans’, IEEE ICWS 2004, IEEE Computer Society, San Diego, California, USA,
pp.454–461.

Fileto, R. (2003) The POESIA Approach for Services and Data Integration on the Semantic Web,
PhD Thesis, IC–UNICAMP, Campinas, SP.

Fileto, R., Medeiros, C.B., Liu, L., Pu, C. and Assad, E. (2003) ‘Using domain ontologies to help
track data provenance’, Proc. Brazilian Database Conference, SBBD, Manaus, Amazonas,
Brazil, pp.84–98.

Fujii, K. and Suda, T. (2004) ‘Dynamic service composition using semantic information’, ICSOC
2004, ACM Press, New York City, NY, USA, pp.39–48.

Gao, H.T., Hayes, J.H. and Cai, H. (2005) ‘Integrating biological research through web services’,
IEEE Computer, Vol. 38, No. 3, pp.26–31.

Ghallab, M., Nau, D. and Traverso, P. (2004) Automated Planning, Theory and Practice, Elsevier,
London, UK.

Kalfoglou, Y. and Schorlemmer, M. (2003) ‘Ontology mapping: the state of the art’, KER, Vol. 18,
No. 1, pp.1–31.

 An ontology-based framework for bioinformatics workflows 285

Knublauch, H., Fergerson, R.W., Noy, N.F. and Musen, M.A. (2004) ‘The protege OWL plugin:
an open development environment for semantic web applications’, Third International
Semantic Web Conference (ISWC2004), Hiroshima, Japan, pp.229–243.

Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F. and Scherl, R.B. (1997) ‘Golog: a logic
programming language for dynamic domains’, Journal of Logic Programming, Vol. 31,
Nos. 1–3, pp.59–84.

Long, D. and Fox, M. (2003) ‘The 3rd international planning competition: results and analysis’,
Journal of Artificial Intelligence Research, Vol. 20, pp.1–59.

McIlraith, S.A. and Son, T.C. (2002) ‘Adapting golog for composition of semantic web services’,
KR2002, pp.482–493.

Medeiros, C.B., Perez-Alcazar, J., Digiampietri, L., Pastorello, G., Santanchè, A., Torres, R.,
Madeira, E. and Bacarin, E. (2005) ‘WOODSS and the web: annotating and reusing scientific
workflow’, ACM SIGMOD Record, Vol. 34, No. 3, pp.18–23.

Medjahed, B., Bouguettaya, A. and Elmagarmid, A. (2003) ‘Composing web services on the
semantic web’, VLDB Journal, Vol. 12, pp.333–351.

Munoz-Avila, H., Aha, D.W., Nau, D., Weber, R., Breslow, L. and Yaman, F. (2001)
‘SiN: integrating case-based reasoning with task decomposition’, IJCAI 2001, Morgan
Kaufmann, Seattle, Washington, USA, pp.999–1004.

Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D. and Yaman, F. (2003) ‘SHOP2:
an HTN planning system’, Journal of Artificial Intelligence Research, Vol. 20, pp.379–404.

Nau, D., Gupta, S. and Regli, W. (1995) ‘Artificial intelligence planning versus manufacturing-
operation planning: a case study’, IJCAI 1995, Morgan Kaufmann, Montreal, Quebec, Canada,
pp.1670–1676.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K.,
Pocock, M.R., Wipat, A. and Li, P. (2004) ‘Taverna: a tool for the composition and enactment
of bioinformatics workflows’, Bioinformatics, Vol. 20, pp.3045–3054.

Rao, J. and Su, X. (2004) ‘A survey of automated web service composition methods’,
SWSWPC 2004, Vol. 3387, pp.43–54.

Russel, S. and Norvig, P. (2003) Artificial Intelligence: A Modern Approach, Prentice-Hall,
New Jersey, USA.

Sirin, E., Parsia, B., Wu, D., Hendler, J.A. and Nau, D.S. (2004), ‘HTN planning for Web Service
composition using SHOP2’, Journal of Web Semantics, Vol. 1, No. 4, pp.377–396.

Smith, J.W. and Schulze-Kremer, S. (2003) ‘The ontology of the gene ontology, in ‘AMIA2003’.
Service composition using SHOP2’, Journal of Web Semantics, Vol. 1, No. 4, pp.377–396.

Srivastava, B. and Koehler, J. (2003) ‘Web service composition – current solutions and open
problems’, ICAPS 2003, pp.28–35.

Stevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby, A., Paton, N.W., Goble, C.A. and Brass, A.
(2000) ‘TAMBIS: transparent access to multiple bioinformatics information sources’,
Bioinformatics, Vol. 16, No. 2, pp.184–186.

Stevens, R.D., Tipney, H.J., Wroe, C.J., Oinn, T.M., Senger, M., Lord, P.W., Goble, C.A.,
Brass, A. and Tassabehji, M. (2004) ‘Exploring williams-beuren syndrome using mygrid’,
Bioinformatics, Vol. 20, Suppl. 1, pp.i303–310.

Traverso, P. and Pistore, M. (2004) ‘Automated composition of semantic web services into
executable processes’, Lecture Notes in Computer Science 3298, pp.380–394.

Wainer, J., Weske, M., Vossen, G. and Medeiros, C.B. (1996) ‘Scientific workflow systems’,
Proc. the NSF Workshop on Workflow and Process Automation Information Systems, Athenas,
GA, USA, pp.1–5.

Yoo, I. and Hu, X. (2006) ‘Biomedical ontology mesh improves document clustering qualify on
medline articles: a comparison study’, cbms 0, pp.577–582.

Yu, J. and Buyya, R. (2005) ‘A taxonomy of scientific workflow systems for grid computing’,
ACM SIGMOD Record, Vol. 34, No. 3, pp.44–49.

