Aondé: An Ontology Web Service for Interoperability across
Biodiversity Applications

Jaudete Daltio, Claudia Bauzer Medeiros

!Institute of Computing - State University of Campinas (UNICAMP
CP 6176 13084-971 Campinas, SP - Brazil

jaudete@muai | . com cnbm@ c. uni canp. br

Abstract. Biodiversity research requires associating data abountivbeings
and their habitats, constructing sophisticated models emdelating all kinds
of information. Data handled are inherently heterogenedagsng provided by
distinct (and distributed) research groups, which colldeége data using dif-
ferent vocabularies, assumptions, methodologies andsg@ald under vary-
ing spatio-temporal frames. Ontologies are being adoptedrae of the means
to alleviate these heterogeneity problems, thus helpirggpemtion among re-
searchers. While ontology toolkits offer a wide range of afiens, they are
self-contained and cannot be accessed by external apyicatThus, the many
proposals for adopting ontologies to enhance interopdityin application de-
velopment are either based on the use of ontology serversantology frame-
works. The latter support many functions, but impose apfinarecoding
whenever ontologies change, whereas the first supports @yteholution, but
for a limited set of functions.

This paper presents Aoad- a Web service geared towards the biodiversity
domain that combines the advantages of frameworks and sersepporting
ontology sharing and management on the Web. By clearly atpgrstorage
concerns from semantic issues, the service provides indiepee between on-
tology evolution and the applications that need them. Theis® provides a
wide range of basic operations to create, store, manage,yaeahnd integrate
multiple ontologies. These operations can be repeatediykied by client ap-
plications to construct more complex manipulations. Aohds been validated
for real biodiversity case studies.

Keyword: Ontology Management, Web Services, Biodiversity Inforomatbys-
tem, Semantic Integration.

1. Introduction

Biodiversity research is a multidisciplinary field that regs cooperation of many kinds
of scientists that collect, correlate and analyze datavindibeings and their habitats,
and construct models to describe species’ interactionsilate data are collected all
over the world by distinct teams and published in many fosngtllowing a variety of
standards. This scenario is characterized by its intrinsterogeneity — not only of data
and models, but also of requirements and profiles of the &xpédro collect and analyze
the data. Data volume and species diversity contribute topticate the issue: while
roughly 2 million species have been identified, estimateshi® number of species in the
world vary from 10 million to more than 100 million [27].

In order to advance their knowledge of the world, scientistgiire means to sup-
port cooperation among research groups. Therefore, daattexd mechanisms for data
storage, management, sharing and retrieval are requirstht@age the huge amount of
data produced, and their integration, correlation, fusiad interpretation. One addi-
tional issue is temporal heterogeneity. Not only do ec@syistevolve; ecological models
and species’ taxonomic classifications also change, riftetiie evolution of scientific
knowledge about the real world. Hence, interoperabilitg aranipulation of heteroge-
neous data is one of the major challenges faced by thesdistsen

Biodiversity Information Systems (BIS) [53] provide part@blutions to some
of these problems, publishing data sets and providing fonstthat allow analysis of
species and their interactions. Queries in BIS typically oo textual data on species to
geographical data (characterizing the ecosystems whesptties are observed)ccur-
rence recordgalso calledcollection recordyare one of the most important data sources.
They describe observations of living beings (when and wtiergare observed, by whom
and how). In spite of providing scientists with sophisteghtinalysis functions, BIS re-
quire data and model standardization, and interopenalalitoss BIS is still an open
problem.

The use of ontologies has been pointed out as a means to soted the above
problems. Ontologies are descriptions of an abstract naddetms, related among them-
selves [26]. They model portions of a domain: its entitiegations and constraints, aim-
ing to define a common agreement on that domain.

Several domains in biology already provide consensualogis — e.g., in bioin-
formatics, the Gene Ontology [9], or the TAMBIS Ontology [10h biodiversity, how-
ever, there are too many kinds of expertise involved, and@osual structures do not yet
exist. A few multinational projects have been started tostrmct such ontologies — e.g.,
GBIF [23] — but they are still in their infancy.

In spite of the extensive research conducted on the use oliognts to help inter-
operability and support cooperation across research grolgre is still much to be done.
While there exist sophisticated toolkits to create and marmagologies, they do not al-
low external access by client applications. Thus, in ordersure ontology sharing and
management across groups, application developers haesad either to development
environments to construct applications that use congelilantologies, or to create pro-
grams that invoke operations from servers that publishiBp@ntologies. The first kind
of solution does not support ontology evolution, whereasdbcond limits application
flexibility by providing a restricted set of access funcgpwith no possibility of handling
multiple ontologies simultaneously. Moreover, in mostesathere is not a clear separa-
tion between storage concerns and semantic manipulagompéring ontology reuse and
application development. Additionally, most approachesat provide metadata on on-
tologies. Thus, applications (and users) are unable taordate factors such as ontology
quality, or reliability.

This paper presents a SOAP-compliant Web Service, namedéomhich meets
these requirements. As will be seen, it combines the feslprovided by environments

1Aondé means "owl” in Tupi, the main branch of native Brazilian languagesotitem both the domain supported
by the service, and the standard ontology language used by its implementatio

with the flexibility offered by servers to support ontologyotition. Moreover, it clearly
separates storage management issues from high level gic@lloperations. The param-
eters of its basic set of functions can be dynamically defimgdlient applications, to
guery, search, rank, compare and integrate ontologiesllfsiondé allows access to
multiple ontologies at a time, as long as they are publistsgtguNVeb Services. Ontology
management is enhanced by associated metadata struttwe$ostering collaborative
management of ontologies.

Aondé was designed and implemented to meet the needs of WeBiqsa[BIE
being developed within a joint initiative of biodiversitpé computer science researchers
at the University of Campinas — UNICAMP — Brazil. The goal of Wesis to provide
scientists with a system that supports sharing of distdbdtiodiversity data sources on
the Web. Though geared towards biodiversity applicatidwside has been specified in a
generic way, so that it can be extended and adopted by othes kif application domains
with similar volume and interoperability requirements.

This paper contributes therefore to the solution of prolsl@nhsemantic hetero-
geneity in the Web, by presenting an ontology Web Serviceadterized by: (1) use
of distributed repositories to manage and store ontologmelstheir metadata, separating
low-level storage from higher level semantic concerns; @dpecification and imple-
mentation of service operations that support integratesipodation of sets of ontologies.
Applications can thus enhance their semantics, and inteatg by becoming clients of
this service, thereby exchanging, reusing, integratirtgaaopting concepts from ontolo-
gies published on the Web.

The rest of this paper is organized as follows. Section 2aonat brief description
of WeBios. Related work is described in section 3. Section dents the specification of
Aondé and its architecture. Section 5 concerns implementaipads. A real case study
is presented in section 6. Finally, section 7 concludes #pep commenting on lessons
learnt and ongoing work.

2. Overview of WeBios' Architecture

This section briefly presents WeBios, to show the principkdsd the design of Aorig
while at the same time illustrating a typical context whére service can be used. We-
Bios is a biodiversity information system developed withijpiat initiative of computer
science and biodiversity researchers. Its goal is to peothe latter with a system that
supports exploratory queries over heterogeneous andbdigtd biodiversity data sources
on the Web. It has a service-oriented architecture and gre@emantic Web technolo-
gies.

Figure 1 presents a high-level view of WeBios’ architectorganized according
to four main layers:Storage Layer ServiceSupporting Web ServiceEnhanced Web
Servicesand Client Applications This paper is concerned with the two outlined boxes:
the Aonc Ontology Service and the Semantic Repositories Service.

While some services are already implemented, others dreeastig designed. The
architecture shows the basic data and software organizthiid underlies our work. First,
distinct kinds of data sources are published via Web Sesvi€econd, services grow in
complexity via their composition. Finally, applicatioretinvoke services whenever they

need specific kinds of data and functions on these data. Coesty the architecture
supports interoperability on the Web and flexibility in apption development.

l Web Interface l
Query Mediator T
Merging
Client Applicatio
re S
Semi- Automatic Image Ecologically- Aware Enhanced
Annotation Service Query Service Services
4 I I v
Content-Based Image Metadata Collection Geographic Data Aondé Supporting
Service Service Service Service onde Services
i ! ! ! I
Image Repositories Collection Repositories Geo Repositories Semantic Repositories
;'1 "1 e "! Storage Layer
EEJ‘ .]I ‘ M) Services
Images Image Metadata Collections Metadata Ontologies Metadata
Descriptors

Figure 1. The WeBios Architecture - Main Components

Intuitively, a query at th&Veb Interfacdevel is translated into a set of requests by
theQuery Mediator These requests are dispatched to appropriate serviceEnhanced
Servicesnvoke theSupporting Service® answer requests that demand combined access
to distinct kinds of data sources. The Enhanced and Suppgosgrvices retrieve the
data from theStorage Layesservices, process the requests and return the results to the
Mediator, which will merge them and return the final answdsg¢shown at the Interface.

The Storage Layer Serviceme responsible for data storage and low-level data
management in distributed repositories, which are fed Byirdit biodiversity research
projects. There are four kinds of primary data sources: esg@mage Repositories),
species’ occurrence records (Collection Repositories)gigghical and ecological data
(Geo Repositories), and ontologies (Semantic Repositories)

Each of these sources has associated meta@atalogy dataare provided by the
scientists to describe their work context, e.g., phylogjerieees, taxonomic descriptions,
ecological relations or habitat definition. Though figurenbgs one single repository of
each kind, several such repositories can exist, e.g., neanagdistinct research projects,
scientists or institutions.

The Supporting Services Layer comprises five Web Servieges) ef which ded-
icated to a specific data retrieval modality. T@entent-based Image Retrieval Service
processes requests based on image contentMEt&data Serviceetrieves information
based on metadata parameters, allowing for different atalsd TheCollection Service
provides access to occurrence records. Ge®graphic Data Serviceetrieves spatial
information, used to create maps and species distributicm given area. Thé&once
Ontology Service is described in Sections 4 and 5.

So far, two Enhanced Services have been designed and lganiplemented: Im-
age Annotation and Ecologically-aware Queries. Irhage Annotatioservice [22] helps
users to annotate images with metadata and ontology terrhe.Edologically-aware
query service [25, 31] allows users to pose queries on ecologealationships among
species (e.g., predator-prey). Most of B®rage Layer Servicdsmve been implemented
as prototypes, using a DBMS, but not as full-fledged Web sesvicOnlyAoncg, the
Semantic Repositognd theGeographic Data Servicare implemented as Web services.

Our case study (Section 6) relies on taking advantage ofhtheppendence offered
by service invocation. Complex data manipulations withiragplication are supported
through sequences of invocations to distinct servicesology repositories are central to
semantic disambiguation of queries and are detailed in@ebtl. Aon is detailed in
Sections 5 and 4.Further details on WeBios are outside thpesafdhis paper.

3. Related Work

Our paper concerns ontology management, including stumhe®ols and operations.
Though Aon@ has been constructed for biodiversity information systégiS), it was
specified and implemented in a general way. Thus, we will netuds related work
on BIS, just inserting appropriate explanations when needeat the purpose of this
paper, it suffices to know that all BIS rely on correlating egital and geographic data,
information on species and species collection records eblaar, they can be specialized
—1.e., concerning one specific kind of living being [29, 5Xdrgeneral purpose, covering
a wide range of species (e.g., [50]). WeBios’ design suppbetsatter.

3.1. Ontologies and Tools to Manipulate them

One of the most widely used definitions of ontology is [2G&n ontology is an explicit
specification of a conceptualizationFrom a computer science perspective, an ontology
can be viewed as a data model that represents a set of comgptsa domain and the
relationships between those concepts. Knowledge in anagytas formalized using four
kinds of components:

e Classes:sets, or kinds of objects (concepts or categories of coadapghe do-
main), usually organized in taxonomies;

e Instances:the objects in the domain, represented as instances ofg clas

e Properties: used to describe instances/classes. Properties may sxqvgsct
attributes or relationships;

e Constraints: abstractions that use properties to describe a class.

Many languages may be used to represent an ontology, such RffRd3ource
Description Framework) [36] and OWL (Web Ontology Langua@) Ontologies are
usually displayed using graphs — nodes are classes, tdrnodas are instances, and
edges represent properties, class hierarchies or redatietween instances of classes.
Constraints are expressed as axioms in description logi@endot represented graphi-
cally. Tools and languages for ontologies also take adgandthe graph structure.

Though ontologies help interoperability, they impose a téwd of burden on
systems (and people) — how to define the ontologies of irttares moreover, to specify
how they should be managed. In many application domaingrexpgonstruct the on-
tologies using toolkits, often importing and reusing @rigtstructures. Reuse is fostered

by publishing ontology repositories on the Web — e.g., DOMI&][OntoServer [55] or
Swoogle [17].

There are many tools to manipulate ontologies, with varynagber of func-
tionalities, such as ontology development, merge, evauoagannotation, storage and
guerying. The most popular tools are Fgd, WebODE, OilEd, Ontolingua and Onto-
Builder [24, 44]. Though many of these tools similar functipthey neither interoperate
nor cover all the activities of the ontology life cycle. Thagk of interoperability causes
significant problems when integrating an ontology into thétogy library of a differ-
ent tool, or if two ontologies built using different tools languages are integrated using
merging tools. This, in turn, prompted research on tools phacess and allow compar-
ison of ontologies specified in different languages — e38].[As will be seen, Aonél
supports the most common functions offered by toolkitjessg language homogeneity
(the OWL standard).

3.2. Ontology Servers and Frameworks

Toolkits are self-contained and their operations cannaidzessed from external appli-
cations. Thus, to effectively share ontologies acrossiegipdns, software engineers rely
on two kinds of solution: ontology frameworks and ontologyers.

Examples of frameworks are Jena [14], SNOBASE [34] and SOBaually, such
frameworks provide functions to access ontologies thae lieen stored in distinct for-
mats (such as DAML+OIL, RDF, RDF(S), or OWL), using specific gdanguages.

Application development in this context uses a framewoflisctions and data
structures. In many cases, however, frameworks do not sugipdevelopment of ap-
plications that consider ontology evolution. Indeed, sinotologies describe knowledge
about a given domain, they must evolve to reflect knowledggiiattion — e.g., in bio-
diversity, when new species are found or taxonomies arsitesli Since the application
code depends on the framework’s (static) structures, ogyatvolution may demand con-
siderable recoding. This defeats the purpose of using agits to provide flexibility and
interoperability across applications.

Hence, ontology servers have been proposed to solve theforegghamic man-
agement[19, 35, 52]. Servers are mostly concerned withlimggtorage issues. Some of
these servers provide access to the ontologies via their U&Lg, [19], while others store
the ontologies in a local repository — e.g., [35]. Theseeaerean only provide access to
an ontology at a time, and thus are not appropriate to worlksimibuted, multi-ontology,
scenarios. Moreover, they offer a limited range of funciiam ontologies — some may
support queries to ontologies and, in some cases, provieleence engines.

Aondé combines the use of servers (for dynamic ontology managgnesframe-
works (to support flexibility in application developmeni)he following sections briefly
describe some of the ontology functions that have been gempm the literature, as well
as toolkits that have been developed to deal with them, aitig some of our design
choices. As will be seen, there is no solution that coversedids. Moreover, some of
these functionalities are not yet available in a Web impletagon. Aone fills this gap,
providing web based support to the most common functions.

2http://sofa.dev.java.net

3.3. Ontology Ranking

The goal of ranking mechanisms is to determine ontologiasdhe potentially relevant
to a given knowledge domain. Some mechanisms use metriosahsider the number of
links and references among ontologies, similar to the natigpage-ranking on the Web.
This solution suffers from limitations, since availabletalogies seldom point at each
other, having low inter-connectivity. Another solutionremking is to analyze the internal
structure of an ontology. This approach is based on metratsstvaluate how an ontology
represents the concepts of interest, considering its biasarchies and properties.

Figure 3.3 synthesizes the main features of ranking toolsogle [17], AkTiveR-
ank [3] and OntoKhoj [43]. It shows, for instance, that Ak8Rank uses structural anal-
ysis, while the other two adopt reference count.

Tool Swoogle AkTiveRank OntoKhoj
Approach References among Internal structure References among
ontologies analysis ontologies
Technique Used Reference count Structural analysis Reference count
metrics
Ontology Language | OWL, RDF, RDF(S), OWL RDF, DAML+OIL, OWL
DAM+OIL
Searched Elements | All elements Classes All elements
Figure 2. Comparative table of ontology ranking tools - shaded boxe s indicate our design

and implementation options

3.4. Computing Differences between Ontologies

Difference computation, in most cases, compares two wesb the same ontology. In
the more general case, distinct ontologies can be comp&nexhle differences are those
that do not consider an ontology’s structure — i.e., coriogronly names of classes or
properties, data types and constraints. Complex diffeseemmsude detecting modifica-
tion of class hierarchies (e.g., when a class changes ptaaehierarchy, denoting its
semantics have changed).

There are several tools that handle difference computaisiomatically or semi-
automatically (i.e., with or without user interaction)gkire 3.4 compares a few aspects of
tools PromptDiff [39] and OntoDiff [54]. It shows, for ingtae, that PromptDiff compares
structures and hierarchies, but does not take ontologgnost into account. Shaded
boxes indicate the design and implementation options addpt Aond.

3.5. Ontology Views

Ontology reuse is a highly recommended practice when agatinew ontology. Reuse
provides several advantages, such as avoiding the hardokbtklding an ontology from
scratch. Furthermore, existing ontologies are supposdsktesounder, since they will
have undergone checking by domain experts and tested by appécations. Finally,
reuse fosters data integration and interoperability amapmications that use the same
ontology.

Tool PromptDiff OntoDiff
Approach Structural comparison Structural and instance
comparison
Technique Structural and hierarchical | Heuristics for change
Used analysis detection
Support Protégé None
Environment
Ontology RDE(S), OWL RDEF(S)
Language
Processing Semi-automatic Automatic
Figure 3. Table comparing features of tools that detect differenc es between ontologies

More often than not, however, an ontology may be too large@icbomplex for a
given application need — usually, applications will regwonly part of an ontology. How-
ever, for lack of available alternatives, application degers end up by importing entire
ontologies, which creates performance problems, bothanespnd processing time. This
Is aggravated by the fact that ontology management and gsogeusually depends on
inference engines, which perform poorly on large ontolsgie

A solution to this problem is to use amtology view which is defined to be a
relevant subset of an ontology. The temew is borrowed from research on databases
— a view is a portion of a database, relevant to a given usepplication, extracted
by applying a query against the database. Paraphrasinfpf2he user, the view is a
“stand-alone” database created from the original datat&isglarly, an ontology view is
a “stand-alone” ontology, constructed by extracting paftan ontology and using them
as a new ontology.

Figure 3.5 presents the main features of tools OntoPath{3®) View Lan-
guage [56], View Traversal [41] and Ontology Winnowing [4jadl in view creation. The
figure shows, for instance, that approaches proposed id4]3@re based on the notion of
central concept a class around which the view is built and that defines whitblogy
elements must be part of a view. This approach, chosen bysusmre flexible than that
of constructing views using queries.

3.6. Ontology Integration

In distributed and open systems, ontologies alone canre gtteroperability and het-
erogeneity issues. Distinct research groups may haveeliffénterests, research goals,
use diverse computational tools and manipulate knowletigareus levels of detail and
abstraction. Thus, in order to provide group cooperatiomeskind of ontology integra-
tion mechanism must be provided. Several of the heteroteissues considered have
already been studied in research on database integratgn[(el]).

Approaches to ontology integration start from two ontoésgi; ando,, and in-
clude [13, 32]:

- Mapping: preprocessing stage, identifies all concepts, iando, that are identi-

Tool OntoPathView View Language View Traversal Ontology Winnowing

Approch | Notion of central | Based on ontology | Notion of central Automatic view
concept query languages concept extraction based on
ontology queries

Technique | Specifies central | Extends RQL Specifies central Analysis most
Used concept and concept and related frequently queried
related elements elements elements
Ontology | RDF(S) RDF(S) RDF, RDF(S), OWL | RDF(S), OWL
Language
Figure 4. Comparison of view creation tools - shaded boxes indicate o ur design and im-

plementation choices.

cal, using matching techniques;

- Merge: constructs a new ontology that is based on the mappings betwend
02, Merging equivalent concepts into a new concept. This qunezeives the
name of the originating concept in or in os;

- Alignment: constructs a new ontology that embeds and preserves theairig
ontologies, which are linked according to the mappingsdete

Integration is always based on some sort of matching prockkstching may
identify identical terms (equivalence), or elements tretipipate in relationships (e.g.,
part-of, is-a). According to [49], there are two main cléisations of matching tech-
nigues: element-level matching and structure-level magchrhe first computes similar-
ity among terms ignoring their relationships with othentsr(e.g., using string matching
or linguistic relationship among the terms compared). Téwoad considers that an on-
tology is a graph structure, and analyzes how an entity appedhis structure [1, 46].
Aondé combines both techniques.

Figure 5 synthesizes a comparative analysis of relevamacteistics of integra-
tion tools GLUE [18], Chimaera [38], ODEMerge [47], PROMPJ4nd CATO [20].
Most of these tools are coupled to toolkits, such as@&p{PROMPT) or Ontolingua
(Chimaera). Automatic processing tools may generate iscomappings, while inter-
active processing may impose on the user the burden of mgmii@icking all suggested
mappings. All of these tools only match elements of the samé, k.e., classes with
classes, properties with properties, and instances wstamees. As will be seen, we have
designed and implemented an integration (alignment) neothdt permits another kind
of matching: classes with instances.

4. The Aondeé Ontology Service

The goal of the Aond Ontology Service is to provide to client applications lities to
invoke a wide range of operations on ontologies. It was imgleted as a Web service,
thereby providing interoperability.

Web services are self-describing and modular businesscapphs that provide
business logic as services over the internet through stdsidesed interfaces and inter-
net protocols (e.g. HTTP), with the purpose of finding, substg and invoking those
services [7]. Standards adopted in their specification amdeémentation include XML,

Tool GLUE Chimaera ODEMerge PROMPT CATO
Kind of Mapping Merge Merge Alignment and Alignment
Integration Merge
Taxonomy-based, | Taxonomy-based, | Based on Taxonomy-based, Taxonomy-based,
Techniques Used | string-based string-based linguistic string-based and based on
(similarity) and (similarity) resources (similarity), linguistic resources
constraint-based (synonyms, constraint-based and | (synonyms)
hyperonyms) graph-based
(Anchor-PROMPT)
Support None Ontolingua WebODE Protégé None
Environment
Ontology XML (taxonomy) | Ontolingua, XOL [RDF(S), RDE(S) OWL
Language DAMLA+OIL
Processing Semi-automatic Semi-automatic Automatic Semi-automatic Automatic
Kind of Element | Class-Class Class-Class, Class-Class, Class-Class, Class-Class
Matching Property-Property | Property- Property-Property,
Property Instance-Instance

Figure 5. Comparison of some ontology integration tools

SOAP (Simple Object Access Protocol), WSDL (Web Servicescbtson Language)
and UDDI (Universal Description, Discovery and Integrajioeb services facilitate the
communication between distinct applications and platkrm

4.1. Atwo-level Web service architecture

Our ontology management architecture distinguishes letvamtology persistence is-
sues and semantic manipulation. Figure 6 shows this bashitecture, expanding the
boxes that were outlined in Figure 1. Ontologies are staneskveral distributed ontol-
ogy repositories, each of which accessed via a Web servicg. (TH8se repositories can
be of two kinds:Semantic Repositorigbuilt and managed by our Semantic Repository
services, and third parti¢xternal Ontology Repositoridbat publish ontology data via
Web services. Aor&lprovides an extensible set of modules that can be invoketidiyt
applications to search, rank, query, integrate, createsvénd compare ontologies.

| Aondéws | |
Search and Que Differences View | | Inteeration
Ranking vy Detection g |
| Management of Ontologies | \

I i Ws |
Semantic Semantic |

Repository WS Repository WS : External

R — el R —— | Ontology

Ontologies| ¢—»| Metadata Ontologies|«—» | Metadata { || Repositories
Figure 6. Two-tier architecture for managing ontologies, separat ing the persistence layer

from the semantic operations of Aond &

Client applications can either request these high-levetaimns from Aoné, or
directly access the Semantic Repositories using their geiniterfaces (e.g., allowing
expert data curators to validate or update ontologies agid thetadata). The sections

that follow describe the operations provided by Aern@ection 4.2) and the Semantic
Repository Service persistence facilities (Section 4.3).

4.2. Operations offered by Aon@

Aonck is organized in the following modulestanagement of Ontologig¢Section 4.2.1),
Search and Rankin@ection 4.2.2)Query(Section 4.2.3)Views(Section 4.2.4)integra-
tion (Section 4.2.5) an®ifferences DetectiofSection 4.2.6). This choice of functions
was based on our study of ontology tools, frameworks andE\(Section 3), and of
several biodiversity systems (e.g. SinBiota [50], Spire] [@2GBIF [23]). This was
complemented by a process of requirements elicitationwcted with the biologists that
work in WeBios.

4.2.1. Management of Ontologies Module

This module is responsible for in-memory management oflogtes. It mediates re-

guests from the other modules to the persistence servindsyiee versa — i.e., issuing

requests to insert/delete/replace/retrieve ontologmestheir metadata, as well as addi-
tional information (see Section 4.3). Ontologies obtaifredn the repositories (either

from Semantic Repositories or third party External Repogif)rare transformed by this
module into in-memory structures, to be processed by Asnather modules.

This module is also responsible for constructing metadatatsires for ontologies
created by Aond or retrieved from third party repositories. Each metadatacture is
associated with an ontology through its identifier; an aryggland its metadata structure
are stored together.

A Semantic Repository may contain several ontologies and ithetadata. Each
ontology has a unique (local) identifier within a repositdiyt a given ontology (and thus
its metadata structure) may be stored in more than one SenfRepository. This hap-
pens, for instance, when distinct semantic repositoriesreanaged by different research
groups. For this reason, unique identification requirespidie <identifier, URLRep,,
which denotes thelentifierof an ontology in repository addressedWRLRep The term
idOntology used in the rest of the paper, designates this pair, wheteasfierwill refer
to a local id.

4.2.2. Search and Ranking Module

This module searches, within a set of source repositoegrftologies that contain cer-
tain terms. It returns a set of ontologies that have classest@ances whose names match
(exactly or partially) these terms. The search is perforomedepositories designated by
the invocation. If the search returns an ontology that isestan third party repositories,
Aondeé processes it and stores it into a target Semantic Repository

There are two kinds of search operation: with and withoukiragn Search without
ranking is performed to retrieve a single ontology in a sfpecepository, returning the
idOntology of the first ontology found containing the terms provided.efiéhare two
source options: generic ontologies, or taxonomic onte®@i biology, respectively:

Search(term, sourceRep, target Rep) and

SearchTaxon(tazon,{directive}, sourceRep, target Rep),

whereterm is the name searched for (atidcon a scientific species name). The
field sourceRep denotes the source repository indicated by the client egjpbn and
target Rep designates the Semantic Repository where ontologies vettridom third
party external repositories are to be stored.

The search on a taxonomic ontology may return just part of @iolagy —
{directive} specifies which elements will be included in the result. Kl of search
helps applications discover taxonomic relationships amspecies when the source
repository contains taxonomic classifications. Directiygions can bencestors sib-
lings anddescendants

An invocation of a search with ranking has the form:
SearchRank({term}, {weight}, {sourceRep}, target Rep),

where{term} represents the set of ontology terms passed as search pargme
and{weight} indicates the set of weights for ranking metrics. This irat@mn returns a
set ofidOntology values corresponding to result ontologies, ordered byingnkalues.

Ranking is based on analysis of the internal structure of eatblogy retrieved
by the search. This analysis applies the metrics proposéddny et al. [3]: centrality of
the classes, matching and density of classes and instardieated in{term}, and the
semantic similarity among these classes. These metriaanrbined using the values in
{weight}. The sum of weights must be 1.

We adapted the metrics proposed by [3] to rank ontologiegistlonly considers
classes, whereas Aoadonsiders classes and instances./La@gnote a set of input terms
(classes or instances) passed as search parametes aaset of source ontologies.

e Exact and Partial Matching: compares each term inwith each ontology € O.
Computes the number of terms Inthat exactly or partially match instances, or
names of classes, in

e Density: applied to each class/instancee o whose name matches a term/in
Computes the number of subclasses, superclasses, preertdesiblings of,
when it is a class; and superclasses, properties and otstanaes of the same
class, whert is an instance;

e Centrality: applied to each class € o whose name matches a term/inCom-
putes all shortest paths between all pairs of classesand counts how many
timesC appears in these paths. The bigger the centrality of a alems ontology,
the higher the probability that the ontology adequatelyrespnts the concepts
concerning the class, and the richer the ontology as regfaisislass;

e Semantic Similarity: applied to pairs of classes (or termg)t, € o whose names
match a term irn/, returns the length of the shortest path betwgesnd¢,. The
shorter this path, the more similar the corresponding qaisce

4.2.3. Query Module

Given a source ontology and a query expressed in an ontologny ¢ganguage, this mod-
ule returns the query result in the format requested. ltsaation has the form:

Query(idOntology, language, queryString, in ference, out Format),

whereidOntologydenotes the ontology to be queried (i.e., the pattentifier,
URLRep- — see 4.1) andutFormatdefines the output format for queries: it can be textual
(i.e., in RDF triples or parts thereof) or structured in XMle&l

Field languageis the query language used to specify the query statediemyS-
tring. This module allows queries in RDQL [48] or SPARQL [45] langeag Both
RDQL and SPARQL query an RDF representation of an ontology, podating it as sets
of subject—predicate—objettiples. A query consists in selecting which ontology &l
satisfy the query predicates.

Theinference parameter is a boolean variable that indicates whetherubeyq
should be executed on the source ontology, or on an extentetbgy derived from it
using inference mechanisms. Inference mechanisms sugipootvery of new ontological
facts. Hence, queries with inference would normally retmore results that are mean-
ingful. However, they are more costly (in processing tinigt normal queries. For this
reason, inference is optional, defined at invocation time.

4.2.4. View Module

This module constructs a view of a source ontology, basedercéntral concept ap-
proach [41] — see Section 3.5 — and stores the view in a taggaaitic Repository. The
original central concept proposal of [41] constructs viewssg instances and properties
of the source ontology. We extended this approach to maatpulass axioms. The
module returns the identifier of the ontology view. An invboa of this module has the
form:

View(idOntology, concept, {directive}, target Rep),

whereidOntology denotes the source ontology, anthcept is the name of the
class that represents the central concept of the view. Téw g stored in Semantic
Repositorytarget Rep.

Thedirective field indicates the elements to incorporate into the viewtances,
axioms or property names. These properties can be a subalasgerclass, an object
type or a data type. Besides the class that represents thralasoricept, classes related
with it through axioms or properties are also included inttev. Each property name
in a directive is associated with a non-negative integdrdpacifies its depth (how many
levels of indirection must be inserted in the view). A requeishout directives produces
a view containing everything associated to the central epiavith unlimited depth.

4.2.5. Integration Module

This module integrates two source ontologies, and prodacesv ontology that is stored
in a target Semantic Repository. It returns th@ntology of the new ontology. Align-
ment is the integration approach chosen (see Section 816§ i is expected that almost
all of the ontologies required by a biodiversity client apation will have complementary
or overlapping domains. Two ontologies with different aages can be used together to

improve the description of the world. Alignment can alsan#late facts between on-
tologies with different granularities and show the same @encler distinct perspectives.
Merging (an alternative approach) does not preserve theesantologies in the result
and is thus less adequate to our scientists.

Similarity computation is performed in two steps: first, gibte mapping candi-
dates are identified using element based techniques; naxtjuse techniques are em-
ployed. The goal is to avoid aligning classes or instancashhve similar names, but
which belong to distinct contexts in the ontologies.

Two element similarity techniques are applied: use of di@ries (to find syn-
onyms) and the Jaro metric [15]. The maximum value obtaisedultiplied bya — see
equation 1. Synonym comparison retuin@ositive) or0.

Structure similarity between two terms considers four Kintifactors: their prop-
erties, axioms, superclasses and subclasses. Each siygdisaocantributes with a weight
of 0.25 to structure similarity computation. Property similar@gmpares the labels and
the elements related by the property (classes or primigpes). For axioms, the compari-
son is performed on properties and classes involved. Hileyasimilarity compares super
and subclasses common to the compared elements. The gynikdue of each analysis
is proportional to the rationumber of similar elements / total of elements compered
e.g., when comparing the superclasses of two terms, thee(ratmber of similar super-
classes / total number of superclagsds must be stressed that structures may differ for
similar elements, when ontologies have different grarmigat

We define theconfidenceof a mapping between a pair of elements from different
ontologies to be computed by:

confidence = a x max{similar Element} + [% (similarStructure) (1)

Field {similarElemen} contains the set of values obtained from similarity compu-
tation using two distinct element-based techniques, vassienilarStructurerepresents
the similarity computed between the structures of thesaehs.

An invocation of the Integration module has the form:
Integration(idOntology A, idOntology B, c, 5, minCon fidence, target Rep),

whereidOntologyA andidOntologyB are the ontologies that will be aligned,
and the result is stored in Semantic Repositoryget Rep. ParameteminConfidence
— a number betweet and1 — defines a lower bound to the computation of formula 1.
The final aligned ontology will only include the alignments fvhich this formula yields
values aboveninConfidence

4.2.6. Differences Detection Module

This module performs a comparison between two ontologietgating their structural
differences (classes and properties) and content diffee(instances). An invocation of
this module has the form:

Dif ference(idOntologyA, idOntologyBy, /3, minConfidencg

whereidOntologyAand idOntologyBrepresent the ontologies to be compared.
Field minConfidencés computed considering element and structure similarging for-
mula 1. A mapping between two elements of the ontologies magt at least this value
to be effectively considered in difference computatiormi&irity computation uses the
same steps of Integration — Section 4.2.5.

The result is an XML file that enumerates these differencabasnion of three
sets: concepts that are similar in B and in A, elements tleaitnaB but not in A and vice-
versa — see example in Section 6. We chose this kind of ougmn#use we were unable
to execute difference operations using tools availabldhenNeb. Moreover, papers dis-
cussing ontology difference present results only graplji¢e.g., crossing off eliminated
elements in an ontology graph) — see Section 3. Since Aomdst serve XML files to
client applications, we opted for this solution.

This function has important applications in biodiversipgtems, especially when
ontologiesA and B are different versions of a taxonomic description. In biedsity,
the classification of species may change over time. Moreolassifications proposed by
distinct authors may disagree on species hierarchies.cbnmparison allows a biologist
to detect when distinct taxonomic models were used in a gstady, and where the
differences lie.

4.3. Semantic Repositories Service

While the previous section concentrated on semantic maatipual of ontologies, the ra-
tionale behind the Semantic Repository Service is to propelsistence to ontologies,
and low-level ontology storage manipulation. Nowadayserg wide range of ontologies
is available on the Web. Most times, they are published witlamy additional informa-
tion that might help their use. As a consequence, poterggiscannot find and recognize
ontologies of interest, and thus their sharing and reussearieusly affected. We intro-
duced metadata structures to help diminish this problem.

The Web service interface to Semantic Repositories thusostgoextraction, in-
sertion, deletion and replacement operations on ontaogiel associated metadata. Its
operations and structures extend facilities provided liglogy servers.

A Semantic Repository contains two data spaces: (1) for ogtes and their
metadata structures; and (2) for usage information. Therla¢cords data concerning
usage patterns of ontologies within the repository — i.eergs performed against them,
Aondé operations used to create them, and provenance data nmtqardy the metadata
structure. This can contribute to optimize ontology mamnagyet, and also help domain
experts in finding out more about ontology usage. The usategpace is still being
designed, and will not be discussed here.

All ontologies manipulated by Aoridare stored in Semantic Repositories, in-
cluding those extracted from third party repositories. Thderlying assumption is that
ontologies are directly associated with end-user/clipplieation needs and they should
be available to future requests. The metadata structure @ngology is built by the
Management of Ontologiesodule (see Section 4.2.1).

Storage manipulation primitives insert, delete or replkacgre ontologies and/or
their metadata. These primitives use coarse-grained tip@sa our unit of storage is an

entire ontology (or its metadata structure). Thus, theyoareretrieval and update units.
Our main goal, at this stage, is to support high-level sermananipulation at Aond.
Thus, we did not concern ourselves with finer granularityrapens at the storage level
(e.g., to retrieve or replace parts of an ontology). This &asmpact on performance,
since real ontologies can be very large.

On the other hand, it does facilitate semantic manipulatiéor instance, since
Aondé constructs views based on the central concept paradigegdls an entire ontology
in order to compute a view. The same applies to queries: rétha considering a query
to be low-level storage operation, Adahdequests an entire ontology from storage, to
perform queries afterwards — e.g., with or without infelnd his design decision on
storage operations may evolve in the future, when we finisliésign of the usage space,
and obtain data on user profiles.

Figure 7 illustrates the structure of a Semantic Repositmyposed by the on-
tology and metadata data space, and the usage data spacégurbeshows that each
ontology stored has an associated metadata structureatimdj, for instance, its URI, the
creation date, and associated keywords.

l Semantic Repository WS l

idOnto | idMeta \K//

D — —> URI: http://www.owl-
ontologies.com/Collection.owl
Creation date: 15/02/2007
O Ontology Language: OWL-DL
Ontology Engineering Tool:

Protégé

Description: Describes interactions

among insect and plants collected in

@) Usage Data field trips by UNICAMP biologists
Keywords: insect, plant, capitulum

v Space \/

Ontologies Metadata

Figure 7. Example of a Semantic Repository

OWL [8], the standard recommended by the W3C Consortium, waptaddo
represent ontologies. We have adopted the OMV (Ontologyat¥stt Vocabulary) stan-
dard [28] to provide metadata information. The metadatacsire illustrated in figure 7
uses OMV terminology, detailed in Section 5.

Since we are concerned with biodiversity issues, the ogtetoof the Semantic
Repositories store concepts about: (1) geographical fgt(2) biological information
and (3) other kinds of information that is relevant to reskan biodiversity (e.g. con-
cerning images). Biological ontologies provide descripsi@bout taxonomy, evolution
and morphology of species, as well as ecological and trotétions (i.e., position oc-
cupied by a species in a food chain). Ontologies on geograpf@atures are associated
with terms that describe geographical, climatological andironmental characteristics
of a region, as well as other natural or artificial elemenéd thay have an impact on an
ecosystem.

5. Implementation Aspects

Aondé has been implemented in the Java language. Access anati@vigver ontology
contents are provided by the Jena framework [14] version ZHis version of Jena is
composed by an RDF API, an OWL API, in-memory and persistemagty SPARQL
and RDQL query engines and a rule-based inference engine.

Our Web service implementation uses Apache Axis, a widetypstet open source
Web service framework. It consists of a Java implementatiotne SOAP server, and
various utilities and APIs for generating and deploying Wetvice applications. Sections
5.1 and 5.2 describe persistence details, and section &.iBlementation of Aongls
modules.

5.1. Semantic Repositories: Ontology and Metadata Structwes

A Semantic Repository is composed of two data spaces: ont@ad metadata; and
usage data. The second data space is under constructiooptside the scope of this
paper (see Section 4.3). The first space confaint®logy, metadaigairs of files, where
the ontology is expressed in OWL and the associated metaniatause in OMV. OWL
supports description of concepts with distinct granwadétails (OWL Lite, OWL DL
and OWL Full) — one of the reasons for which it was chosen, dime@ntologies that can
be manipulated by the service are not known beforehand.

The ontologies used to test Aandere built in Pratge [24]. This tool has a plug-
in to manipulate ontologies in OWL, with a graphic interfacelefine classes, properties,
instances and axioms in description logics.

OMV files are represented in RDF, using the namespame (http://omv.
ontoware.org/omv-core-1#8). Metadata elements are categorized according to thesr typ
and purpose as follows:

e General: elements providing general information about the ontolagigl, name,
acronym, description, creationDatedquired and documentation, keywords, sta-
tus, modificationDategptional);

¢ Availability: information about ontology location: resourcelLocatorsuan (e-
quired) and hasLicensenftional);

e Applicability: elements describing the intended usage or scope for thé- onto
ogy: isOfType (equired and hasDomain, naturalLanguage, designedForOntolo-
gyTask, hasFormalityLevebptional);

e Format: information about the physical representation of the agglincluding
the representation language in which the ontology is fomzedl hasOntology-
Language, hasOntologySyntaequired);

e Provenance: elements about the organizations that contributed to tlee cr
ation of the ontology: hasCreataequired and hasContributor, usedOntology-
EngineeringTool, usedOntologyEngineeringMethodologgedKnowledgeRep-
resentationParadignojgtional;

¢ Relationship(optional): information about relationships with other ontologies:
uselmports, hasPriorVersion, isBackwardCompatibleWsimcompatibleWith;

e Statisticqrequired: various metrics on the graph that underlies the ontology:
numcClasses, numProperties, numindividuals, numAxioms.

Figure 8 presents OMV metadata for one of the ontologiesldped by us, which
will be used in our case study. It shows, for instance, thatethgineering tool used to
build this ontology was Prétg (5th line from bottom), and that description logics was
used for knowledge representation (preceding lines). ditiaa, it contains facts such as:
the ontology has 5749 individuals, 22 classes, and wasextéa?007-02-15.

<rdf:RDF
xmins:xsd="http://www.w3c.org/2001/XMLSchema#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmins:omv="http://omv.ontoware.org/omv-core-1.0#">
<rdf:Description
rdf:about="http://www.owl-ontologies.com/Collection.owl#">
<rdf:type rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Resource"/>
<rdf:type rdf:resource="http://omv.ontoware.org/omv-core-1.0#Ontology"/>
<omv:hasOntologySyntax>OWL-XML</omv:hasOntologySyntax>
<omv:hasCreator>Computer science and biology researchers from
UNICAMP</omv:hasCreator>
<omv:resourcelLocator>unknown</omv:resourcelLocator>
<omv:description>Describes interactions among insects and plants
collected in capitula Zoology department, biology institute.
</omv:description>
<omv:URI>http://lwww.owl-ontologies.com/Collection.owl#</omv:URI>
<omv:hasOntologyLanguage>OWL</omv:hasOntologylL anguage>
<omv:version>1.0</omv:version>
<omv:numClasses>22</omv:numClasses>
<omv:numProperties>11</omv:numProperties>
<omv:numAxioms>6</omv:numAxioms>
<omv:numindividuals>5749</omv:numindividuals>
<omv:acronym>colUN</omv:acronym>
<omv:creationDate>2007-02-15</omv:creationDate>
<omv:isOfType>Domain Ontology</omv:isOfType>
<omv:name>collection.owl</omv:name>
<omv:keywords>insect, plant, herbivore, capitulum</omv:name>
<omv:usedKnowledgeRepresentationParadigm> Description Logics
</omv:usedKnowledgeRepresentationParadigm>
<omv:usedOntologyEngineeringTool>Protégé
</omv:usedOntologyEngineeringTool>
<omv:naturalLanguage>English</omv:naturalLanguage>
</rdf:Description>
</rdf:RDF>

Figure 8. OMV Metadata for one of the ontologies used in the case st udy

5.2. The Semantic Repository Web Service

We had several choices for implementing Semantic Repos#toriVe adopted Jena to
access ontologies because its persistence engine allowgRIDRs to be stored in rela-
tional databases. Thus, all data in Semantic Repositorgeacnally stored in databases.
We chose the PostgreSQL database management system tonpleersistence, where
both ontologies and their metadata are stored as RDF triples.

We conducted tests on 3 distinct semantic repositorie&libgia Web service for
each; the largest ontology contains 5749 instances. Ineim@htations of Web services,
invocations and results are SOAP messages with attached RDW_files. Ontology
(and metadata) insertion in Jena requires the client agifit to create the ontology
identifier that is to be inserted in Jena’s database. If thatifier provided already exists
in the database, the insertion operation will not be acckpiéis is a problem, since it

places on the client application the burden of “inventindgntifiers for new ontologies
and associated metadata. To solve this, our ontology/rattadsertion code generates
unique identifiers.

The operations allowed by a Semantic Repository Web Service a

¢ Insertion, replacement and deletion of an ontology: rexean ontology iden-
tifier and, in case of insertion and replacement;@nntology, or an OWL file
containing the ontology to be inserted or to replace thelogyoidentified;

¢ Insertion, replacement and deletion of a metadata strerctaceives the identifier
of the ontology and, in case of insertion and replacemertURL of a remote
metadata file or an RDF file;

e Retrieval of an ontology and/or associated metadata stegtveceives an ontol-
ogy identifier, builds the corresponding OWL/RDF file and resuit;

e List ontologies: lists all ontology identifiers stored inepository;

e Requests on usage information — retrieve/insert/deleifgnasage information
(under design).

Figure 9 presents the WSDL specification of methdahagementOntologyhat
performs insertion and replacement of ontologies. The 4wmesdl: message sections
at the beginning respectively indicate the parameters ®SBAP message sent to the
service, and the output parameter. For instandédaaagementOntologyRequaséssage
to the service (3rd line) must indicate a repository URL, aerapon (“insertion” or
“replacement”), an identifier and an OWLFile. It returns argfrto indicate if it was
successful or not. A failure occurs when a replacement g has an identifier that is
not in the database. Other methods are similarly specified.

5.3. Implementing Aonce

Aondé was implemented as a Web service. We recall that all opesatire performed
in memory, after retrieving ontologies from a persistewrage structure, either from
Semantic Repositories or from third party External RepogisorAll operations offered
by Aonce’s interface have a parameter that contains the (set of) URlotthg source
Repositories and another URL where the result of the operationld be stored, when it
creates an ontology — thargetRepparameter of the operations.

All modules have been tested on at least one Semantic Repoaitd at least
one third party External Repository. Since there are no Webi&es available to access
biodiversity ontologies — just portals — third party reposes used in Aonél are accessed
by HTTP requests. These requests have the form: “ServiceBRiaPnheters”, where
parameters are combined by connectot.”

Search and Taxonomic Search

Tests were conducted as follows. The external repositoryd u® test
taxonomic (non-ranked) search was the Spire porfdl2] accessed via URI
“http://spire.umbc.edu/ont/ethan-part.php”Since it does not offer a Web service in-
terface, we had to implement this external access using H&gG&ests, which return an
OWL file. The OWL file is processed by AoedmoduleManagement of Ontologigto
generate an OMV metadata structure. The ontology and itadat are stored in the

3http://spire.umbc.edu/ont/

<wsd|:definitions
targetNamespace="http://localhost:8080/axis/services/WSSemanticRepository
<wsdl:message name="ManagementOntologyRequest">
<wsdl:part name="urlSemanticRepository" type="soapenc:string" />
<wsdl:part name="operation" type="soapenc:string" />
<wsdl:part name="identifier" type="soapenc:string" />
<wsdl:part name="OWLFile" type="apachesoap:DataHandler" />
</wsdl:message>
<wsdl:message name="ManagementOntologyResponse">
<wsdl:part name="ManagementOntologyReturn" type="soapenc:string" />
</wsdl:message>
<wsdl:portType name="WSSemanticRepository">
<wsdl:operation name="ManagementOntology"
parameterOrder="urlSemanticRepository operation ontName dh">
<wsdl:input message="impl:ManagementOntologyRequest"
name="ManagementOntologyRequest" />
<wsdl:output message="impl:ManagementOntologyResponse"
name="ManagementOntologyResponse" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="WSSemanticRepositorySoapBinding"
type="impl:WSSemanticRepository">
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="ManagementOntology">
<wsdlIsoap:operation soapAction="" />
<wsdl:input name="ManagementOntologyRequest">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://webService_pckg.OntologyService" use="encoded" />
</wsdl:input>
<wsdl:output name="ManagementOntologyResponse">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://localhost:8080/axis/services/WSSemanticRepository"
use="encoded" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
</wsdl:definitions>

Figure 9. WSDL of ManagementOntology method

designated target Semantic Repository. If the search isadstonducted in a Semantic
Repository, no ontology is created.

Ranked Search

The external ontology repository used by ranked searctei$Sthoogle Web ser-
vice* [17], accessed via URttp://logos .cs.umbc.edu:8080/swoogle31/dhis search
is implemented in three steps: (1) retrieval of ontologied metadata from the source
repository, (2) eventual storage of new ontologies intotdrget Semantic Repository,
and (3) ranking. Step (1) is subdivided into two phasest,Rite Swoogle “Search ontol-
ogy” operation returns an RDF file containing URLSs of ontolesged Swoogle metadata.
Next, each of these ontologies is accessed by it URL. Stegd@®sSwoogle ontologies
in the target Semantic Repository. In addition, Aéralitomatically creates OMV meta-
data for each ontology, based on Swoogle metadata.

Finally, in step (3), the retrieved ontologies (that comtalasses or instances
whose names match search terms exactly or partially) akedsand returned with their

“http://swoogle.umbc.edu

rank values, combining several metrics. Two of these nee#aiie based on computation
of the minimal path between concepts in an ontology grapis fEyuired implementing
code that transformed an OWL ontology specification into glgrarhe conversion of
an ontology into a graph considers classes and instancesta®s ands-arelationships
and class properties as edges.

Query

The Query method supports RDQL and SPARQL languages. We heatesk
Jena version 2.4. We did not use version 2.5 because it déssipport RDQL queries.
The reasoner adopted is the default OWL reasoner, which carobsidered to be
instance-based. It uses rules to propagateftiand only—if implications of the OWL
constructs on instance data. Reasoning about classes igrabrextly — for each de-
clared class a prototypical instance is created.

Views

The View method builds a view (a new ontology) extractingpaf the source on-
tology. The main difficulty in coding this method concernedgh traversal. Indeed, view
construction requires navigation along source ontolodiigeo retrieve the elements de-
fined by directives and rebuild these parts into the viewsHavigation is more difficult
when the domain or the range of parameters or axioms are g@dgy union or inter-
section of many elements. An ontology identifier is autooslly created and returned
by the method. We point out that views containing more thanaantral concept can be
built by first creating separate views using the View mettaodi then aligning them using
the Integration method.

Integration

The Integration method aligns two source ontologies, aatmally creating an
identifier for the alignment result. It is performed in twess - first looking for string
similarity, and then for structural similarity, which us&so metrics [15]. Synonym iden-
tification uses the ITIS database (Integrated Taxonomigrinition Systent)[37] for
comparison of biology taxonomic terms, and the WordNetialetry [33] (version 3.0)
for other comparisons. Mapping candidates are analyzadtstally as regards proper-
ties and axioms, to avoid cases in which classes with the seame, but with different
contexts and meanings, are identified as similar.

In the resulting aligned ontology, similar concepts ree€VL tags. Alignments
discovered between classes are represented by dlad:equivalentClass tag, and be-
tween instances by theowl:sameAs tag. Often, however, distinct ontologies differ
in their level of detail in describing a domain’s entities -g.ea class in a given ontol-
ogy has the same meaning as an instance in another. For disiseAoné also dis-
covers matchings between classes and instances, andemfsrésese alignments by tag
<owl:sameAs.

Our alignment techniques were adapted to deal not only wakses, but also
with instances (in biodiversity, taxon terms). In many attans, scientific names of tax-
ons only differ in their suffixes. For example, the strifigsterales” and“Asteraceae”
have high string similarity, although they refer to diffetéaxons: thalessuffix indicates

Shttp://www.itis.gov

order and theceaesuffix indicates family. Furthermore, this kind of stringaks specific
synonym dictionaries, containing other scientific name=dusr the same taxon or ver-
nacular names. For this reason, our alignment implementases the ITIS database [37]
to check taxon synonyms. Since ITIS is only available on tied W textual form, we cre-
ated a relational database for its contents. This requioahtbading ITIS files, parsing
them, and constructing the database via SQL insert commands

Difference

The Difference method produces an XML file containing thists] describing
the result of comparing two input ontologies;t A andontB. The first list contains all
elements considered similar imtA andontB. The second list contains all elements
found in ontA without any similar element imntB, and the third contains elements
found inont B but without corresponding elementaént A. Similarity is computed using
the same techniques explained for the Integration method.

6. Case Study

Our case study uses real data, and was provided by biolagisvork in the WeBios
project. It involves interactions among insects and plantth data collected by many
teams over 20 years. This particular study is concernedspigicific interactions between
insects and &apitulum (the latin term for flower heads). This section uses a running
example, which will concentrate on the need for resolving@uest td'retrieve insect
species”under different constraints. This will be enough to illasér distinct possibili-
ties for invocations of Aon#l, showing how it solves typical end-user requests, inalydi
those not treated elsewhere. Each solution involves oneog mvocations of operations
offered by Aoné.

Our biology partners concentrate their research on pldtedamily Asteraceae
The insects of interest for our running example are thoseradérsDiptera (flies) and
Lepidoptera(butterflies), and belong tendophagouspecies — their larvae live within
and feed upon flower head seeds. For a detailed descriptidatarconcerning biological
aspects of the problem, the reader is referred to [5, 6, 21].

6.1. Constructing the Semantic Repository

The first step was to construct an ontology to describe theasgmbackbone that our
biology partners use in their work. Figure 10 shows a pontibtiis ontology, created in
OWL, using the Praige ontology engineering tool. Edges labeled viitltonnect classes
with their instances, whereas edges labeled igdindicate sub-/superclass relationships.
All other labels correspond to properties (attributes tatrenships).

To clarify our examples, we must briefly explain our expectslection method-
ology to detect insect—plant interactions. They take figjsstand collect flower heads
(capitulag, which they take back to their university lab. Flowers mawptain insect eggs
or larvae, which will eventually hatch to become insectss ¢inly then (sometimes weeks
after the field trip) that the insect can be identified. Thdembion unit is therefore the
capitulum

Figure 10 shows, for instance, that an insect ofthmoplagia reimosespecies
has an interaction with plant specigsrnonanthura membranaced his interaction is

obtained following the ontology associations between tised¢t and plant species via
nodeCapitulum G0904 The figure also shows parts of the taxonomic tree of coliecte
plant species — speci@ernonanthura membranacdselongs to genu¥ernonanthura
itself part of theAsteraceadamily.

Asteraceae

Iy

sa
Cichorioideae

A

S8

S

a
Vernonieae
[
a

3
S

T Collection
\'ﬁocaﬁm"’

Location

SingleCapitulum ‘ MultipleCapitulum

A
lio o

io Capitulum_G0904 Capitulum_PCL1715

Vernonanthura

()

hasPlantSpecies.” hasPlantSpecies ™isCapitulumOfCollection

Vemonanthra membranacea Collection_G0904 Melanagromyza_minimoides

‘ Tomoplagia_reimoseri

Figure 10. Part of the colUN ontology, constructed with help of WeBios’ biologists. It de-
scribes interactions among insects and plants, in the context of th eir collection method-

ology

We have omitted most instances of the ontology, to simgig/figure. It describes
1468 collection records, and interactions among 281 diffeinsect species and 623 dif-
ferent plant species. A Semantic Repository was createate 8tis ontology and asso-
ciated metadata. The repository URLh&p://143.0106.23.89:8080/0OntRepUNICAMP
TheidOntology in invocations of Aoné is<colUN, http://143.0106.23.89:8080/ OntRe-
PUNICAMP>, wherecolU N is the ontology local identifier within the repository desig
nated by the URI.

6.2. Basic Query Scenario

Consider a typical query in the plant-insect interactiomsac®: “Return insect species
that prey on plant species Eupatorium odoratum and that welleced in the Atlantic
Rainforest”. This requires several kinds of semantic disambiguatiohatws an “insect”,
what does “prey on” mean, what is an “Eupatorium odoratuntiatnnsect species were
collected in field trips, what is the “Atlantic Rainforest”dits geographical extent. Each
such consideration may require an invocation of A@rmtkepending on data available on a
cache or on local repositories (e.g., the meaning and egféAtlantic Rainforest” may
have been precomputed elsewhere).

We will just retain, in the running example, the sub-quégtrieve insect species
that prey on plant species Eupatorium odoratumThe other issues can also be dis-

ambiguated using Aorgd or by other means — e.g., through a combination of database
gueries, or even using user input (e.g., entering the coatel$ of the Atlantic Rainforest
polygon). For instance, collection records basicallyesfatts: species name, observa-
tion date and methodology, habitat classification, GPSilmeascientist responsible, and

so on. Thus, dscientist = Lewinsohn”predicate is hormally resolved through an SQL
guery to the collection database.

Issues concerning combined ontological and (relatioraidlohse query process-
ing are beyond the scope of this paper. Here, the assumggtitrat ontological disam-
biguation may be needed before or in parallel with query @ssmg.

6.3. Ontology Query

Consider that biologists need the following informatidiRetrieve insect species that
prey on plant species Eupatorium odoratumThis can be solved by sendingQuery
invocation to Aoné:

Query (colUN,http://143.0106.23.89:8080/0OntRepUNICAMPSPARQL, queryStr,
false, XML)

Invocation parameters show that the query is specifiedSPARQL and
is to be executed against ontologyolUN stored in repository pointed at by
http://143.0106.23.89:8080/0OntRepUNICAMReld false indicates that the query will
not require inference. Figure 11 shows the contents of paterqueryStr Prefix
http://www.owl-ontologies.com/Collection.owl#representolUN's namespace. Pa-
rameter XML indicates that the result should be an XML file (standard Itefu
SPARQL [12]).

PREFIX col:<http://www.owl-ontologies.com/Collection.owl#>
PREFIX rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT distinct ?insect

WHERE {

?capitulum rdf:type col:Capitulum .

?capitulum col:hasPlantSpecies col:Eupatorium_odoratum .
?capitulum col:isPreyedOn ?insect }

Figure 11. Query “Retrieve insect species that prey on plant species Eupatorium odo ra-
tum” expressed in SPARQL

This query returns 18 insect species names (out of 281 icestqnFigure 12 shows
part of the resulting XML file.

6.4. Ontology View

The ontology of Figure 10 embeds a special knowledge abeuwtdlection methodology

of our biologists: insect observations may have been recbper flower head (one obser-
vation recorded per singleapitulun) or per set of flowers (one observation recorded per
multiple flowerheads). This kind of difference in methodptanay have considerable im-
pacts in conclusions drawn by experts. Consider, therefioa¢ the query in Section 6.3
has been modified and that now biologists want the followiliRgtrieve insect species
that prey on plant species Eupatorium odoratum, for studibere species were counted

<?xml version="1.0"?>
<sparq|l
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:xs="http://www.w3.0rg/2001/XMLSchema#"
xmIns="http://www.w3.0rg/2005/sparql-results#" >
<head> <variable name="insect"/> </head>
<results ordered="false" distinct="true">
<result> <binding name="insect">
<uri>http://www.owl-ontologies.com/Collection.owl#Cecidochares connexa</uri>
</binding> </result>
<result> <binding name="insect">
<uri>http://www.owl-ontologies.com/Collection.owl#Melanagromyza minimoides</uri>
</binding> </result>

<result> <binding name="insect">
<uri>http://www.owl-ontologies.com/Collection.owl#Phalonidia squalida</uri>
</binding> </result>
<result> <binding name="insect">
<uri>http://www.owl-ontologies.com/Collection.owl#Unadilla erronella</uri>
</binding> </result>
</results>
</sparql>

Figure 12. Excerpt of XML file returned by Query module invocation

per single capitulum? One possibility to solve this query is to add more reswitsiin
thewhereclause of the SPARQL query of figure 11.

Another possibility is to restrict the ontology to considety elements involving
onecapitulum This alternative is executed through two successive @toes of Aon@:
(1) create a view for insects that were observed per siogiulum (2) pose query of
Section 6.3 on this view. Step (1) is expressed as:

View (<colUN,http://143.0106.23.89:8080/0OntRepUNICAMFSingleCapitulum,
{superclasses:1, isPreyedOn:2, isCapitulaeOfCollect: 5FtantSpecies:1, instances
http://143.0106.23.89:8080/0OntRepUNICAMP)

ParameteSingleCapitulumis the view’s central concept. The view is extracted
from colUN, in the repositorgolUN,http://143.0106.23.89:8080/ OntRepUNICANRd
Is to be stored in the same repository (last parameter). ahanpeters in the directive
field are interpreted with respect to the central concepbobaws: (a)superclasses:+
the view must include all immediate superclasseSiofyleCapitulumi.e., Capitulum—
see Figure 10; (bisPreyedOn:2nclude all classes whose distanceSimgleCapitulum
via isPreyedOnis either 1 or 2; (c) and (d) similar to (b), respectively faoperties
isCapitulaeOfCollectand hasPlantSpecieqe) instancesindicates that instances of all
these classes must be included in the view.

The view generated is partially illustrated, with a few arstes, in Figure 13.
The two Capitulumnodes have been expanded to show a few details of the views co
tents. Notice that the view contains relationships amostaimces (e.g., betwe&ollec-
tion_P1C02130and CapitulumPIC02130. Relationships that appear amongst view in-
stances are those that were specified in the directives thieeview will preserve not only
relationships concerning classes, but also the samears$hips among the instances.
This implementation extends the views generated by&geotwhich only preserve rela-

tionships among classes.

Capitulum

isCapitulumOfCollection™ “isa

Single Capitulum
A
Collection o io
Capitulum_PIC02130 Capitulum_PIC96715

. isPreyedOn = | Cecidochares_fluminensis isPreyedOn = | Xanthaciura_mallochi
io

isCapitulumOfCollection= ‘ Collection_PIC02130 isCapitulumOfCollection = ‘ Collection_PIC96715

hasPlant Species = | Lessingianthus psilophyllus hasPlantSpecies = | Lessingianthus psilophyllus

Aﬂpihﬂmnoﬁjollecﬁonish‘eyedon \@MSpecie%PlamSpecies \iPreyedOn
Collection_PIC02130 Cecidochares_fluminensis Lessingianthus_psilophyllus Xanthaciura_mallochi

Figure 13. View with central concept “SingleCapitulum”

The service invocation returns an ontology identifier addor this view,colUN-
SingleCapitulum Once the view is created and stored, step (2) is executexjgh an-
other invocation of Aoné, a query tacolUN-SingleCapitulumIn our study, this query
returns two species namesanthaciura mallochandCecidochares fluminensis

6.5. Ontology Search

Consider now that the biologists want to restrict their datautterflies, i.e.;'Retrieve
butterfly species that prey on plant species Eupatoriumatdon”. Butterflies are insects

of orderLepidoptera However,colUN concentrates on insect species, and does not con-
tain information on their taxonomic orders (a higher taxomdevel). Thus, there is a
need to perform a search elsewhere to get this information.

In other words, this request can be solved through threecatians to Aoné:
(1) search elsewhere for taxonomic informationlapidoptera (2) align the ontology
retrieved in step (1) with theolUN ontology, to identify which species are butterflies;
(3) invoke a query operation on the aligned ontology, usirguery similar to the one
presented in Section 6.3.

Step (1) is achieved by invoking Ao&dvith aSearchTaxomequest, on external
third party repositories — here, SH@2]:

SearchTaxon (LepidoptefalescendanisSpire
http://143.0106.23.89:8080/OntRepUNICAMP)

ParameteSpire indicates that the search will be conducted in Spire, laepoi-
dopterais the scientific name to be searched for. The dired®scendantsequests to
return all lower taxons. The resulting ontology, partiallystrated in Figure 14, is a tax-
onomic hierarchy rooted &epidoptera Notice that species names are not all at the same

Shttp://spire.umbc.edu/ont/

distance from the root. This occurs because some specieddreanomic subclassifica-
tions, such as subfamilies and tribes.

Jugatae Macrolepidoptera

isa ﬁsa isa &a

Eriocraniicae ‘ Micropterygidae ‘ Hepialidae ‘ Geometroidea
sa
Geometridae
‘\m\
Eupithecia
%‘ sa isa
‘ Synchlora_liquoraria Eupithecia_spermaphaga Eupithecia_albicapitata Eupithecia_tripunctaria

isa isa

Synchlora_liquoraria_albolineata ‘ Synchlora_liquoraria_liquoraria

Figure 14. Part of ontology on Lepidoptera order retrieved from Spire

This ontology will be stored in the repositongtp://143.0106.23.89:8080/ OntRe-
PUNICAMP, the identifier returned iepdDesc The second step (alignment), needed to
solve the scientists’ request, will be treated further ar§ection 6.7.

6.6. Differences Detection

Taxonomic classifications of living beings change with timeflecting new knowledge
about species. This involves not only adding new speciespaifying their names,
but also revisions that bring about structural changes, (exgation of new branches, or
moving a species to another branch). Furthermore, distesgarch groups may prefer
different classifications. Since our biology partners Hasen collecting data for 20 years,
they must constantly check the terms they used in the passi@anthus, that they want
to check their ontologgolUN against published data on tAsteraceaglant family.

This can be performed via three successive invocations taw@&as follows: (1)
perform aSearchTaxoron Spire, to retrieve published taxonomic data on tafster-
aceaeand itsdescendants the result, partially illustrated in Figure 15 (a), is €in
a Semantic Repository, receiving identifastDes¢ (2) to speed up comparison, restrict
the information contained in ontologyolUN to data onAsteraceaghby creating a view
with this term as central concept (analogous to view craatidsection 6.4) — the result,
partially illustrated in Figure 15 (b), will be materialidén a new ontology, identified by
colUN-Asteraceag3) compute the difference betweeolUN-AsteraceaandastDesc

Step (3) is specified as:

DifferencekastDesc,http://143.0106.23.89:8080/0OntRepUNICAMP
<colUN-Asteraceae,http://143.0106.23.89:8080/OntRefLAMIP>,
0.6,0.4,0.7)

The first two parameters indicate the ontologies to be coethgrarameters.6
and0.4 respectively represent weightsand 5 of formula 1 — see Section 4.2.6; a@d/
Is the confidence threshold above which element similaritentified by the module are
considered to be modifications between ontologies.

184 Sa isa isa

Vernonieae

‘ Chromolaena ‘ Vernonieae

Eupatorieae

/‘10 sa ‘\& ﬁsa ca isa

‘ Chromolaena_odorata ‘ Vernoniinae

Lepidaploa

/Lﬂ

Tc

Lessingianthus

‘ Lepidaploa_remotiflora

Eupatorium

Vernoniinae

Vernonanthura

sa

io

A
o

Eupatorium_odoratum

Lessingianthus

Vernonanthura_oligolepis

0

Lessingianthus_grandiflorus

Lessingianthus_grandifl orus

(a) Ontology astDesc (b) Ontology colUN-Asteraceae

Figure 15. Taxonomies for the Asteraceae family - (a) was retriev
created from colUN using a View operation

ed from Spire, (b) view

The result of this invocation is composed of three lists of &iRIstModification
ListA-BandListB-A respectively containing URIs of elements that were idettifis sim-
ilar, and those that appear in A but not in B, and vice-vetsstModification moreover,
specifies the kinds of difference detected between simligaments. Figure 16 shows part
of the result.

The figure shows that taxorisupatorium(in colUN-Asteracegdeand Chromo-
laena (in astDesg in fact correspond to the same genus withisteraceae- not only
were these terms identified as synonyms by ITIS, but they stispe a common super-
class. Hence, they are listed withimstModification their difference lies in their class
labels and hierarchy. SpeciEspatorium odoratunandChromolaena odoratsalso sim-
ilar, differ both in class labels and hierarchy. Taxdfhgpatorieae Vernonanthuraand
Vernonanthura oligolepigippear incolUN-Asteraceaebut not inastDes¢ being thus
characterized as memberslastB-A while taxonsLepidaploaand Lepidaploa remoti-
flora are absent in the former and present in the latter, hencadielptoListA-B.

The result shows that the plant spediggatorium odoratumof our running ex-
ample, has a new official scientific name&hromolaena odorataThus, if our scientists
want to integrate their data with information from other @s, they need to take this
into consideration.

<?xml version="1.0" encoding="UTF-8"?>
<Difference>
<ListModification>
<Modification>
<ElemInOntA>http://spire.umbc.edu/ontologies/EthanAnimals.owl#
Chromolaena</ElemInOntA>
<ElemInOntB>http://www.owl-ontologies.com/Asteraceae.owl#
Eupatorium</ElemInOntB>
<Type>class labels</Type> </Modification>
<Modification>
<ElemInOntA>http://spire.umbc.edu/ontologies/EthanAnimals.owl#
Chromolaena odorata</ElemInOntA>
<ElemInOntB>http://www.owl-ontologies.com/Asteraceae.owl#
Eupatorium odoratum</ElemInOntB>
<Type>class labels and class hierarchy</Type> </Modification>
</ListModification>
<ListA-B>
<A-B>
<ElemInOntA>http://spire.umbc.edu/ontologies/EthanAnimals.owl#
Lepidaploa</ElemInOntA> </A-B>
<A-B>
<ElemInOntA>http://spire.umbc.edu/ontologies/EthanAnimals.owl#
Lepidaploa remotiflora</ElemInOntA> </A-B>
</ListA-B>
<ListB-A>
<B-A>
<ElemInOntB>http://www.owl-ontologies.com/Asteraceae.owl#
Eupathorieae</ElemInOntB> </B-A>
<B-A>
<ElemInOntB>http://www.owl-ontologies.com/Asteraceae.owl#
Vernonanthura</ElemIinOntB> </B-A>
<B-A>
<ElemInOntB>http://www.owl-ontologies.com/Asteraceae.owl#
Vernonanthura oligolepis</ElemInOntB> </B-A>
</ListB-A>
</Difference>

Figure 16. Part of the result of the request to identify difference s between the ontologies
from Spire and from the project, for the Asteracea family

6.7. Ontology Integration

Let us now return to the question of Section 6'Betrieve butterfly species that prey on
plant species Eupatorium odoratumScientists are now aware thatipatorium odora-
tumhas a new nam€hromolaena odoratawhich must be considered in processing the
request.

This requires the following invocation sequence: (1) sedioc Lepidopterain-
formation to identify butterflies (this was already perfeairin Section 6.5, and its result
stored inlepdDesg; (2) aligncolUN with lepdDesc¢to identify insects that are butterflies,
producingcolUN-Lep (3) aligncolUN-Lepwith astDes¢cwhich was produced by another
taxonomic search; (4) query the ontology resulting fronp £8).

The third step will allow putting together butterfly speciesorded incolUn that
prey on bothEupatorium odoratunand Chromolaena odorataThe alignment requests
of steps (2) and (3) are specified as follows:

Integration(<colUN,http://143.0106.23.89:8080/OntRepUNICAMP
<lepdDesc,http://143.0106.23.89:8080/0OntRepUNICANMP
0.8, 0.2, 0.7, http://143.0106.23.89:8080/0OntRepUNICAMP)

Integration(<colUN-Lep,http://143.0106.23.89:8080/OntRepUNICAMP
<astDesc,http://143.0106.23.89:8080/0OntRepUNICAMP
0.8, 0.2, 0.7, http://143.0106.23.89:8080/0ntRepUNICAMP)

The first two parameters of each request provide the soutotogres; all results
will be stored in the same repository (last parameter). iRatar0.7 represents the con-
fidence threshold for an alignment to be includéd and0.2 respectively stand for the
values fora and to compute similarity confidence — see Section 4.2.5.

The final aligned ontology resulting from the second Integrarequest is par-
tially displayed in Figure 17 — its leftmost branch origieatfromlepdDesqsee Figure
14), the central part fronaolUN (see Figure 10), and the rightmost part frastDesc
(see Figure 15(a). Class alignments are represented bydafjequivalentClass, and
instance alignment by owl:sameAs-.

Asteraceae

Lepidoptera S8
A LivingBein;
eheing Chromolaena
psa equivalentClass i
sa
Macrolepidoptera °
A Insect
Chromolaena odorata
ksa -
isPredatorOf* equivalentClass
Geometridae
4 Capitulum Collection Asteraceae
=2 i i
{sa o isa
Synchlora
4 fio Single Capituhun Collection_G04837 Eupatorieae
ksa
io fisCapitulunOfCollection hasCapitulumn isa
Synchlora_liquoraria sameAs
Capitulum_G04837 Eupatorium
sameAs A reyedOn \@lﬂms})ecies/
Synchlora_liquoraria_ Eupatorium_odoratum

Figure 17. Part of colLep ontology, produced by invoking the Integration module

The first integration (betweecolUN andlepdDes¢ may seem straightforward
at first glance (i.e., akin to a “natural join between two dodges”). However, it mer-
its several remarks. First, it provides alignments betweasses of one ontology with
instances of another, correlating species instancéssett(in colUN) with species sub-
classes ot epidoptera(in lepDesg. This is a new kind of alignment, not available in
existing tools, which are limited to trying to match elensaot the same kind (e.g., class—
class, instance—instance). We, instead, support othdslahmatching, as described in
Section 5.3, using.owl:sameAs: links. Another observation is that finding similar terms
required knowledge of taxonomic terminology, which waduded in our string match-

ing implementation. Without these kinds of comparisons,résulting aligned ontology
would not identify these correspondences.

The result of step (3) (second integration, betweelUN-lepandastDesg¢ could
only be obtained through other features necessary in l@oslty applications. First, we
take advantage of synonyms in taxonomic classificationsstmoder matchings. Second,
we combine string similarity with structural similarity tmmpute alignment confidence.
The latter is the case of class€sromolaenaand Eupatorium they had one instance
aligned by synonym identificatiol©hromolaena odoratandEupatorium odoratumand
their superclasseg\éteraceagwere identified as equivalent. String and structural simi-
larity computation were also used in other cases (e.gereifice, alignment of step (2)),
but we chose this example to show that both are needed to fm@ate correspon-
dences.

The result of the two successive alignments can now be usebttin the re-
quired information:Butterfly species that prey on plant species Eupatoriumration”,
using an invocation to ®uery operation. However, unlike previous queries, this one re-
quires inference pre-processing. It must return insectiepdhat are in all subclasses
of Lepidoptera and that prey on flowerheads of plants species that are aguotvto
speciesEupatorium odoratum Inference must be used to compute subclassépi
doptera(transitivity of propertysubClassO¥. It must also be used to retrieve equivalent
(aligned) elements — e.g., taking advantage of the symmoépropertieseequivalentClass
andsameAsThis query returned 6 butterfly species, among wi8ghchlora liquoraria
andAdaina bipunctata

6.8. Ranked Search

Suppose that, now, the biologists want to obtain additiamakmation about thelant
concept, such as plant structure and their interactionis @ttiers biotic entities. This
information is not available in any ontology mentioned so Tdis task requires a search
for the “plant” concept in third party External Ontology Regories. Here, sincplantis
not a domain-specific term, the search request was sent 8whegl|€ [17] repository:

SearchRank{plant}, {0.4,0.2,0.4,0,{Swooglé,
http://143.0106.23.89:8080/0OntRepUNICAMP)

Like the rest of the examples, the resulting ontologies tmeed in the Semantic
Repository named in the Search invocation, to be subseguentted in other opera-
tions. The field{plant} indicates the term to search for8woogle The set of positional
weights are assigned as follows: match = 0.4; density = @&trality = 0.4 and simi-
larity semantics = 0. This invocation searches for a singlm} so thesimilarity metric
is not applicable and receives weight = 0. We recall that the ef weights must be 1.
In this example, we wanted to assign more importance to @éygtand match metrics,
and less importance to density metrics. Weight$ 0.4 and0.2 indicate this decision.
This specific invocation returns a list with 10 identifier®(j Swoogle has 10 ontologies
with plant) ordered according to ontology rank, and store all the tetologies in the
designated target repository.

The Figure 18 shows the ontology with the highest rankinge/a@vailable in the
URL http://wow.sfsu.edu/ontology/rich/EcologicalConcepts. The figure shows that

"http://swoogle.umbc.edu

the plant term appears in several class names, outlined in the graplant, PlantDe-
scription, PlantPartDescriptiveTrait, PlantParts, Pl&pecies, AboveGroundPlantParts
andPlantTrait This high incidence of this term (the highest of all ontoésgreturned
by the search) put this ontology as the first in the rank, uiegnetrics ofPartial and
Exact Matchings Moreover, this ontology contains many other conceptdedlto these
classes (centrality criterion) — such as clas®eganism, Bioticltem,Leaves, Seextsd
Stemsalso contributing to its rank.

Ecological Concepts

AR

EcologicalEntity Ecological Terminol ogy
}sa isa
BioticEntity EcologicalDescription
v
isa ﬁsa N‘S’I‘raits"‘ isa

BioticItem BioticAggregate BioticEntity Trait BioticEntityD escr

A

isa isa isa jsa sa
Organisim SetOfP arts OfOrgani sms SetOfOrganisims PlantTrait PlantDescription
A
sa Er] isa isa
Plant PlantParts TaxonomicGroup PlantPartDescriptiveTrait

A
sa sa

AboveGroundPlantParts PlantSpecies

Figure 18. Ontology ecoConcept , highest ranked in the search for plant in Swoogle

7. Conclusions

This paper discussed the specification and the implementafiAon® — a Web service
that provides distinct kinds of operations on multiple dodges at the same time, on the
Web. Aone supports semantic and interoperability needs by comipithia use of on-
tologies to that of Web services. It was specified and buikupport the requirements
of biodiversity researchers, who need to have transpacaatsa to distributed and het-
erogeneous data sources. One of the important issues icathiext is that biodiversity
studies have to accommodate and combine multiple views aadsnof a wide range of
experts whose research involves deriving new relatioisshipong species, for specific
geographic regions.

Unlike all other Web ontology services available, Aénslipports management
of many ontologies at a time (in ranking, difference andgra¢ion). The design and
implementation of its functions combine and extend faesitoffered by other tools —
e.g., enhancing central concept computation in view ettnac Though motivated and

developed by biodiversity concerns, A@dan be used in other domains that present the
same requirements, typically those in e-Science.

The design and development of Adnghowed us there are still many challenges
to be met when dealing with ontologies, some of which areudised in the subsequent
paragraphs. One important lesson is that there is a wideaagbn several proposals for
ontology management and their implementation. Many phetisexperiments are based
on small examples, and do not show solutions to real life lprab — e.g., handling only
standard textbook examples such as those involving tesielmer students, or papers and
authors. Thus, we could not adopt many solutions becaugecthéd not deal with our
problems — e.g., having to handle multiple valid ontologies

Another lesson concerns the usefulness of applying desigaiples of Software
Engineering and Database Systems to our design and impletioenefforts. One ex-
ample of such a decision was the clear separation betwesistegice of ontologies and
their semantic manipulation. This lent flexibility to our plementation, and will help
maintain independence between these two layers, whichvadwveeseparately. This kind
of concern is not found in most proposals dealing with orgglmanagement.

Though W3C recommends the adoption of OWL, and is leaning ts\we adop-
tion of SPARQL as a standard, most large ontologies (e.g., BAV10]) have not been
written in OWL. Thus, in spite of standardization effortseté is a need for translating
these ontologies into OWL, or to use tools that handle ontetogritten in multiple lan-
guages — e.g., as in [58]. This is not an easy task, becaubke difterences in expressive
power among ontology specification languages, and remainpen issue.

For many authors, ontologies only serve as sophisticattdaries to look for
synonyms of terms (e.g., they only consider is-a relatigpgshmong terms). This sub-
utilization of such a powerful resource is largely due to lihgtations of available on-
tology toolkits and environments. Even when ontologiesamapletely defined using
description logics, the absence of tools that allow adexjaaploration of these logics
forces researchers to limit themselves to more prosaic uses

Web services are advertised — and recognized — to be a gag@sdb interoper-
ability. Nevertheless, the actual options for design anuémentation of new services are
not discussed in the literature. For instance, our persistgervice publishes ontologies
within files that are attached to SOAP messages. Other @péivist, such as embedding
the ontology in the message, or just returning its URI. Eadlitism has its pros and cons.
For instance, embedding the ontology in the message wogldreetreating it as an ob-
ject, with many methods associated, thus creating verymoegsages. On the other hand,
several Web service tools (including the one we used, AX¥$ do not work well when
attachments are too large.

The adoption of Web services to access the persistence payeides indepen-
dence and interoperability, at the cost of lower securithug, another research issue
concerns authorization mechanisms, to avoid undesirgidatas to curated ontologies.
This has an impact on ontology reliability, and is a rese&oplt that needs to be attacked.

Finally, we point out that our decision to store intermegliantologies in Seman-
tic Repositories has several advantages, in spite of takingtarage space. The main
issue is that such ontologies are expensive to create (aHipabose that are imported

from external repositories, and aligned ontologies). Thltering them helps speed up
subsequent access to their contents.

Ongoing and future work concerns several research and ingpigation aspects.
We are building a suite of test cases, to analyze the sesviErformance when many
repositories are accessed at one operation. Programnpegtaslso include the incor-
poration of Aon@ into WeBios.

Many research issues need to be tackled. First, integraidmased on align-
ment. This must be extended to, at least, ontology mergimizhwposes several prob-
lems involving merge priorities and result computationc@wl, one of the central ideas
is that any new (sub-) ontology must be first stored in somea#mRepository, and
only then be submitted to other Ao&dperations. Though this may speed up retrieval,
it brings about issues of storage allocation and ontologyjiaation. Thus, alternative
design options have to be considered — e.g., creating samaeokirepository directory.

A third direction is to endow Aon@ with more intelligence, so that it can support more
complex requests by combining elementary operations, legygconstructing composite
service invocations. Still another issue to investigataltsrnatives to alignment imple-
mentation. Our solution is to relate classes of one ontoWagly instances of another via
<owl:sameAs tags. This immediately “promotes” the ontology languag®WL Full,
which still needs better inference mechanisms.

Finally, another ongoing effort concerns finishing the gesand implementation
of the ontology usage data space within Semantic Repositortas data space will pro-
vide additional performance and usage functionality toSbkenantic Repository Service,
similar to auxiliary low-level DBMS structures that help f@mance tuning. A first ver-
sion of this space and associated operations has been iemmied) but we need to define
appropriate tuning and usage parameters before we camateiid design.

Acknowledgments

This research was partially financed by Microsoft Reseatwh jritial supporter of the
WeBios project, and by Brazilian funding agencies CNPq, CAPESFR&PESP (Proc.
05/57424-0). We also thank the reviewers for their insiglitbmments.

References

[1] S. Abels, L. Haak, and A. Hahn. Identification of commonthwoels used for ontology
integration tasks. ItHIS '05: First International Workshop on Interoperabiyfiof
Heterogeneous Information Systempages 75—-78. ACM Press, 2005.

[2] S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Yu@é Views for Semistruc-
tured Data. InProc. International Workshop on Management of Semistradtu
Data, 1997.

[3] H. Alani, C. Brewster, and N. Shadbolt. Ranking OntologigthwAKTiveRank. In
International Semantic Web Conferengelume 4273 ot.ecture Notes in Computer
Sciencepages 1-15. Springer, 2006.

[4] H. Alani, S. Harris, and B. O’Neill. OntologyWinnowing: £ase Study on the AKT
Reference Ontology. IRIMCA/IAWTIC pages 710-715. IEEE Computer Society,
2005.

[5] A. M. Almeida, C. R. Fonseca, P. I. Prado, M. Almeida-NetoD$iz, U. Kubota, M. R.
Braun, R. L. G. Raimundo, L. A. Anjos, T. G. Mendonga, S. M. Fataahd T. M.
Lewinsohn. Diversidade e océ@mcia de Asteraceae em cerrados @de BauloBiota
Neotropica 5:27 — 43, 2005.

[6] A. M. Almeida, C. R. Fonseca, P. I. Prado, M. Almeida-Neto,#niz, U. Kubota,
M. R. Braun, R. L. G. Raimundo, L.A. Anjos, T. G. Mendonca, S. Mtdea, and
Thomas M. T. M. Lewinsohn. Assemblages of endophagoustsmsecAsteraceae
in Sao Paulo Cerrado$\Neotropical Entomology35:458 — 468, August 2006.

[7] G. Alonso, F. Casati, H. Kuno, and V. Machirajdleb Services - Concepts, Architectures
and Applications Springer Verlag, November 2004.

[8] G. Antoniou and F. van Harmelen. Web Ontology Languag®/LO In S. Staab and
R. Studer, editordHandbook on Ontologies in Information Systemages 76-92,
2003.

[9] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler,M. Cherry, A. P. Davis,
K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. HilL. Issel-Tarver,
A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ritggwa. M. Ru-
bin, and G. Sherlock. Gene ontology: tool for the unificatodrbiology. the gene
ontology consortiumNature Genetics25(1):25-29, May 2000.

[10] P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, andté¥es. TAMBIS—
Transparent Access to Multiple Bioinformatics Informat®ources. Irint Conf In-
telligent Systems for Molecular Biologyolume 6, pages 25—-34, Montreal, Canada,
June 1998.

[11] C. Batini, M. Lenzerini, and S. B. A. Navathe. Comparativalgsis of methodologies
for database schema integratigkCM Computing Survey48(4):323-364, 1986.

[12] D. Beckett and J. Broekstra. SPARQL Query Results XML Fornichnical report,
W3C, April 2006.

[13] J. Bruijn, F. Martin-Recuerda, D. Manov, and M. Ehrig. t8taf-the-art survey on Ontol-
ogy Merging and Aligning. Technical report, SEKT project.R4, 2004.

[14] J. Carroll, 1. Dickinson, C. Dollin, D. Reynolds, A. Seaher and K. Wilkinson. Jena:
implementing the semantic web recommendationsWMWW Alt. '04: Proc. of the
13th international World Wide Wepages 74-83. ACM Press, 2004.

[15] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A Compari$@tring Distance Met-
rics for Name-Matching Tasks. IRroc. of the IJCAI-2003 Workshop on Learning
Statistical Models from Relational Datpages 73-78, August 2003.

[16] Z. Cui and P. O'Brien. Domain Ontology Management Envinemt. InHICSS '00:
Proc. of the 33rd Hawaii International Conference on Systemr®es-Volume ,8
Washington, DC, USA, 2000. IEEE Computer Society.

[17] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Redd V. Doshi, and
J. Sachs. Swoogle: a Search and Metadata Engine for the 8Seridéb. In
CIKM '04: Proc. of the thirteenth ACM international conferenoe Information
and knowledge managemempages 652—659, New York, NY, USA, 2004. ACM
Press.

[18] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Leagno Map between Ontologies
on the Semantic Web. WWW ’02: Proc. of the 11th international conference on
World Wide Weppages 662—673. ACM Press, 2002.

[19] M. Duke and M. Patel. An Ontology Server for AgentcitET. Technical report,
September 2003.

[20] C. H. Felidssimo. Semantic Web Interoperability: One strategy ferTaxonomic On-
tology Alignment (in Portuguese). Master’s thesis, PordifiCatholic University of
Rio de Janeiro (PUC-FRJ, August 2004.

[21] C. R. Fonseca, P.I. Prado, M. Almeida-Neto, U. Kubota, &nlll. Lewinsohn. Flower-
heads, herbivores, and their parasitoids: food web streieiong a fertility gradient.
Ecological Entomology30:36—46, February 2005.

[22] R. B. Freitas and R. S. Torres. Ontosaia: An ontology-b&seldor image retrieval and
semi-automatic annotation (in portuguese). Workshop in Digital Libraries, Proc.
XX Brazilian Symposium on Databases - SBBD 2@@ges 6079, October 2005.

[23] Global Biodiversity Information Facility (GBIF). GBIF wvasite. http:// www.gbif.org
(accessed February 26, 2007).

[24] J. H. Gennari, M. A. Musen, R. Fergerson, W. E. Grosso, Mib2y, H. Eriksson, N. F.
Noy, and S. W. Tu. The Evolution of Protege: An Environment Kmowledge-
Based Systems Developmerititernational Journal of Human-Computer Studies
58(1):89-123, 2003.

[25] L. C. Gomes Jr and C. B. Medeiros. Ecologically-aware (asefor Biodiversity Re-
search. InProceedings Geolnfo - Brazilian Geoinformatics SymposilNPE -
SBC, 2007. Electronic proceedings, 12 pages.

[26] T. Gruber. Towards Principles for the Design of OntaésgJsed for Knowledge Sharing.
International Journal of Human-Computer Studié8(5-6):907-928, 1995.

[27] P. Hammond, B. Aguirre-Hudson, M. Dadd, B. GroombridgeHddges, M. Jenkins,
M.H. Mengesha, and W. Stewart Grant. The current magnitddeadliversity.
Global biodiversity assessment, 1995.

[28] J. Hartmann, Y. Sure, P. Haase, R. Palma, and M. @r&uFigueroa. OMV — Ontology
Metadata Vocabulary. I{8WC 2005 - In Ontology Patterns for the Semantic Web
November 2005.

[29] J. S. Hong, H.Y. Chen, and J. Hsiang. A digital museum isfdaese butterflies. IACM
Digital Library, pages 260-261, 2000.

[30] E. JinEnez, R. Berlanga, I. Sanz, M. J. Aramburu, and R. Danger. Otitaglea: A
Simple View Definition Language for the Collaborative Deymteent of Ontologies.
In B. LOopez et al. (Eds.): Artificial Intelligence Research and &epment pages
429-436, 2005.

[31] L. C. Gomes Jr. An architecture to query biodiversityadah the Web (in portuguese).
Master’s thesis, State University of Campinas - UNICAMP, Ma@?2.

[32] Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: t8&ate of the Art. Knowledge
Engineering Revieywi8(1):1-31, 2003.

[33] H. Kong, M. Hwang, and P. Kim. A New Methodology for Mengj the Heterogeneous
Domain Ontologies Based on the WordNet. NWWESP '05: Proc. of the Interna-
tional Conference on Next Generation Web Services Practaege 235, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[34] J. Lee. An Application Programming Interface for Omtgy. Technical report, November
2003.

[35] V. Li, S. G. Thompson, Z. Tan, N. Giles, and H. Gharib. Beg@®ntology Construction;
Ontology Services as Online Knowledge Sharing Communitiesinternational
Semantic Web Conference - ISWC 20@8ume 2870 of_ecture Notes in Computer
Sciencepages 469-483. Springer, 2003.

[36] F. Manola and E. Miller. Resource Description Framew(@®OF) Model and Syntax
Specification, February 2004. http://www.w3.org/TR/rdlirper/.

[37] R. McDiarmid. The Integrated Taxonomic Information &ms. InProc. of the Taxonomic
Authority Files WorkshopJune 1998.

[38] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. The CleiragOntology Environ-
ment. InProc. of the 17th National Conference on Atrtificial Intelligenand 12th

Conference on Innovative Applications of Artificial Intgénce pages 1123-1124,
2000.

[39] N. F. Noy, S. Kunnatur, M. Klein, and M. A. Musen. TracgitChanges During Ontol-
ogy Evolution. In Sheila A. Mcilraith, Dimitris Plexousakiand Frank van Harme-
len, editorsThird International Semantic Web Conferenpages 259-273. Springer
Berlin, November 2004.

[40] N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool foutomated Ontology
Merging and Alignment. liseventeenth International Joint Conference on Artificial
IntelligenceAAAIl/IAAlpages 450-455, 2000.

[41] N. F. Noy and M. A. Musen. Specifying Ontology Views byaVersal. In Sheila A.
Mcllraith, Dimitris Plexousakis, and Frank van Harmeledif@rs, International Se-
mantic Web Conferenceolume 3298 otecture Notes in Computer Scienpages
713-725, 2004.

[42] C. S. Parr, A. Parafiynyk, J. Sachs, L. Ding, S. DornbusiyTFinin, D. Wang, and
A. Hollander. Integrating Ecoinformatics Resources on thm&ntic Web. IrProc.
in 15th International Conference on World Wide Weglages 1073-1074. ACM,
2006.

[43] C. Patel, K. Supekar, Y. Lee, and E. K. Park. OntoKhoj: an&etic Web Portal for
Ontology Searching, Ranking and Classification. WitDM '03: Proc. of the 5th
ACM international workshop on Web information and data managg pages 58—
61, New York, NY, USA, 2003. ACM Press.

[44] A. G. Perez, J. Angele, M. F. Lopez, V. Christophides, Aut§ and Y. Sure. A survey on
ontology tools. Deliverable 1.3, EU IST Project IST-200@223 OntoWeb, 2002.

[45] E. Prud’hommeaux and A. Seaborne. SPARQL Query Langi@mgBDF. Technical
report, World Wide Web Consortium - W3C, 2006.

[46] E. Rahm and P. A. Bernstein. A Survey of Approaches to AgtticrSchema Matching.
VLDB Journal: Very Large Data Basg$0(4):334—-350, 2001.

[47] J. A. Ramos. Mezcla autdatica de ontolos y cahlogos electronicos. Technical report,
2001.

[48] A. Seaborne. RDQL: A Query Language for RDF. TechnicabrepNorld Wide Web
Consortium - W3C, 2003.

[49] P. Shvaiko and J. Euzenat. A Survey of Schema-basednitgt@pproaches. Technical
report, 2004.

[50] Sinbiota. &0 Paulo Biodiversity System site. http://sinbiota.crig.lor/ (accessed May
10, 2007).

[51] J. A. Sanchez, C. A. Flores, and J. L. Schnase. Mutant: Agents aggfid multiple
taxonomies in the floristic digital library. IACM Digital Library, pages 244—245,
1999.

[52] H. Suguri, E. Kodama, M. Miyazaki, H. Nunokawa, and Sghohi. Implementation of
FIPA ontology service. IProc. of the Workshop on Ontologies in Agent Systems,
5th International Conference on Autonomous Agekitsy 2001.

[53] R. S. Torres, C. B. Medeiros, M. A. Gongalves, and E. A. FaDigital Library Frame-
work for Biodiversity Information Systemsinternational Journal on Digital Li-
braries 6(1):3 — 17, February 2006.

[54] M. Tury and M. Bielikova. An Approach to Detection Ontology ChangesIQWE '06:
Workshop proceedings of the sixth international confeeeas Web engineering
page 14, New York, NY, USA, 2006. ACM Press.

[55] R. Volz. ONTOSERVER - Infrastructure for the SemantichBosition Paper). IRroc.
of Semantic Web Working Symposium - SWS¥&hford, California, USA, 2001.

[56] R.Volz, D. Oberle, and R. Studer. Implementing Views faght-Weight Web Ontologies.
In Proc. of Int. Database Engineering and Application Sympasi IDEAS Hong
Kong, China, 07 2003.

[57] WeBios. WeBios - Web Service Multimodal Tools for Strate@iodiversity Re-
search, Assessment and Monitoring. Home page http://wsvig.Linicamp.
br/projects/webios, 2007.

[58] P. Ziegler, C. Kiefer, C. Sturm, K. R. Dittrich, and A. Berest. Detecting Similarities
in Ontologies with the SOQA-SimPack Toolkit. IOth International Conference
on Extending Database Technology (EDBT 20@6)ume 3896 ot_ecture Notes in
Computer Scienggages 59-76. Springer, 2006.

