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Resumo

Um número crescente de repositórios na web se baseia em metadados na forma de rótulos

(tags) para organizar e classificar o seu conteúdo. Os usuários destes sistemas associam

livremente tags a recursos do sistema – e.g., URLs, imagens, marcadores. O termo folkso-

nomia se refere a esta classificação coletiva, que emerge do processo de rotulação (tagging)

realizado por usuários interagindo em ambientes sociais na web.

Uma das maiores qualidades das folksonomias é a sua simplicidade de uso pela ausência

de um vocabulário controlado. Folksonomias crescem de forma orgânica, refletindo o

conhecimento da comunidade de usuários. Por outro lado, esta falta de estrutura leva a

dificuldades em operações de organização e descoberta de conteúdo. Melhores resultados

podem ser obtidos se forem consideradas as relações semânticas entre os rótulos.

Por esta razão, vários trabalhos foram propostos com o objetivo de relacionar onto-

logias e folksonomias, combinando a estrutura sistematizada das ontologias à semântica

latente das folksonomias. Enquanto em uma direção algumas abordagens criam “ontolo-

gias sociais” a partir dos dados das folksonomias, em outra direção algumas abordagens

conectam rótulos a ontologias preexistentes. Em ambos os casos nota-se uma unidire-

cionalidade, ou seja, um modelo apenas dá suporte ao enriquecimento do outro. Nossa

proposta, por outro lado, é bidirecional. Ontologias e folksonomias são fundidas em uma

nova entidade, que chamamos de “ontologia folksonomizada”, combinando aspectos com-

plementares de ambas. O conhecimento formal e projetado das ontologias é fundido com

a semântica latente dos dados sociais.

Nesta dissertação apresentamos nossa ontologia folksonomizada e seus desdobramen-

tos. Nós introduzimos um framework formal para a análise de trabalhos relacionados,

a fim de confrontá-los com a nossa abordagem. Além das melhorias nas operações de

indexação e descoberta, que foram validadas em experimentos práticos, nós propomos

uma técnica chamada 3E Steps para dar suporte à evolução de ontologias usando dados

de folksonomias. Nós também implementamos o protótipo de uma ferramenta para a

construção de ontologias folksonomizadas e para dar suporte à revisão de ontologias.
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Abstract

An increasing number of web repositories relies on tag-based metadata to organize and

classify their content. The users of these systems freely associate tags with resources of

the system – e.g., URLs, images, and bookmarks. The term folksonomy refers to this

collective classification, which emerges from tagging carried by users interacting in web

social environments.

One of the major strengths of folksonomies is their simplicity due to the absence of

a controlled vocabulary. Folksonomies grow organically, reflecting the knowledge of a

community of users. On the other hand, this lack of structure leads to difficulties in

operations of content organization and discovery. Better results can be obtained if we

take into account the semantic relations among tags.

For this reason, many proposals were developed aiming to relate ontologies and folk-

sonomies, combining the systematized structure of ontologies to the latent semantics of

folksonomies. While in one direction some approaches build “social ontologies” from folk-

sonomic data, in the other direction some approaches connect tags to existing ontologies.

In both cases they are unidirectional approaches, i.e., one model is used only to support

the enrichment of the other. Our proposal, on the other hand, is bidirectional. Ontologies

and folksonomies are fused in a new entity, we call “folksonomized ontology”, which com-

bines complementary aspects of both. The formal and engineered knowledge of ontologies

is fused with the latent semantics of social data.

In this dissertation we present our folksonomized ontology and its outcomes. We

introduce here a formal framework to analyze the related work, confronting it with our

approach. Besides the improvements in indexing and discovery operations, which are

validated by practical experiments, we propose a 3E Steps technique to support ontology

evolvement by using folksonomic data. We also have implemented a tool prototype to

build folksonomized ontologies and to support ontology review.
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Caṕıtulo 1

Introdução

1.1 Motivação

O número de sistemas web que fornecem serviços para que seus usuários criem e com-

partilhem conteúdo aumenta a cada ano. Esses sistemas acumulam um grande número

de itens de conteúdo e mantêm vastas redes sociais de usuários que produzem, anotam,

buscam e reusam este conteúdo. Como exemplo, existem mais de 5 bilhões de imagens

hospedadas no Flickr1, uma comunidade online de armazenamento de imagens e v́ıdeos,

e mais de 180 milhões de endereços URL foram armazenados no Delicious2, um serviço

social para armazenamento e compartilhamento de endereços URL.

Para organizar, descrever e classificar esse grande volume de dados, muitos sistemas

usam uma abordagem baseadas em rótulos (tags) na forma de palavras-chave associadas

livremente aos recursos. O termo folksonomia (do inglês folksonomy) – criado a partir

das palavras folk (povo) e taxonomia [43] – tem sido empregado para se referir a esta

abordagem de classificação usada por sistemas web que utilizam tags para organizar e

indexar o conteúdo gerado pelos seus usuários em um ambiente social. As tags são tipi-

camente inseridas livremente no sistema pelos usuários sem um vocabulário controlado.

Em contrapartida, operações que envolvem indexação, comparação e busca baseadas em

tags são usualmente bastante limitadas por se basearem apenas em análise de strings.

A aplicação de análises estat́ısticas sobre o conjunto de tags associadas a recursos

permite, por exemplo, a inferência de correlações entre tags e tags mais usadas para a

descrição de certos recursos. Tais inferências podem ser exploradas para tornar expĺıcita

a semântica latente presente em folksonomias, aprimorando operações sobre tags. Pes-

quisas recentes neste sentido têm buscado derivar um tipo especial de “ontologia social”

a partir de folksonomias [35, 40, 42]. Entretanto, como observamos no desenvolvimento

1http://blog.flickr.net/en/2010/09/19/5000000000/ - acessado em novembro de 2011
2http://blog.delicious.com/blog/2008/11/delicious-is-5.html - acessado em novembro de 2011
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2 Caṕıtulo 1. Introdução

deste trabalho, há um conjunto limitado de relações que podem ser inferidas a partir de

folksonomias – na maioria dos casos relações de generalização/especialização – já que as

tags carecem de semântica expĺıcita. Por esta razão, muitas iniciativas recorrem a onto-

logias auxiliares a fim de explicitar a semântica de tags, reduzir a ambiguidade entre tags

ou dar suporte à análise de similaridade [10, 11].

Em ambos os casos, as abordagens são unidirecionais, ou seja, uma das entidades

envolvidas (folksonomia ou ontologia) é utilizada para melhorar a outra. Em uma direção

a semântica latente das folksonomias é usada na produção de ontologias sociais, em outra

direção a semântica expĺıcita das ontologias preexistentes dão assistência a este processo

de produção. Como detalharemos nesta dissertação, nenhuma das abordagens analisadas

define um modelo que seja capaz de reter em seu produto final as estruturas semânticas

complementares provenientes de ontologias e folksonomias.

Partindo destas constatações, percebemos a necessidade de uma abordagem bidirecio-

nal, que seja capaz de fundir ambas as estruturas semânticas em uma nova entidade. Ou

seja, utilizar ambas entidades em uma combinação simbiótica em que as bases semânticas

formais das ontologias são utilizadas em conjunto com o conhecimento orgânico da comu-

nidade de usuários de folksonomias. Isto deu origem ao tema central desta dissertação, que

consistiu na concepção e na construção de uma ontologia folksonomizada (folksonomized

ontology), que combina os melhores aspectos de ambas entidades.

1.2 Objetivo e Contribuições

O objetivo desta pesquisa é desenvolver uma abordagem para a fusão de folksonomias e

ontologias em ontologias folksonomizadas, a ser aplicada na melhoria de operações sobre

tags e na revisão de ontologias.

A seguir são apresentadas as principais contribuições deste trabalho.

Definição de um modelo abstrato e formal para ontologias folksonomizadas: O

modelo abstrato funde elementos de ontologias e folksonomias. Posteriormente ele

foi formalizado.

Elaboração de um framework formal relacionado a ontologias sociais: Como parte

do processo de formalização de ontologias folksonomizadas foi elaborado um fra-

mework formal para caracterizar e comparar os modelos utilizados no processo de

construção de ontologias sociais a partir de folksonomias, bem como seu relaciona-

mento com ontologias.

Algoritmo para mapeamento de tags em ontologias: O objetivo central deste tra-

balho é a fusão de folksonomias e ontologias. Assim, o algoritmo desenvolvido para
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esta fusão é uma das principais contribuições deste trabalho.

Técnica para expandir a similaridade de Resnik para folksonomias: A métrica de

similaridade de Resnik [31] foi desenvolvida utilizando corpus de textos para o

cálculo da frequência dos conceitos. Neste trabalho, nós expandimos esse traba-

lho ao desenvolver uma técnica que utiliza os dados de folksonomias para o cálculo

de frequência. Dessa forma obtivemos um meio de calcular similaridade entre os

conceitos da ontologia folksonomizada.

Protótipo para a criação de folksonomias: Uma contribuição prática deste traba-

lho consiste no desenvolvimento do protótipo de coleta e de armazenamento de

dados de folksonomias, bem como a montagem de ontologias folksonomizadas. Seu

desenvolvimento incluiu o estudo das APIs para acesso às bases de dados do De-

licious e do Flickr. De posse das informações sobre estes sistemas, desenvolvemos

um protótipo de um software responsável por acessar essas folksonomias, armaze-

nar as informações coletadas de forma integrada e utilizá-las para a construção de

ontologias folksonomizadas.

Técnica e protótipo para evolução de ontologias: Partindo das observações feitas

no desenvolvimento das etapas anteriores deste trabalho, percebemos a possibilidade

de utilizar uma ontologia folksonomizada para dar suporte ao processo de revisão

e de evolução da ontologia original. Dado que é posśıvel ao se comparar dados ex-

tráıdos da folksonomia (como co-ocorrência entre tags) com relações entre conceitos

da ontologia, desenvolvemos uma técnica para suporte à revisão de ontologias e um

protótipo que busca discrepâncias entre ontologias/folksonomias e as apresenta de

forma gráfica.

1.3 Estrutura da Dissertação

A estrutura desta dissertação consiste em uma compilação de três artigos publicados ou

submetidos para publicação. Cada artigo está disposto em um caṕıtulo e representa uma

etapa evolutiva na pesquisa. O Caṕıtulo 2 define as ontologias folksonomizadas e mostra

o processo de construção das mesmas. O Caṕıtulo 3 apresenta um framework formal que

abrange as ontologias folksonomizadas e abordagens relacionadas. O Caṕıtulo 4 suma-

riza a pesquisa em ontologias folksonomizadas e apresenta nossa técnica 3E Steps para

evolução de ontologias, bem como a respectiva ferramenta. No Caṕıtulo 5 apresentamos

as conclusões desta dissertação e trabalhos futuros. Por fim, o Apêndice A detalha as-

pectos de implementação do sistema e da modelagem do banco de dados, com ênfase no

processo de obtenção e de armazenamento de dados das folksonomias.



4 Caṕıtulo 1. Introdução

1.3.1 Caṕıtulo 2

O Caṕıtulo 2 contém o artigo Folksonomized ontologies - from social to formal que

foi publicado no XVII Simpósio Brasileiro de Sistemas Multimı́dia e Web – WebMedia

2011 [3].

Este caṕıtulo apresenta o modelo das ontologias folksonomizadas e detalha o seu pro-

cesso de criação, desde a coleta e processamento de dados, até seu algoritmo de construção.

Também são descritos os testes quantitativos e qualitativos efetuados a partir do uso do

protótipo implementado para validação.

1.3.2 Caṕıtulo 3

O Caṕıtulo 3 é formado pelo artigo Formal Aspects of Social Ontologies and Folk-

sonomized Ontologies que foi submetido ao 4th International Workshop on Semantic

Web Information Management – SWIM 2012 [5].

Neste caṕıtulo apresentamos a modelagem formal não somente das ontologias folkso-

nomizadas, como também dos trabalhos relacionados. No total são apresentados cinco

modelos, desde folksonomias e ontologias, passando por ontologias sociais até as ontolo-

gias folksonomizadas. Esta modelagem abrangente permitiu uma comparação detalhada

de trabalhos relacionados. Deste modo, este artigo expande e trata de forma mais sis-

temática os trabalhos relacionados analisados no artigo do caṕıtulo anterior.

O processo de construção de uma ontologia folksonomizada (já descrito no caṕıtulo

anterior), ganha uma nova dimensão na perspectiva do framework formal. Este framework

permite também tornar expĺıcito o diferencial da abordagem de fusão por nós proposta.

1.3.3 Caṕıtulo 4

O Caṕıtulo 4 contém o artigo Folksonomized Ontologies and the 3E Steps Techni-

que to Suport Ontology Evolvement que foi submetido ao Journal of Web Seman-

tics [4].

Neste caṕıtulo apresentamos uma visão sintética sobre toda a pesquisa feita sobre as

ontologias folksonomizadas – com exceção do framework formal – e introduzimos uma

técnica de suporte à evolução de ontologias denominada 3E Steps. Esta técnica está

dividida em três grandes etapas: (i) Extração, em que as informações de folksonomias

são coletadas e processadas; (ii) Enriquecimento, que envolve o mapeamento de dados da

folksonomia e da ontologia, seguido da fusão de ambos na ontologia folksonomizada; (iii)

Evolução, em que partindo dos dados obtidos nas etapas anteriores, desenvolvemos um

protótipo capaz de propor alterações na ontologia de origem baseadas no conhecimento
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latente extráıdo da folksonomia. O artigo tem seu enfoque principal na técnica e em como

a ferramenta é usada em casos práticos.

1.3.4 Caṕıtulo 5

O caṕıtulo 5 contém as conclusões desta dissertação. Nele apresentamos as contribuições

da pesquisa, assim como as principais posśıveis extensões e trabalhos futuros.

1.3.5 Apêndice A

No Apêndice A detalhamos o trabalho desenvolvido para a obtenção e armazenamento dos

dados de folksonomias. O conteúdo do apêndice é uma versão preliminar de um relatório

técnico do Instituto de Computação da Unicamp [6].

Neste apêndice, apresentamos a modelagem da base de dados para o armazenamento de

folksonomias, apresentando trabalhos relacionados e modelos usados por sistemas web que

subsidiaram nosso modelo unificada. Também apresentamos detalhes de implementação

da ferramenta que acessa serviços web para obter folksonomias. Neste sentido, descreve-

mos detalhes de acesso aos serviços do Delicious e Flickr.





Caṕıtulo 2

Folksonomized Ontologies – from

social to formal

2.1 Introduction

The popularization of web-based systems offering services for content storage, indexation

and sharing fostered a rapid growth of content available on-line. There are more than 5

billion images hosted on Flickr1 and more than 180 million URL addresses on Delicious2.

These systems increasingly rely on tag-based metadata to organize and index all the

amount of data. The tags are provided by users usually connected in social networks,

who are free to use any word as tag; there is no central control. The term folksonomy

– combining the words “folk” and “taxonomy” [43] – has been used to characterize the

product which emerges from this tagging in a social environment.

Any operation involving indexation, classification or discovery of content in these

web-based systems will require a comparison among the involved tags. In this topic,

there are approaches ranging from a pure lexical or statistical comparison of words to a

richer semantic analysis of relations, by associating tags to formal ontologies. In many

contexts, this semantic directed approach will enable machines to better classify, rank,

disambiguate and discover tags, enriching the systems and the user experience. Recent

investigations explore this relationship in different directions, for example: (i) by deriving

ontologies from folksonomies [35, 42]; (ii) by manually or automatically connecting tags

to ontologies [11, 10]. In either case, there is still a unidirectional perspective, in which a

model takes advantage of the other.

This work addresses a fusion perspective. The proposed folksonomized ontology synthe-

sizes complementary roles of ontologies and folksonomies. In one direction, the knowledge

1http://blog.flickr.net/en/2010/09/19/5000000000/
2http://blog.delicious.com/blog/2008/11/delicious-is-5.html

7
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systematically organized and formalized in ontologies is “folksonomized”, i.e., the latent

semantics from the folksonomic tissue is extracted and fused to ontologies. On the other,

the folksonomized ontologies are explored to enhance operations involving tags, e.g., con-

tent indexation and discovery. The folksonomic data fused to an ontology will tune it up

to contextualize inferences over the repository.

Our approach was validated by a tool we developed, which extracts tags from Delicious

and Flickr, fusing them in the WordNet [28] ontology. WordNet is a lexical database of

English, having a formalized thesaurus, which can be used as ontology. The resulting

folksonomized ontology shows better results when applied to content discovery.

This paper is organized as follows. In Section 2.2 we discuss the basis of our work. We

present our solution in Section 2.3 and the experimental results in Section 2.4. In Section

2.5 we confront our approach with related work and we conclude and discuss the future

work in Section 2.6.

2.2 Folksonomies, Ontologies and Similarity

In this section we summarize some related work which subsidized our research.

2.2.1 Folksonomies and Ontologies

In folksonomy-based systems, users can attach a set of tags to resources. These tags are

not tied to any centralized vocabulary, so the users are free to create and combine tags.

Some strengths of folksonomies are their easiness of use and the fact that they reflect the

vocabulary of their users [26]. In a first glimpse, tagging can transmit the wrong idea

of a poor classification system. However, thanks to its simplicity, users are producing

millions of correlated tags. It is a shift from classical approaches – in which a restricted

group of people formalize a set of concepts and relations – into a social approach – in

which the concepts and their relations emerge from the collective tagging [34]. In order

to perform a systematic folksonomy analysis, to subsidize the extraction of its potential

semantics, researchers are proposing models to represent its key aspects. Gruber [15]

models a folksonomy departing from its basic “tagging” element, defined as the following

relation:

Tagging(object, tag, tagger, source) (2.1)

In which object is the described resource, tag is the tag itself – a string containing a word

or combined words –, tagger is the tag’s author, and source is the folksonomy system,

which allows to record the tag provenience (e.g., Delicious, Flickr etc.).
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In order to formalize a folksonomy Mika [27] departs from a tripartite graph with

hyperedges. There are three disjoint sets representing the vertices:

T = {t1, . . . , tk}, U = {u1, . . . , ul}, R = {r1, . . . , rm} (2.2)

In which the sets T, U and R correspond to tags, users and resources sets respectively.

A folksonomy system is a set of annotations A relating these three sets:

A ⊆ T × U ×R (2.3)

The folksonomy itself is a tripartite hypergraph:

H(T ) = 〈V,E〉 (2.4)

In which V = T ∪ U ∪R, and E = {{t, u, r} | (t, u, r) ∈ A}
The folksonomy analysis can be simplified and directed by reducing this tripartite

hypergraph into three bipartite graphs: TU relating tags to users, UR relating users to

resources and TR relating tags to resources [27]. A graph TT is a relevant extension of this

model for representing relations between tags. It allows to represent the co-occurrence of

tags. The same approach can be applied to the user and resource sets.

The Gruber’s classical definition of ontology as “an explicit specification of a con-

ceptualization” [14] synthesizes its key aspect as an intentionally systematized – or en-

gineered [27] – specification. According to Shirky [34], contrasting to ontologies, in tag-

based approaches the organization derives from an organic work. It is a shift from a

binary categorization approach – in which a concept A “is” or “is not” part of a category

B – to a probabilistic approach – in which a percentage of people relates A to B. Gru-

ber [15], on the other hand, claims that folksonomies and ontologies should not be seen

as opposite but rather as complementary, and he proposes a TagOntology – a common

ontology for tagging. As we will present in this paper, we share Gruber’s view of comple-

mentary roles, expanding the perspective to introduce a fusion (bidirectional) approach,

in which folksonomies meet “classical” ontologies. Kim et al. [18] described three areas

where the association of ontologies and folksonomies can improve the systems, namely:

knowledge representation sophistication, facilitation of knowledge exchange and machine-

processable. Moreover, this association can improve the tag query and disambiguation,

visualization of tag clusters and tag suggestion to users [35].

2.2.2 Similarity and Information Content

One way to explore the semantics – formalized in ontologies and potential in folksonomies

– involves matching and similarity. There are many applications, such as, ontology engi-

neering, information integration and web query answering where matching operations play
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a central role [13]. When tags are compared, matching operations can be organized in two

main broad categories: lexical/syntactic and semantic. Lexical/syntactic approaches are

mainly based on the proximity of spelling words and their derivations (e.g., conjugations).

One example of this category is the edit distance, as the popular approach proposed by

Levenshtein [21].

To go beyond the spelling, semantic approaches relate words to a respective semantic

representation – a concept. The matching is evaluated by analyzing semantic relationships

among concepts, e.g., equivalence, generalization, specialization etc. This approach can

lead to better search results or expand the opportunity for discovery, by finding and

ranking similar or related results. It can also subsidize better recommendation systems

for tag definition. In this context, ontologies are increasingly being adopted to formalize

the semantics of concepts and their relationships.

A challenge in semantic matching is how to weight the relevance of relationships when

similarities are confronted. Consider a practical example of a program looking for the

concepts similar to judge. The output will be a set of concepts ranked according their

similarity. Two possible similar concepts in the example could be district attorney or

child. Like a judge, the former is an official functionary and the latter is a person. To

rank them by similarity it is necessary to define which concept is more similar to judge.

In order to put this comparison in a context, let us consider a classical abstraction

of an ontology as a graph, in which each vertex (node) is a concept and each edge is a

relationship between two concepts. A comparison supported by this ontology considers

that the compared terms are connected by a path. Figure 2.1 illustrates the three previous

concepts as they appear in the WordNet ontology. In the figure, circles represent concepts

and edges subsumption relationships – lower concepts specialize upper ones.

Figure 2.1: Subsumption ontology showing the relationships among compared concepts.

Many approaches to calculate semantic similarity based on ontologies were developed

and we will further present some relevant techniques.
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Path-based

A naive method to evaluate the semantic similarity between two nodes in an ontology

is by measuring the shortest path separating them. This is equivalent to the distance

metric in a is-a (subsumption) semantic net, defined by Rada et al. [30]: distance(c1, c2)

= minimum number of edges between c1 and c2. The similarity then calculated as:

simrada = [1 + distance(c1, c2)]
−1 (2.5)

As showed in [31], this approach is highly influenced by the level of detail applied to

describe branches of the ontology, i.e., branches better detailed can contain longer paths

than other, in spite of the similarity distance, leading to biased evaluations. For example,

the comparison of judge with child (3 edges) results in the same similarity of district

attorney compared to judge (3 edges). One way to overcome this limitation is by

weighting the edges, leading to the problem of how to determine the weights. According

to Jiang and Conrath [17] there are ontology aspects, such as depth of nodes and type of

links, which can be used to define these weights.

Depth-relative

One way to enhance the path-based comparisons is by analyzing the most specialized

common ancestor shared by two nodes in the ontology. It is founded in specific kinds of

taxonomic ontologies based on subsumption relationships among terms, as the example of

Figure 2.1. Observations showed that siblings sharing an ancestor deep in a hierarchy are

more closely related than those sharing an ancestor higher in the hierarchy [38]. Therefore,

Wu and Palmers [45] propose the following metric:

simwp(c1, c2) =
2×N3

N1 + N2 + 2×N3

(2.6)

In which c3 is the least (most specialized) common ancestor of both c1 and c2, N1 is the

number of nodes on the path from c1 to c3, N2 the number of nodes between c2 and c3,

and N3 the number of nodes between c3 and the ontology root.

To improve the depth-relative metrics, Shickel and Faltings [33] proposed the OSS

metric, based on an A-Priori Score APS computation of all concepts in an ontology.

Then, a distance metric is defined from two coefficients (generalization and specialization)

calculated from the APS value.

Content-based

Besides the ontology topology, there are approaches showing that comparisons can be

improved by analyzing also the content of the ontology concepts. Resnik proposed an
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approach based on information content [31] applied to subsumption ontologies. Assuming

that each concept in this kind of ontology is a class representing a set of instances, the

probability of a given instance to belong to a more specific class – e.g., child – is lower

than the probability to belong to a more general one – e.g., person. While the probability

decreases, the information about more specific classes increases – a necessary consequence

of their specialization. Information Content (IC) is a measure created to evaluate this

increase of information about something. Let the probability of a given concept c be

p(c), then the IC of c is -log p(c) [32].

In order to illustrate Resnik’s IC-based approach to evaluate the similarity among

terms, let us return to the example involving the similarity ranking among judge and two

other concepts: district attorney and child. The first step is to find the most special-

ized concept shared by judge and district attorney, which is official functionary,

as by judge and child, which is person. Intuitively, we can infer that the probability

of an instance to belong to official functionary is smaller than the probability of an

instance to belong to people; conversely the IC is higher. In this type of ontology, when

two concepts derive from the same generalization they share its characteristics, therefore,

judge is more similar to district attorney than to child, since the former has higher

IC. Therefore, the Resnik [31] similarity metric was defined as follows:

simres(c1, c2) = max
c∈S(c1,c2)

[− log p(c)] (2.7)

In which the set S contains all concepts that subsume both c1 and c2. Experiments

in [31] demonstrated that this approach produces better results than the counting edges

approach and is not influenced by unbalances in ontology detailing. There are many other

approaches exploring probabilities to improve similarity evaluation such as Lin [23] and

Jiang and Conrath [17].

All of these probability-based approaches lead to an extra challenge: how to evaluate

the probability of each concept of an ontology. Resnik’s strategy is based on counting

words extracted from a corpus of documents. As will be further detailed, our work expands

Resnik proposal in three directions:

(i) proposing a strategy for calculating probabilities and IC of concepts based on tags

employed in social networks to describe content;

(ii) defining multiple context-driven IC for each concept;

(iii) applying IC and co-occurrence data to review the ontology.

2.3 Folksonomized Ontologies

As observed in the previous section, ontologies and folksonomies can play complementary

roles. Nevertheless, existing proposals usually are unidirectional, attaching folksonomy’s
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tags to ontologies or, conversely, producing ontologies from folksonomies. In this section

we describe our fusion approach, which takes advantage of both ontologies and folk-

sonomies, producing a synthesis. This fusion results in a folksonomized ontology, which

we define as an ontology aligned with terms of a folksonomy and enriched with their con-

textual data. By contextual data we mean data which emerges from a statistical analysis

of a folksonomy, e.g. tag frequency, co-occurrence and information content.

In one direction the folksonomized ontology, which is aligned with tags, drives richer

semantic-based matching, categorization and tag suggestion. In the other direction, con-

textual data will be used to review and improve the ontology. The Figure 2.2 schematizes

the roles played by an ontology and a folksonomy in a folksonomized ontology building.

The ontology was previously engineered to formalize concepts and typed relationships,

e.g., is-a, same-as, part-of. Concepts and relationships in folksonomies, on the other

hand, are inferred by statistical analysis over tags and their co-relations. They are not

typed, as in ontologies, but carry substantial contextual data, which subsidizes “weight-

ing” concepts and relationships. The resulting folksonomized ontology is a new entity that

fuses the best of both worlds, having typed and “weighted” concepts and relationships.

Figure 2.2: Folksonomized Ontology

A practical tool was developed in this research, apt to build folksonomized ontologies

and use them for tag searching and discovery, as to ontology review and improvement.

Figure 2.3 summarizes the cycle of the folksonomic ontology building and use. It starts



14 Caṕıtulo 2. Folksonomized Ontologies – from social to formal

collecting data from folksonomy systems (step 3.1), e.g., Delicious and Flickr, which are

processed, filtered and grouped as concepts (concept-group) (step 3.2). Concept-groups

are mapped to concepts in ontologies (step 3.3). The probability and IC for each concept-

group, as the co-occurrence of concept-groups, are calculated and fused to the ontology,

obtaining our folksonomized ontology (step 3.4). The step (3.5) is an ongoing work in

this research; it confronts statistical data extracted from a folksonomy with the structure

of an ontology, in order to subsidize ontology review and improvement.

3.5

tag data

tag data
collect

map

fuse

review

pre-

process

Figure 2.3: Folksonomized ontology building and use

The step (3.2) involves preprocessing algorithms, e.g., to adjust punctuation mis-

matches and to group tags. Since our contribution is not focused in these preprocessing

algorithms, but rather in the subsequent steps, we implemented established algorithms,

which will not be compared to related work. Moreover, we adopted the same preprocess-

ing algorithms when comparing our approach to related work. In the following subsections
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each step of the process illustrated in Figure 2.3 will be detailed.

2.3.1 Collecting Tag Data

Web-based content portals offer web service interfaces to access their data. The tag

data collecting module (step 3.1) access these web services to select and retrieve tags and

their metadata, which are stored in a database. Due to the heterogeneity in the APIs, this

module was designed to be customizable and it was tested in Delicious and Flickr systems.

To better obtain the emergent properties of the semantics extracted from folksonomies,

this module was designed to afford large datasets. They are stored as triples of resources,

users and tags, including their relations. Statistical data – e.g., co-occurrence between

tags – were computed and stored during data collection, avoiding extra post-processing

work. The updating process is incremental, i.e., it collects and stores just the differences

of previous processings.

2.3.2 Tag Processing

In order to avoid the interference of wrong spelled tags or similar problems, unusual tags

– with less than five occurrences – were eliminated to improve the quality of the data

set. This procedure produces a collateral effect, since it also filters correct tags having

a high IC value, due to their low-frequency. Therefore, we consider this a preliminary

approach. In a future work, we intend to study the impact that low-frequency tags have

in the results and if they should be kept or deleted.

The next step involves grouping tags referring to the same term. For instance, the tags

tip and tips are tightly connected and represent the same term. The grouping algorithm

is divided in two steps: (i) punctuation analysis – groups tags differing only in punc-

tuation signs; (ii) morphological analysis – group tags by morphological relatedness.

A common approach in tagging systems is to delimit tags by spaces. In order to repre-

sent multiple word tags, users resort to different strategies, e.g., concatenating words with

or without separating signs. By analyzing the similarity of tags without the punctuation

we could group tags like search-engine, search engine, and searchengine. These tags are

clearly very close to each other and represent different user approaches for using multiple

word tags. So, all punctuation signs of tags were removed, allowing to group tags that

became equal without punctuation.

The morphological analysis and grouping go beyond spelling comparisons, considering

morphological variations as singular and plural tags, or tags of different verb tenses. The

algorithm retrieves morphological variations of tags from the WordNet ontology, grouping

them together.
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2.3.3 Mapping tags to ontology terms

The next step, of mapping tags to ontology concepts, is not a simple task, due to the

lack of semantic information related to the tags. The tags cannot be directly mapped

based on their words, since the same word can have multiple meanings in the ontology.

In WordNet, for instance, a word can have multiple senses, called synsets, which are

differentiated through identifiers combining the original word plus two affixes. The first

one is a character that describes the synset type (namely noun, verb, adjective, or adverb)

and the second one is a sequential number to differentiate each meaning. For instance,

the synset dog.n.01 represents a noun and it is one of the synsets for the word dog.

To find out which synset corresponds of each tag, we developed a technique that

encompasses the relation of the WordNet synsets and tag co-occurrences, divided in three

steps: (i) group key election; (ii) co-occurrence selection; (iii) group key mapping. They

are further detailed.

Group key election. In the previous stage, tags referring to the same term were

grouped. In this step, a “group key” is elected to represent each of these groups. Since all

variations of a tag in each group are considered referring to the same term, it is necessary

to select the most significant to represent the group. Since the WordNet will be the

target of the tag mapping, it is also used in the group key election process. By analyzing

morphological derivations of words in the WordNet, it is possible to determine which word

is the root in each group. This tag is elected the group key. There are exceptional cases

in which it is not possible to fetch a root word for a given group. We implemented a

preliminary solution in which the first tag in the group is elected. We are planning to

implement a better approach for exceptional cases as a future work.

Co-occurrence selection. In order to put tag keys in a context, they are linked to

related tags having highest co-occurrence values. Considering a group containing n tags.

For each tag t in this group, the selection algorithm initially fetches the h tags having

highest co-occurrence with t. The result is a set of n × h co-occurrences. Then, the

algorithm selects the s tags with the highest co-occurrence values in this resulting set.

Group key mapping. The last step involves mapping group keys to WordNet’s

synsets. Consider a tag t, a group key, to be mapped to a synset and a set C containing

the tags having the highest co-occurrence related to t (obtained in the last step). Consider

a group S containing all synset candidates for mapping. Our algorithm evaluates the

distance of each synset s of S compared with t, in the following way: (i) the set C must

have a minimum set of tags already mapped to synsets; this minimum is defined by a

threshold constant minmap; (ii) the similarity of a given s is calculated by the sum of the

distances of all c already mapped to s; (iii) since there is no IC data yet, a path-based

similarity algorithm is applied. The synset s with the highest sum is the target of the

mapping.
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A tag group will only be processed if a minimum of the elements in the corresponding

co-occurrence list had already been processed and mapped. Since the algorithm always

selects a synset based on tags already mapped, it was necessary to create a starting set

of tags manually mapped, to work as seeds. Algorithm 1 presents a pseudo-code of the

tag mapping.

Algorithm 1 The algorithm to map group keys to synsets

Input: G: set of groups keys (tags)
Input: minmap: minimum co-occurrence mapping
Output: S: set of group keys (tags) mapped to synsets

1: S ← {}
2: while ∃ t in G — fit(t) do
3: t← choose(G)
4: cooc list← getcooc(t)
5: list← {}
6: for all synset s in synsets(t) do
7: for all element e in cooc list do
8: include (s,sim(s, synmap(e), coocval(t, e))) in list
9: end for

10: end for
11: S[t]← max(list)
12: remove t from G
13: end while

The functions used in Algorithm 1 are:

choose(G) Returns a tag t in G in which fit(t) = true.

fit(t) Returns true if the co-occurrence list related to the tag t has at least minmap

elements already mapped.

getcooc(t) Returns the co-occurrence list for the tag t, having the highest co-occurrence

values and already mapped to a synset.

synsets(t) Returns all possible synsets for a given tag.

synmap(t) Returns a synset already mapped to a tag.

coocval(t1, t2) Returns the co-occurrence value between t1 and t2.

sim(s1, s2, e) Calculates the path-based similarity between the two synsets (s1 and s2)

multiplied by the co-occurrence value (e).

max(list) Returns the synset having the highest similarity value in the list.

In the best scenario this algorithm stops when it maps all tags. However, depending

on the starting seeds and the minmap value, it is possible that it will not converge and

the algorithm will stop in the absence of eligible tags to process. In this case, the result

is a partial mapping set.
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After this step, a subset of WordNet ontology is mapped to tags of the folksonomy.

However, there are WordNet concepts that do not point to tags. They are classified here

as virtual nodes and the ones that point to tags are the real nodes. For instance, the term

entity.n.01 is the root of the ontology and does not point to any group of tags, a virtual

node.

2.3.4 Fusing

After the mapping process, it is possible to calculate the information content (IC) of each

ontology concept. Our algorithm starts by setting frequency values collected from the

folksonomy in the real nodes. Each node change reflects in every predecessor node. The

frequency is calculated by using the occurrences of the mapped tags.

This strategy considers that when users associate tags to resources, they are also

associating the respective generalizations. For instance, when a user tags a resource with

the tag “judge”, he is implicitly tagging this resource with the tag “person”. Since each

tag frequency reflects in its predecessors, it is necessary to avoid counting twice when the

same resource is tagged by a user with tags having a subsumption relationship – e.g.,

“judge” and “person”. These frequencies subsidize the calculus of probability and IC for

each node.

2.4 Practical Experiments

Among our practical experiments, in this section we will focus the presentation on Deli-

cious data, due to the nature of its resources – URL addresses – which are better suited

to compare with related work, as shown in the evaluation section. For the experiment dis-

cussed in this section, we have collected and stored a total of 1,049,422 triples of resources,

users and tags, including their relations.

2.4.1 Similarity Algorithm

After calculating the IC values, we implemented some similarity and distance metrics like

simlin [23], distjiang [17] and simres [31] to validate our proposal. Considering that simres

is a basis algorithm and simlin, distjiang variations over it, our focus here will be the

simres implementation.

Since Resnik’s similarity metric is relative, it requires at least three terms: one pivot

and two other terms to be ranked. Let’s consider the pivot graphic and the comparing

terms picture and freeware. With the simres we obtained, as expected, that picture is

more similar to graphic than freeware.
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In order to evaluate our folksonomized ontology in similarity operations, we conducted

two groups of comparisons further described: (i) folksonomized ontology versus ontology

and co-occurrence; (ii) folksonomy versus document emergent semantics.

2.4.2 Ontology and co-occurrence

We developed a qualitative analysis in tag comparison by confronting our proposal with:

the WordNet ontology without folksonomized data and using path-based similarity algo-

rithms; just tags and their co-occurrence statistics.

To present our considerations, we selected three representative cases of compared tag

pairs: graphics and inspiration; war and conflict; bible and christian.

The terms graphics and inspiration have a high co-occurrence (41% of the maximum

co-occurrence value for graphics), but low similarity in the path-based algorithm, since

the terms are relatively far in the ontology (too much edges). The similarity based on

folsksonomized ontologies was more accurate in this case, since it does not rely solely on

the ontology topology.

In the case of war and conflict, there are no co-occurrence value, because conflict does

not exist in the tags dataset. But it exists in the ontology as a virtual node and has a high

similarity with the term war. This example shows that with our folksonomized ontology

it is possible to find similar terms and suggest them to the users, even if they do not exist

yet in the tag dataset – a feature that a standalone folksonomy is not able to offer.

The pair bible and christian, however, shows a situation in which the co-occurrence has

better results than the folksonomized ontology. Even having a high co-occurrence value

(there is no tag with more co-occurrence with bible than christian), any ontology-based

comparison of similarity (folksonomized or not) will return zero. The reason is that in

WordNet the only common parent of these two terms is “entity”, the root of the ontology,

leading to a zero similarity. The folksonomy points to a strong relationship between the

terms and it is a valuable information, which can be used to support the ontology review,

as shown in Subsection 2.4.4.

2.4.3 Document emergent semantics

In order to evaluate the potential semantics extracted from folksonomies, this second

group of comparisons confronts data extracted from tags with those extracted from web

pages. Since our tags were extracted from Delicious, each tag is related to a web page

address (URL). Our experiment fetched approximately 4,500 web pages pointed by Deli-

cious tags. The analysis of the pages content adopted the same technique used by Resnik,

i.e., counting the words in the corpus to compute the word frequency.
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Besides the IC computed by using the word count of pages, the rest of the process

adopted the same algorithms of our solution. The resulting enriched ontology was used to

the comparisons of which results we further present a qualitative and a quantitative anal-

ysis. The terms simtag and simwc will be used to refer the Resnik’s similarity algorithm

applied to our folksonomized ontology and to the other enriched ontology respectively.

Qualitative analysis

In this analysis we compiled a list with 100 triples containing: a pivot and two comparing

terms. For each triple we manually marked the term that we judged to be more similar

to the pivot and then the simwc and simtag were applied to the list.

The result of this analysis is that both similarities had a rate of 90% of conformity

compared to our judgment. Both similarity algorithms had equivalent behaviors, i.e.,

both differed of our judgment in the same triples. This result shows that both approaches

achieved a good conformity rate and indicates a possible tendency to be explored, that in

many contexts the semantics extracted from tags describing pages can avoid the analysis

of the whole pages. In this preliminary analysis the results were confronted with our

judgment, but the validation process will address users in future work.

Quantitative analysis

In the quantitative analysis, the two ontologies were confronted in exhaustive comparisons.

For either ontology, a routine compared each concept with all other concepts of the same

ontology. Since the similarity algorithm requires a third pivot concept, the pivot was

randomly chosen in the ontology. The same comparison was made in parallel in both

ontologies and the results were compared. To minimize the randomic effect of the pivot,

the same algorithm was ran 100 times. The average number of different results obtained

in similarity comparisons corresponds to 0,02% of the total of triples analyzed. Therefore,

we conclude that both approaches are equivalent.

One could argue the differential of evaluating tags compared to the classic approach

based on documents word counting. Besides the previous mentioned conclusion, pointing

to the observation that tags could produce equivalent semantic results with less effort,

since they are more focused in relevant aspects, tags are also available in a wide range

of content management systems, which do not have text documents to be analyzed. In

Flickr, for instance, the resources are pictures, thus it is not possible to use the approach of

counting words. The folksonomized ontology can be tailored to each context by switching

the folksonomy. Therefore, it is possible to consider a folksonomized ontology for pictures,

other for links and so on. The same approach can be used to customize ontologies to

specific domains.
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2.4.4 Supporting the Ontology Review

Departing from the observations of this research, we envisage that folksonomized on-

tologies can support the review and improvement of the ontologies used as foundations.

This can lead to a symbiotic cycle, in which folksonomized ontologies help to improve

the underlying ontologies which, in turn, will improve the results of the folksonomized

ontology.

Figure 2.4 shows a graph generated by a tool we are developing to review ontologies.

The nodes in the graph represent concepts in the ontology. Nodes connected by arrows

represent relations by concepts explicit in the ontology. Nodes connected by edges without

arrows – e.g., bible.n.01 and christian.n.01 – represent concepts in the ontology without

formal explicit relationships, having a high co-occurrence in the folksonomy. The thickness

of the edge is proportional to the intensity of the correlation. It can signalize a missing

relevant relationship, to be considered in the ontology review. This is a preliminary result

of an ongoing work. Many other inferred data can be presented to support ontologies

review.

physical_entity.n.01

...

bible.n.01

christian.n.01

high co-occurence

abstraction.n.06

...

religious_person.n.01

sacred_text.n.01

entity.n.01

Figure 2.4: Example of folksonomy relationship absent in the ontology



22 Caṕıtulo 2. Folksonomized Ontologies – from social to formal

2.5 Related Work

we selected four relevant works among the initiatives relating folksonomies to ontologies

to compare with our approach.

Specia and Motta [35] aimed to build ontologies from folksonomy data. They first

preprocessed the tags, eliminating the non-usual ones, and they created clusters of related

tags, using co-occurrence information. Finally, they identified the relationships between

these clusters using sources such as Google, Wikipedia and ontology bases. Damme et al.

[42] proposed a system to group tags and associate them with ontologies. They used lexical

resources, like Leo Dictionary, WordNet, Google and Wikipedia in the preprocessing step.

A statistical analysis is applied to group tags in clusters.

Some steps followed by these works were followed by ours as well. The tag preprocess-

ing, for instance, is a step that our work share with both. Our step of mapping tags into

ontology terms differs from both. We focused in the folksonomy and ontology data, in-

stead of looking for external sources. Different from both works, our approach takes fully

advantage of the preexisting semantics in the underlying ontologies, instead of building a

new ontology from scratch.

Cantador et al. [10] proposed a technique to filter tags, classifying them in categories,

in order to infer the semantics of the classified tags to map them to knowledge bases like

WordNet and Wikipedia. To find which category a given tag belongs, the authors resort

to direct association or natural language processing heuristics. Cattuto et al. [11] applied

existent ontologies, specifically WordNet, to find similarities between tags. However, their

mapping approach do not group similar tags, resorting to a simple word comparison to

find equivalent WordNet concepts. Our approach goes beyond, mapping groups of tags

to synsets semantically related, even if syntactically they are not.

All of these related approaches are unidirectional, i.e., they produce ontologies from

folksonomies or, conversely, use ontologies to assist tag relations in folksonomies. The

major difference in our fusion approach is the symbiotic combination, in which ontolo-

gies support tag comparison and, on the other hand, folksonomies enrich (folksonomize)

ontologies, improving their inferences and supporting ontologies review. In this sense,

ontologies in our approach are not limited to be a tool to improve folksonomies. On

the other hand, our approach will always require a preexisting ontology in the intended

domain. Which can limit its application in some scenarios.

2.6 Conclusion and Future Work

Folksonomy-based systems have been largely adopted on the web, due to their flexibility

and easiness of use. However, these systems have limited search mechanisms, based on
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lexical comparisons of tags. On the other hand, formal categorizations, as ontologies,

require a big effort to be built and maintained and do not take advantage of the potential

semantics, which emerges in an organic way from social tagging systems.

To face this problem, this paper presents our approach to build a folksonomized on-

tology, an ontology fused with a folksonomy. It is a symbiotic combination, taking advan-

tage of both semantic organizations. Ontologies provide a formal semantic basis, which is

contextualized by folksonomic data, improving operations over tags based in ontologies.

Conversely, the folksonomized ontologies can be also used as tools to analyze the ontology

quality and to help the process of ontology evolution, showing the discrepancies between

the emergent knowledge of a community and the formal representation of this knowledge

in the ontology.

We are working to expand our research in the following directions: (i) to develop an

interchangeable folksonomic dataset, providing different customizations of the ontology,

according the context; (ii) to use other similarity algorithms and statistical data; (iii) to

run tests in specialized contexts applying domain ontologies; (iv) to extend the solution

to consider other relations in the ontology (besides the generalization and specialization);

(v) to improve our tool for ontology evaluation and review; (vi) to measure and evaluate

the costs and impact of our approach in current folksonomies.





Chapter 3

Folksonomized Ontologies and their

formal aspects

3.1 Introduction

A growing number of web systems offer services for content storage, indexing, and sharing.

Those systems usually have a huge number of users and large datasets. For instance, the

photo sharing system Flickr has more than 5 billion images hosted1 and there are more

than 180 million URL addresses on Delicious2. Most of these systems use tag-based social

networks to organize and index the stored content. Their users associate free-form tags

with each resource, without a central vocabulary. The term folksonomy – combining the

words “folk” and “taxonomy” [43] – has been used to characterize the product which

emerges from this tagging in a social environment.

In order to analyze, index and classify their content, web systems compare tags at-

tached to resources. Instead of considering the semantics of each tag in the comparison,

tag-based systems usually rely on string matching approaches. While ontologies are in-

creasingly adopted to enrich tag semantics, one common problem with the proposals to

associate tags with formal ontologies concerns their unidirectionality, i.e., ontologies im-

prove tag semantics, or the implicit/potential semantics of folksonomies is extracted to

produce ontologies.

In a previous paper, we proposed a fusion approach, called folksonomized ontology

(FO), which goes beyond this unidirectional perspective [3]. In one direction, the ontolo-

gies are “folksonomized”, i.e., the latent semantics from the folksonomic tissue is extracted

and fused to ontologies. On the other direction, the knowledge systematically organized

and formalized in ontologies gives structure to the folksonomic semantics, enhancing op-

1http://blog.flickr.net/en/2010/09/19/5000000000/ - retrieved on November, 2011
2http://blog.delicious.com/blog/2008/11/delicious-is-5.html - retrieved on November, 2011

25
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erations involving tags, e.g., content indexing and discovery. The folksonomic data fused

to an ontology will tune it up to contextualize inferences over the repository.

In a previous paper [3] we focused in the presentation of our folksonomized ontology,

its respective tool [4] and validation tests. However, the scenario involving ontologies,

folksonomies + derived ontologies (which we call social ontologies) and their relations

still lacks a formal characterization, in order to answer open questions as:

• What is the abstract model behind social ontologies derived from folksonomies?

• How this model is related to ontologies?

• From the model point of view, how the initiatives explore the relationship between

ontologies and folksonomies?

This chapter contributes by defining a formal framework to describe ontologies, folk-

sonomies, social ontologies, and approaches to combine them, including our folksonomized

ontology. Through this framework, we bring to a formal context – for the first time – the

debate confronting them.

Through this formal perspective, this paper aims to explicit the limitations of unidi-

rectional relations between folksonomies and ontologies, as well as the demand for our

fusion approach and its strengths in:

Tag disambiguation: by finding groups of related tags and mapping them to ontology

concepts, the FO can be applied to disambiguate tags and find the ones that are

more related, going beyond statistical analyses by using semantic similarity metrics.

Tag suggestion: the current folksonomy systems consider only co-occurrence informa-

tion to suggest related tags to users; a FO has a richer set of semantic relations

among concepts, supporting suggestion of tags that were not used together before

– folksonomies cannot do that.

Semantic similarity: a FO can support the computation of semantic similarity between

concepts and, by extension, between tags; so, they can expand the usual techniques

that focus only at syntactical similarity and co-occurrence of tags, achieving better

results in discovery operations.

Ontology evolvement: a FO can be used to find missing relations in ontologies; the

high co-occurrence between two groups of tags, and their corresponding concepts,

can indicate a necessary relation in the ontology, if it does not exist yet.
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The paper is organized as follows. In section 3.2 we introduce our formal framework.

In section 3.3 we discuss the semantic foundations of this work. In section 3.4 we present

a formal perspective of related work. In the section 3.5 the folksonomized ontologies are

defined and formalized. In section 3.6 we conclude and discuss the future work.

3.2 Formal Framework

In order to substantiate our analysis of related work and to make explicit the main char-

acteristics and the differential of our approach, we have defined an abstract framework

composed by a set of models. Although there is related work which formalize individual

models presented here – e.g., folksonomies and ontologies – as far as we know, this pa-

per contributes as the first initiative to embrace a wider scenario, including approaches

aimed to relate folksonomies and ontologies. It also contributes as a tool to explicit the

characteristics of each approach and its differentials (see next section).

The starting point is an existing model of folksonomies proposed by Mika [27]. He

departs from three fundamental sets to define folksonomies: A = actors (users annotating),

T = tags, O = annotated objects (e.g., images, bookmarks). In tag-based annotation

systems, users tag objects, defining ternary associations. Therefore, a folksonomy system

is a set of annotations F ⊆ A× T ×O. This folksonomy can be alternatively modeled as

three bipartite graphs, representing associations between actors and tags (AT ); tags and

objects (TO); actors and objects (AO).

There are three different classes of nodes in these models: Nt, Nts, and Nc. Each node

of the Nt class is a single tag. A node of the Nts class, on the other hand, represents a set

of tags that share the same meaning – a tagset. Figure 3.1 illustrates a transition from

a graph in which the nodes are tags – members of Nt – to a graph in which nodes are

tagsets – members of Nts. As illustrated in the figure, many edges connecting tag nodes of

the original graph are combined in a single edge connecting tagset nodes. The Nts nodes

are depicted in the figures of the models in gray. Finally, each node of the Nc class is a

concept of an ontology. The focus here is in the semantics assigned to each node instead

of the label.

In our framework we defined five abstract models M1 to M5 aiminng to model aspects

of folksonomies and their relations with ontologies. They are further detailed:

M1 (Figure 3.2) models co-occurrences in a folksonomy – i.e., the relations between

tags that were used together – as a tuple (GT ,WC), where GT = 〈T,ET 〉 is an undirected

graph with vertex set T formed by tags (members of the Nt class) and edge set ET

representing co-occurrences of tags. WC is a weighting function WC : ET → N, producing

a weight related to each edge, corresponding to the number of co-occurrences of the

respective tags annotating the same object.
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Figure 3.1: Tagset nodes.

Figure 3.2: Model M1

M1 is a graph that represents the relatedness among tags. It is the raw material

used by many proposals to synthesize ontologies. There are several approaches to define

the relatedness [16]. They are mostly variations of co-occurrences of tags annotating

resources.

Figure 3.3: Model M2

M2 (Figure 3.3) models tagsets and their co-occurrences as a tuple (GS,WO), where

GS = 〈S,ES〉 is an undirected graph with vertex set S formed by tagsets (members of
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the Nts class) and edge set ES representing co-occurrences of tagsets. WO is a weighting

function WO : ES → N, producing a weight related to each edge, corresponding to the

number of co-occurrences of the respective tagsets annotating the same object.

Since tags with the same meaning are grouped together in M2, it is nearer to the

way ontologies organize concepts. Many proposals use this model to relate tagsets with

concepts from ontologies [35, 40].

Figure 3.4: Model M3

M3 (Figure 3.4) is a simplified model of an ontology, represented as a tuple (GO, RT, FRT ),

where GO = 〈C,ER〉 is a directed graph with vertex set C formed by concepts (members

of the Nc class) and arc set ER representing relations between concepts. RT is a set of

relation types between concepts. FRT is a function FRT : ER → RT , which associates a

type with each relation (arc).

Figure 3.5: Model M4

M4 (Figure 3.5) models tagsets and their typed relations as a tuple (GS, RT, FRT ),

where GS = 〈S,ER〉 is a directed graph with vertex set S formed by tagsets (members
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of the Nts class) and arc set ER representing relations between tagsets. RT is a set of

relation types between tagsets. FRT is a function FRT : ER → RT , which associates a

type with each relation (arc).

M4 models “social ontologies”, similar to the Kotis et al. proposal [19] in the sense

of the social aspect built-in. Compared to M3, M4 has tagsets (members of the Nts

class) in each vertex, rather than concepts. The term “social ontology” will be adopted

here, contrasting with folksonomy, to emphasize this structure – mostly derived from

a folksonomy – which makes explicit many relations among tags and whose structure

resembles ontologies.

Figure 3.6: Model M5

M5 (Figure 3.6) models our proposed folksonomized ontology; it is derived from M3,

incorporating semantic data extracted from folksonomies. This model is further detailed

in Section 3.5.

3.3 Semantic Similarity

The similarity evaluation is in the core of any comparison mechanism and is a fundamental

notion in this work. In this section we discuss the semantic similarity in ontologies or

semantic networks, under the perspective of our models presented in the previous section.

Departing from a scenario in which users use free-form tags as the main mechanism to

classify content in folksonomy-based systems, the main challenge addressed in this work

concerns how to improve the semantic interpretation of these tags to support operations

of indexing, comparison, classification etc. We consider two main sources of semantics in
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this scenario: (i) the implicit semantics derived from these folksonomies; (ii) the semantics

imported from external ontologies and related to tags.

A practical scenario to employ this semantics – formalized in ontologies and potential

in folksonomies – involves matching and similarity comparison. There are many applica-

tions, such as ontology engineering, information integration, and web query answering in

which matching operations play a central role [13]. Matching operations applied to tag

comparison can be organized in two main broad categories: lexical/syntactic and seman-

tic. Lexical/syntactic approaches are mainly based on the proximity of spelling words and

their derivations (e.g., conjugations). One example of this category is the edit distance,

as the popular approach proposed by Levenshtein [21].

A challenge in semantic matching is how to weight the relevance of relations among

concepts when confronting similarities. Consider a practical example of a program looking

for the concepts similar to judge. The output will be a set of concepts ranked accord-

ing their similarity. Two possible similar concepts in the example could be district

attorney or child. Like a judge, the former is an official functionary and the latter is

a person. A prerequisite to rank them by similarity is to define which concept is more

similar to judge.

In order to put this comparison in a context, let us consider a model M3′ derived from

M3. In M3′ all relation types are subsumption relations, i.e., the function FRT : ER → RT

will always produce the type IS A, member of RT . The ontology illustrated in Figure 3.7

follows the model M3′ and lower concepts specialize upper ones. A comparison supported

by this ontology considers that there is a path connecting the compared terms. Figure 3.7

illustrates the three previous concepts as they appear in the WordNet ontology [28].

Figure 3.7: Subsumption ontology showing the relations among compared concepts - M3
model.

Beyond the primal comparison strategies founded on edge counting (like the one pro-
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posed by Rada et al. [30]) and graph topology analysis (Wu and Palmer [45], for instance),

there are approaches showing how to improve the comparisons taking into account the

content of the ontology concepts. Resnik proposed an approach based on information

content [31] applied to ontologies following the M3′ model. In this kind of ontology, each

concept is a class representing a set of instances. If there is an edge connecting the vertex

B (class B) to A (class A), then A subsumes B; B is a subclass and A is a superclass in

the relation. A superclass is more general than a subclass. Therefore, a superclass will

comprise more instances than its subclasses. As a consequence, a given instance has less

probability of belonging to a subclass – e.g., child – than to a superclass – e.g., person.

While the probability decreases, the information about more specific classes increases –

a necessary consequence of their specialization. Information Content (ic) is a measure

created to evaluate this increase of information about something. Let the probability of

a given concept c be p(c), then the ic value of c is defined as -log p(c) [32].

In order to illustrate Resnik’s ic-based approach to evaluate the similarity among

terms, let us apply it to the example involving the similarity ranking among judge

and two other concepts: district attorney and child. The first step is to find the

most specialized concept shared by judge and district attorney, which is official

functionary, and shared by judge and child, which is person (see Figure 3.7). In-

tuitively, we can infer that an instance has less probability of belonging to official

functionary than to people; conversely the ic value is higher. In an M3′ ontology a

superclass will gather together only the common characteristics of all subclasses. judge

is more similar to district attorney than to child, since official functionary has

higher ic value than person. As judge and district attorney derive from a superclass

with higher ic, they will have more commonalities. Therefore, Resnik [31] defines his

similarity metric as follows:

simres(c1, c2) = max
c∈S(c1,c2)

[− log p(c)] (3.1)

In which the set S contains all concepts that subsume both c1 and c2. Experiments

in [31] demonstrated that this approach produces better results than the counting edges

approach and is not influenced by unbalances in ontology detailing.

In order to apply Resnik’s similarity metric, ontologies following the M3 or M3′ models

must also represent probability or ic related to each concept. Our approach, the folkson-

omized ontology (model M5) encompasses the ic value retrieved from folksonomies. It

departs from M1, processing it to obtain M2, and then it fuses M2 and M3, combining

the social knowledge of the former and the structure of the later, resulting in the enriched

M5. All this process is further detailed in the Section 3.5.
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3.4 Related Work

In this section we discuss the related work, from the perspective of our formal framework,

using the models introduced in Section 3.2.

Gruber’s classical definition of ontology as “an explicit specification of a conceptualiza-

tion” [14] synthesizes its key aspect as an intentionally systematized – or engineered [27] –

specification. According to Shirky [34], tag-based approaches differ from ontologies since

tags organization derives from an organic work. It is a shift from a binary categorization

approach – in which a concept A “is” or “is not” part of a category B – to a probabilistic

approach – in which a percentage of people relates A to B. Gruber [15], on the other hand,

claims that folksonomies and ontologies should not be seen as opposite but rather as com-

plementary, and he proposes a TagOntology – a common ontology for tagging. As we

will present in this paper, we share Gruber’s view of complementary roles. Nevertheless,

existing proposals usually are unidirectional, attaching folksonomy’s tags to ontologies or,

conversely, producing ontologies from folksonomies.

The main purpose of this section is to show the way related work explore the relation

between folksonomies and ontologies. The summary of our analysis is presented in Ta-

ble 3.1. Column 1 relates the authors analyzed in this section; column 2 sumarizes the

path of the models followed by each approach; column 3 indicates auxiliary resources and

models used in the process; column 4 defines the role of the auxiliary resources and models

mentioned in column 3. In the last row, we present our fusion approach of folksonomized

ontologies. Our main argument here concerns the unidirectionality of the initiatives, i.e.,

they use folksonomies as the main raw material and ontologies as auxiliary.

All analyzed proposals depart from the model M1, since the co-occurrences of tags

is a metric to express the latent semantics of folksonomies. From these co-occurrences,

Cattuto et al. [11] calculated several measures of tag relatedness by using an auxiliary

ontology, the WordNet (M3). They do not group related tags in tagsets; each individual

tag of M1 is associated with a synset in the WordNet ontology. Synsets are sets of

synonyms that play an equivalent role of concepts in ontologies. The similarity of the

related synsets are then transferred to the respective tags.

Specia et al. [35] proposed a technique to map clusters of tags to ontology concepts,

in order to make explicit the semantics of the tag space. They departed from M1 cre-

ating clusters of high-related tags (tagsets) and relating them to produce M2, using co-

occurrence information. The relations between these clusters were aligned with auxiliary

external resources like Wikipedia, Google, and ontology bases – following the semantic

standards (M3) – to produce M4. Those resources were used to improve the folksonomic

data, mainly making explicit the semantics of the tags in the model M1.

In a similar way Tesconi et al. [40] used external resources, namely Wikipedia, and
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Table 3.1: Work Comparison.
Authors Path Auxiliary Auxiliary Role

Cattuto et al. [11] tags (M1) → ontology M3 - Wordnet Measure tag related-
ness (M1)

Specia et al. [35] tags (M1) → tagsets (M2) →
ontology (M4)

M3, Google, Wikipedia Explicit semantics
(M1)

Tesconi et al. [40] tags (M1) → tagsets (M2) →
ontology (M4)

M3 - WordNet, YAGO,
Wikipedia

Disambiguate tags
(M1)

Damme et al. [42] tags (M1) → tagsets (M2) →
ontology (M4)

M3 - WordNet, Google,
Wikipedia

Derive ontologies
(M4)

Cantador et al. [10] tags (M1) → tagsets (M2) →
ontology (M4)

M3 - WordNet,
Wikipedia

Explicit semantics
(M1)

Bang et al. [8] tags (M1) → tagsets (M2) /
ontology (M4)

Heymann et al. [16] tags (M1’) → ontology (M4)
Limpens et al. [22] tags (M1) → ontology (M4) Propose and review

tags (M1)

Alves et al. [3] (tags/tagsets (M1/M2) ↔
ontology (M3)) → FO (M5)

ontologies (M3) like WordNet and YAGO [37]. Their objective was disambiguate tags,

“semantifying” them. They developed an algorithm to disambiguate tags, grouping them

by sense. The output of this algorithm is an entity like the model M2. Its tagsets are

finally linked to Wikipedia categories and ontology concepts, producing M4.

Damme et al. [42] aimed to use folksonomy data (M1) to build and to maintain

ontologies. They employ lexical resources, like Leo Dictionary, WordNet, Google, and

Wikipedia, to enrich the results of a preprocessing step, in which the tagsets are prepared

and cleaned, resulting in M2. Then they map tagsets of M2 to concepts of M3 (ontolo-

gies). The relations of M3 are mapped back to M2, in order to produce M4. Finally, the

folksonomy’s community validates the resulting M4.

Cantador et al. [10] proposed a mechanism to filter and classify tags, producing M2.

Then, they mapped these tagsets of M2 to knowledge bases like WordNet and Wikipedia,

to discover the corresponding semantic entities. Different from previous approaches, in

order to map M2 to M4 they predefined a set of possible categories and relation types

among tagsets. In order to do so, they used direct association or natural language pro-

cessing heuristics.

Bang et al. [8] proposed the concept of “structurable tags”, in which tags can be

linked through relations, allowing basic inference operations. They expanded the model

M1, allowing users to create two types of relations between tags: inclusion and synonymy.

These types of relations support the transformation of folksonomic data into more seman-

tic models. Thanks to the synonymy relation, the system transforms the data into the
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model M2, grouping the tags with the same meaning. On the other hand, the inclusion

relation led to an hierarchical organization, as a simplified M4.

Heymann et al. [16] proposed an algorithm to build a graph M4 departing from a

variation of M1, in which the edges are unweighted. It first aggregates tags in tag vectors,

in which the vtl [om] corresponds to the number of times that the tag tl annotates the

object om. In the resulting unweighted M1, the vertexes will be the tags, and there will

be an edge for pair of tags whose relatedness is above a threshold. The resulting graph,

without weights and maintaining just the relevant edges, contains a “latent hierarchical

taxonomy”. It is captured by an algorithm that builds a subsumption hierarchy, derived

from the centrality of each node in the graph.

3.4.1 Changing Users’ Behavior

Many initiatives involve changing the way users tag resources. Tanasescu et al. [39]

propose an approach in which tags can be also applied to annotate other tags, produc-

ing a network of “inter-annotated” tags. It adds an ontology-like approach to produce

knowledge by using tags. This approach can reduce the ambiguity of the folksonomic

data, because two tags with the same spelling but different meanings would have different

describing tags. Their relations are expressed as triples, linking them to semantic web

standards, like RDF [20].

For [22] the M4 is only a starting point for an annotation system based on controlled

tags, in which it can propose new tags and review third-party tags. The system tracks

each proposition and review in RDF, allowing multiple and even conflicting views of

descriptions of resources. This way of enhancing the tagging process can be interpreted

as a halfway between free tags and more formal description systems, e.g., ontologies.

The purpose of this work is to explore the social tagging approach as it is, without

modifications. Therefore, the works of [39, 22] is out of the scope of this comparison.

3.4.2 Unidirectional Approach

As can be observed in our synthesis of related work, all approaches follow almost the

same path, producing social ontologies (M4) from data extracted from folksonomies. On-

tologies appear as adjuncts, making the semantics of tags explicit and helping operations

of tag disambiguation and similarity evaluation. Nevertheless, the rich structure of the

ontology is not appropriated and the produced M4 social ontology is limited to those

simple relations – usually subsumption relations – which can be inferred from tags. Our

proposal, described in the next section, overcomes this limitation.
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3.5 Folksonomized Ontologies

In this section we describe our folksonomized ontology (FO). This section summarizes the

main characteristics previously presented in [3] from a new point of view. It describes

our FO from the perspective of the formal framework, introduced in Section 3.2, and

confronts it with related work following the same perspective.

Our fusion approach presented here takes advantage of both ontologies and folk-

sonomies to produce a synthesis. This fusion results is a folksonomized ontology (FO),

which we define as an ontology aligned with terms of a folksonomy and enriched with their

contextual data. By contextual data we mean data which emerges from a statistical anal-

ysis of a folksonomy, e.g., tag frequency, co-occurrence and information content. In one

direction the folksonomized ontology, which is aligned with tags, drives richer semantic-

based matching, categorization, and tag suggestion. In the other direction, contextual

data will be used to enrich, review, and improve the ontology. In order to present our

proposed model and to contrast it with related work, we will further present its formal-

ization, defined as model M5 in Figure 3.6.

A FO is defined as a tuple (G,RT, F ), where G = 〈V,E〉 is a directed graph with

vertex set V formed by ontology concepts (members of the Nc class) and arc set E

representing relations between these concepts, and RT is a set of relation types between

concepts. F is a set of functions, they are: F1 is a weighting function F1 : E → N
where the weight of the relation is derived from the total of co-occurrences between tags

represented by the respective concepts, the function F2 : E → RT defines the type of the

relation as in ontologies (see M3) – in its first version, presented here, all relations are

subsumptions, but the model is extensible to other types of relations –, and the function

F3 : V → R associates the information content (ic) related to each concept, calculated by

ic(c) = − log p(c), where p(c) is the probability of a given concept c. This ic value also

derives from a statistical analysis of the folksonomy and will substantiate computations

of semantic similarity between the concepts using, for example, Resnik similarity [31].

Figure 3.8 schematizes the roles played by an ontology and a folksonomy in the proccess

of building a folksonomized ontology. It departs from an ontology (M3), which was

previously engineered to formalize concepts and typed relations, e.g., is-a, same-as, part-

of. Concepts and relations in folksonomies, on the other hand, are inferred by statistical

analysis over tags and their co-relations. They are not typed, as in ontologies, but carry

substantial contextual data, which substantiate “weighting” concepts and relations. A

refined folksonomy, presented in Figure 3.8, follows the M2 model, aggregating tags that

share the same meaning in tagsets. The resulting folksonomized ontology is a new entity

that fuses the best of both worlds, having typed and “weighted” concepts and relations.

To this purpose, tagsets are previously aligned to concepts.
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Figure 3.8: Folksonomized Ontology

A practical tool was developed in this research, apt to build folksonomized ontologies

and use them for tag searching and discovery, as to ontology review and improvement.

Figure 3.9 summarizes the cycle of the folksonomized ontology building and use. See [3]

for a detailed description.

It starts collecting data from folksonomy systems, e.g., Delicious and Flickr. The out-

put of this step is a folksonomy modeled as M1. The following step processes, filters,

and groups the tags as tagsets (model M2). Tagsets are mapped to concepts in preex-

isting ontologies (modeled as M3). The probability and ic values for each tagset, as the

co-occurrence of tagsets, are calculated and fused with the ontology, obtaining our folk-

sonomized ontology (model M5). The review step is an ongoing work in this research; it

confronts statistical data extracted from a folksonomy with the structure of an ontology,

in order to support ontology review and improvement.

In order to illustrate how folksonomized ontologies can improve operations in tag-based

systems, let us consider an example of a user looking for bookmarks related to “district

attorney” in a system (e.g., Delicious). There are many relevant bookmarks which are not

marked with this specific tag. Current folksonomy-based approaches (based on models

M1, M2, and M4) will expand the search only considering related tags with a high co-

occurrence value with “district attorney”, and will not consider other important relations

that were not frequently tagged together. Some approaches that use M3 ontologies to

find similarities among tags, cannot apply improved similarity algorithms, as proposed by

Resnik [31] (see Section 3.3), due to the lack of statistical data related to the ontology. Our

FO will offer both: relations engineered in ontologies and captured from folksonomies fused

together. The statistical data will support better similarity comparisons, as proposed by

Resnik.
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Figure 3.9: Folksonomized ontology building and use

Users looking for highly frequent subjects will have a similar problem. Consider a user

who types the tag “mathematics” in the search box. Since there are millions of bookmarks

tagged as mathematics, a similarity algorithm can be applied to rank bookmarks which

have more tags similar or related to the subject. The same approach can be applied

for tag suggestion when the user is adding a new bookmark. In this case, systems like

Delicous suggest other tags that were used in the same bookmark. For example, the tags

“math”, “maths”, “interactive”, and “numeracy” are returned in the Delicious system. A

FO-based system can go beyond, by suggesting co-related terms even when they are not

used together before in the same bookmark, i.e., even though they are not connected in

M1 and M2, e.g., “science” and “geometry” would also be suggested by the system.

Existing approaches to integrate folksonomies and ontologies are based on mapping

tags or tagsets to ontology concepts. The relations among tags mapped to concepts can be

derived from co-occurrence analysis of the tags, or from the relations that already exist in

the ontology. As observed in the previous section, the final product of existing approaches

is a “social ontology” M4. The concepts of this model are limited to those extracted

from tags aligned to ontologies. Preexisting concepts from ontologies, not present in the

folksonomies, will not be present in M4. The semantics of ontologies enriches the analysis

of tags in a unidirectional way, i.e., statistical data from folksonomies are not used to

improve the similarity analysis in the ontologies. The FO, on the other hand, preserves

preexisting ontology nodes that cannot be mapped to tagsets. They are explored to do
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inferences which are not possible in related work. Moreover, the FO model M5 represents

more than M4 relations among concepts, capturing weights of relations and probabilities,

to support better inferences (see Section 3.3).

A FO is built on the assumption that the semantics of folksonomies can be also applied

to refine the ontology itself. For this reason, in one direction FOs support suggestion

of related tags that do not appear together in the folksonomy annotations; in inverse

direction, other relevant aspect that emerges from the folksonomized approach is the

possibility of verifying a relation that does not exist in ontology, but is strong in the

folksonomy. This information can be used to evolve and improve ontologies.

3.6 Conclusion

This paper contributed in three important issues concerning FOs, firstly presented in [3].

It introduces a formal framework to support a formal presentation of models addressing

folksonomies, ontologies, social ontologies and their relationship. This framework sub-

stantiated a characterization and comparison of related work, including the FO. As far

as we know, this is the first initiative to produce such a framework and to compare the

models adopted by the related work from a formal perspective.

We also presented in a formal perspective the advantages of using the folksonomized

ontologies compared to related work, due to its hybrid approach fusing folksonomies and

ontologies. It is a symbiotic combination, taking advantage of both semantic organiza-

tions. Ontologies provide a formal semantic basis, which is contextualized by folksonomic

data, improving operations over tags based on ontologies. Conversely, the folksonomized

ontologies can also be used as tools to analyze the ontology quality and to help the pro-

cess of ontology evolution, showing the discrepancies between the emergent knowledge of

a community and the formal representation of this knowledge in the ontology.

We have implemented a practical experiment with 1,049,422 extracted from Delicious.

Our prototype can build a FO, restricted to generalization relationships. Future work

include: (i) to expand the folksonomized model to include other relations (besides the

generalization); (ii) to run tests in specialized contexts applying domain ontologies; (iii)

to improve our tool for ontology evaluation and review.





Chapter 4

Folksonomized Ontologies and the

3E Steps Technique to Suport

Ontology Evolvement

4.1 Introduction

An ontology, as a shared conceptualization, expresses a consensus among people, conduct-

ing to a consensus among machines. There are several strategies to look for a consensus,

e.g., a selected group of representatives and/or specialists designs an ontology incorporat-

ing a consensual perspective of a given domain [41]; tools extract latent semantics from a

body of digital artifacts produced by many people (a statistical consensus), automatically

deriving it to an ontology [25]. In the second case, a promissory source of latent seman-

tics comes from social tagging mechanisms offered by a great number of web systems for

content storage, indexation and sharing. It is based on the free-form tags that the users

can associate to each resource, without the need of a central vocabulary. In this context,

the photo sharing system Flickr has more than 5 billion images hosted and there are more

than 180 million URL addresses on Delicious. Beyond a collection of tags produced by

individuals, systems promote interactions among people, resources and their tags – e.g.,

frequency-based tag suggestion, recommendation of related tags. The term folksonomy

– combining the words “folk” and “taxonomy” [43] – has been used to characterize the

product which emerges from this tagging in a social environment.

Gruber’s classical definition of ontology as “an explicit specification of a conceptualiza-

tion” [14] synthesizes its key aspect as an intentionally systematized – or engineered [27] –

specification. According to Shirky [34], tag-based approaches differ from ontologies since

tags organization derives from an organic work. It is a shift from a binary categorization

approach – in which a concept A “is” or “is not” part of a category B – to a probabilistic

41
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approach – in which a percentage of people relates A to B. Gruber [15], on the other

hand, claims that folksonomies and ontologies should not be seen as opposite but rather

as complementary, and he proposes a TagOntology – a common ontology for tagging.

As we will present in this chapter, we share Gruber’s view of complementary roles.

A folksonomy can represent a perspective of a wider group, but the semantics extracted

from the implicit relations among tags are rather simple. An ontology is usually built by

a more restrict group, but has the richness of an engineered product. There are initiatives

towards exploring the interplay between folksonomies and ontologies. However, one com-

mon problem concerns their unidirectionality, i.e., in one direction there are proposals to

use ontologies to improve tags’ semantics, in the other direction there are proposals to

extract the implicit/potential semantics of folksonomies in order to produce ontologies.

Differently from traditional techniques, we proposed a fusion approach, called folk-

sonomized ontology (FO), which goes beyond this unidirectional perspective [3]. In one

direction, the ontologies are “folksonomized”, i.e., the latent semantics from the folkso-

nomic tissue is extracted and fused to ontologies. In the other direction, the knowledge

systematically organized and formalized in ontologies gives structure to the folksonomic

semantics, enhancing operations involving tags, e.g., content indexation and discovery.

The folksonomic data fused to an ontology will tune it up to contextualize inferences over

the repository.

Beyond the advantages of FOs we have shown in previous papers [3, 5] – concerning

enhanced tag disambiguation, tag suggestion and semantic similarity – they can be used

to support the review and enhancement of ontologies. The social semantics – produced

by a wide group of persons in their concrete needs of classification –, offers relevant

information for the restrict group of specialists, which can use them to enhance and update

their ontologies. In this sense, while a FO embeds the relations among ontologies and

folksonomies, it can make explicit concepts and relations extracted from the folksonomies,

which are not present or contrast with a given ontology.

This chapter focus on a technique we propose to support ontology review and en-

hancement, which we call 3E Steps: Extraction, Enrichment and Evolution. It is founded

on our work concerning the folksonomized ontology [3] and its abstract framework [5],

which constitute the two first steps of the technique. In order to validate our proposal, we

developed a tool to extract folksonomic data from Flickr and Delicious and to integrate

them into the WordNet ontology [28]. The data is further used in a visual tool – first

presented in this chapter – that supports ontology review and enhancement.

In our point of view, our 3E Steps technique opens an interesting field of applying la-

tent semantics, socially produced by wide communities, to improve engineered ontologies.

Related work addressing ontologies and folksonomies does not explore the full potential of

this interaction, since they do not retain the richness of the semantics from both sources.
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This chapter is organized as follows. In Section 4.2, we discuss the basis of our work.

In Section 4.3, we present our 3E Steps technique. In Section 4.4, we describe the tool

developed. In Section 4.5, we present the related work. In the Section 4.6, we conclude

and discuss the future work.

4.2 Ontologies, Folksonomies and Similarity

4.2.1 Ontologies and Semantic Similarity

Due to the wide spectrum of possible interpretations to the term ontology [44], we start

this section by presenting an abstract model that represents our perspective to an ontology

in this work. It is a simplified graph-based model of an ontology, which is the underlying

model adopted by most of the related work, as we detail in [5].

An ontology is represented as a tuple (GO, RT, FRT ), where GO = 〈C,ER〉 is a directed

graph with vertex set C formed by concepts and arc set ER representing relations between

concepts. RT is a set of relation types between concepts. FRT is a function FRT : ER →
RT , which associates a type with each relation (arc). See more details of this model and

its relationship with other models – e.g., folksonomies and social ontologies – in [5].

One way to explore the semantics – formalized in ontologies and potential in folk-

sonomies – involves matching and similarity. There are many applications, such as, on-

tology engineering, information integration and web query answering where matching

operations play a central role [13]. When tags are compared, matching operations can be

organized in two main broad categories: lexical/syntactic and semantic. Lexical/syntac-

tic approaches are mainly based on the proximity of spelling words and their derivations

(e.g., conjugations). One example of this category is the edit distance, as the popular

approach proposed by Levenshtein [21].

To go beyond the spelling, semantic approaches relate words to a respective semantic

representation – a concept. The matching is evaluated by analyzing semantic relationships

among concepts, e.g., equivalence, generalization, specialization etc. This approach can

lead to better search results or expand the opportunity for discovery, by finding and

ranking similar or related results. It can also subsidize better recommendation systems

for tag definition. In this context, ontologies are increasingly being adopted to formalize

the semantics of concepts and their relationships.

A challenge in semantic matching is how to weight the relevance of relationships when

similarities are confronted. Consider a practical example of a program looking for the

concepts similar to judge. The output would be a set of concepts ranked by their similarity

to the input concept – judge. Two possible similar concepts in the output are district

attorney and child.
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In order to put this comparison in a context, let us consider the abstract model pre-

sented in the beginning of this section. A comparison supported by this kind of ontology

considers that the compared terms are connected by a path. Figure 4.1 illustrates the

three previous concepts as they appear in the WordNet ontology, an ontology that meets

our abstract model. In the figure, circles represent concepts (C in the abstract model)

and arcs represent subsumption relations (ER in the abstract model, associated to the

is-a RT by the FRT function) – lower concepts specialize upper ones.

As can be seen in the figure, in the same way as a judge, a district attorney is an

official functionary. A child is a person, just like judge. To rank them by similarity it

is necessary to define which concept is more similar to the concept judge.

Figure 4.1: Subsumption ontology showing the relationships among compared concepts.

Many approaches to calculate semantic similarity based on ontologies were developed

and we will further present some relevant techniques.

Path-based

A naive method to evaluate the semantic similarity between two nodes in an ontology is

by measuring the shortest path separating them. This is equivalent to the distance metric

in a is-a (subsumption) semantic net, defined by Rada et al. [30]: distance(c1, c2) is the

minimum number of edges between c1 and c2. The similarity then calculated as:

simrada = [1 + distance(c1, c2)]
−1 (4.1)

As showed in [31], this approach is highly influenced by the level of detail applied to

describe branches of the ontology, i.e., branches better detailed can contain longer paths

than other, in spite of the similarity distance, leading to biased evaluations. For example,
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the comparison between judge and child (3 edges) – illustrated in Figure 4.1 – results

in the same similarity of district attorney compared to judge (3 edges). One way

to overcome this limitation is by weighting the edges, leading to the problem of how to

determine the weights. According to Jiang and Conrath [17] there are ontology aspects,

such as depth of nodes and type of links, which can be used to define these weights.

Depth-relative

One way to enhance the path-based comparisons is by analyzing the most specialized

common ancestor shared by two nodes in the ontology. It is founded on specific kinds of

taxonomic ontologies based on subsumption relationships among terms, as the example of

Figure 4.1. Observations showed that siblings sharing an ancestor deep in a hierarchy are

more closely related than those sharing an ancestor higher in the hierarchy [38]. Therefore,

Wu and Palmers [45] propose the following metric:

simwp(c1, c2) =
2×N3

N1 + N2 + 2×N3

(4.2)

In which c3 is the least (most specialized) common ancestor of both c1 and c2, N1 is the

number of nodes on the path from c1 to c3, N2 the number of nodes between c2 and c3,

and N3 the number of nodes between c3 and the ontology root.

To improve the depth-relative metrics, Shickel and Faltings [33] proposed the OSS

metric, based on an A-Priori Score APS computation of all concepts in an ontology.

Then, a distance metric is defined from two coefficients (generalization and specialization)

calculated from the APS value.

Content-based

Besides the ontology topology, there are approaches showing that comparisons can be

improved by analyzing also the content of the ontology concepts. The content drives the

weighting of concepts, which in turn supports similarity algorithms. Resnik proposed an

approach based on information content [31] applied to subsumption ontologies. Assuming

that each concept in this kind of ontology is a class representing a set of instances, the

probability of a given instance to belong to a more specific class – e.g., child – is lower

than the probability to belong to a more general one – e.g., person. While the probability

decreases, the information about more specific classes increases – a necessary consequence

of their specialization. Information Content (IC) is a measure created to evaluate this

increase of information about something. Let the probability of a given concept c be

p(c), then the IC of c is -log p(c) [32].

In order to illustrate Resnik’s IC-based approach to evaluate the similarity among

terms, let us return to the example involving the similarity ranking among judge and two
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other concepts: district attorney and child. The first step is to find the most special-

ized concept shared by judge and district attorney, which is official functionary,

as by judge and child, which is person. Intuitively, we can infer that the probability

of an instance to belong to official functionary is smaller than the probability of an

instance to belong to people; conversely the IC is higher. In this type of ontology, when

two concepts derive from the same generalization they share its characteristics, therefore,

judge is more similar to district attorney than to child, since the former has higher

IC. Therefore, the Resnik [31] similarity metric was defined as follows:

simres(c1, c2) = max
c∈S(c1,c2)

[− log p(c)] (4.3)

In which the set S contains all concepts that subsume both c1 and c2. Experiments [31]

demonstrated that this approach produces better results than the counting edges ap-

proach and is not influenced by unbalances in ontology detailing. There are many other

approaches exploring probabilities to improve similarity evaluation such as Lin [23] and

Jiang and Conrath [17].

All of these probability-based approaches lead to an extra challenge, which is addressed

in this work: how to evaluate the probability of each concept of an ontology. Resnik’s

strategy is based on counting words extracted from a corpus of documents.

4.2.2 Folksonomies

In folksonomy-based systems, users can attach a set of tags to resources. These tags are

not tied to any centralized vocabulary, so the users are free to create and combine tags.

Some strengths of folksonomies are their easiness of use and the fact that they reflect the

vocabulary of their users [26]. In a first glimpse, tagging can transmit the wrong idea

of a poor classification system. However, thanks to its simplicity, users are producing

millions of correlated tags. It is a shift from classical approaches – in which a restricted

group of people formalize a set of concepts and relations – into a social approach – in

which the concepts and their relations emerge from collective tagging [34]. In order to

perform a systematic folksonomy analysis, to subsidize the extraction of its potential

semantics, researchers are proposing models to represent its key aspects. Gruber [15]

models a folksonomy departing from its basic “tagging” element, defined as the following

relation:

Tagging(object, tag, tagger, source) (4.4)

In which object is the described resource, tag is the tag itself – a string containing a word

or combined words –, tagger is the tag’s author, and source is the folksonomy system,

which allows to record the tag provenance (e.g., Delicious, Flickr etc.).
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Table 4.1: Symbols for types and values in FOs.
Symbol Description Abstract Model

# Weight of the relation derived from the total of co-
occurrences between tags.

F1

@ Type of the relation. F2

∗ Frequency of the node, or one of its derivatives: prob-
ability or information content (IC).

F3

4.3 3E Steps Technique

In this section, we describe our 3E Steps technique – Extraction, Enrichment and Evo-

lution – to review and enhance ontologies, as well as, its relation with our approach to

fuse an ontology and a folksonomy, the folksonomized ontology (FO). The FO concept and

model as well as the two first steps of the technique – Extraction and Enrichment – are

based on works previously described in [3, 5]. Since they are essential parts of 3E Steps

technique, they are summarized here.

4.3.1 Folksonomized Ontology

We define a folksonomized ontology as an ontology aligned with terms of a folksonomy and

enriched with their contextual data. By contextual data we mean data which emerges from

a statistical analysis of a folksonomy, e.g. tag frequency, co-occurrence and information

content. The ontology to be folksonomized can be of any kind, which meets the abstract

model presented in the beginning of Section 4.2.1. The choice of the domain covered by

the ontology and the folksonomy have direct impacts in the results. The results will be

as good as the overlap between their domains.

In one direction, the FO, which is aligned with tags, drives richer semantic-based

matching, categorization and tag suggestion. In the other direction, contextual data is

used to review and improve the ontology. Figure 4.2 schematizes the roles played by an

ontology and a folksonomy in a folksonomized ontology building. The symbols in the

figure are described in Table 4.1, whose column Abstract Model will be further explained.

Following Figure 4.2, the ontology was previously engineered to formalize concepts

and typed relationships, e.g., is-a, same-as, part-of. Concepts and relationships in folk-

sonomies, on the other hand, are inferred by statistical analysis over tags and their co-

relations. They are not typed, as in ontologies, but carry substantial contextual data,

which subsidizes “weighting” concepts and relationships. The resulting folksonomized

ontology is a new entity that fuses the best of both worlds, having typed and “weighted”

concepts and relationships.
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Figure 4.2: Folksonomized Ontology

In a previous paper, we defined an abstract framework to make explicit the underly-

ing models addressed in related work concerning folksonomies, ontologies and their rela-

tionships. They supported our abstract model for folksonomized ontologies [5]. In this

subsection, we summarize this model, which will be the basis to present our technique

and respective tool.

A FO is defined as a tuple (G,RT,F1,F2,F3), where G = 〈V,E〉 is a directed

graph with vertex set V formed by ontology concepts and arc set E representing re-

lations between these concepts, RT is a set of relation types between concepts, F1 is

a weighting function F1 : E → N where the weight of the relation is derived from the

total of co-occurrences between tags represented by the respective concepts, the func-

tion F2 : E → RT defines the type of the relation as in ontologies and the function

F3 : V → R associates the information content (ic) related to each concept, calculated

by ic(c) = − log p(c), where p(c) is the probability of a given concept c. This ic value

also derives from a statistical analysis of the folksonomy and will substantiate computa-

tions of semantic similarity between the concepts using, for example, Resnik similarity

[31]. Table 4.1 relates the functions presented in this abstract model (last column) to the

symbols of FO diagrams.

In our practical experiments, the F2 function is still limited to subsumption relations.

However, for the sake of generality, we distinguish our design (abstract model) from our

implementation, which is an instance of the abstract model. This distinction predisposes

the design to future expansions of its implementation, which we plan in future develop-
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ments.

Our work expands Resnik proposal in three directions:

(i) proposing a strategy for calculating probabilities and IC of concepts based on tags

employed in social networks to describe content;

(ii) defining multiple context-driven IC for each concept;

(iii) applying IC and co-occurrence data to review and enhance the ontology.

In the following sections, we will describe our technique, illustrated in Figure 4.3,

involving three steps: Extraction – the folksonomy data are mined in order to collect the

metadata used in the next step; Enrichment – the latent semantics from the folksonomic

tissue is extracted and fused with ontologies, and it comprises the map and fuse phases;

and Evolution – the ontology managers could analyze the FO data and visualize the cases

in which the collaborative knowledge indicates that the ontology needs to be reviewed

and/or enhanced. The first two steps (gray boxes) are divided in phases illustrated inside

the gray boxes.

Figure 4.3: 3E Steps Technique

At the end of each phase in the figure, there is a storage symbol representing the

intermediate data produced by the respective phase. Inside each storage, there is a graph

diagram synthesizing the main elements captured by the respective phase. They will be

further detailed in the description of each phase.
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4.3.2 Extraction

This step is organized in two phases: collect and pre-process/aggregate. The collect phase

involves accessing external systems in order to retrieve tag data from primary sources.

The pre-process/aggregate phase cleans the data and aggregates tags according to their

meaning in tagsets.

Web-based content portals offer web service interfaces to access their data (APIs).

Due to the heterogeneity in the APIs, the tag data collecting module was designed to

be customizable and it was tested in Delicious and Flickr systems. It access these web

services to select and retrieve tags and their metadata, which are stored in a database.

In order to better obtain the emergent properties of the semantics extracted from

folksonomies, this module was designed to afford large datasets. They are stored as triples

of resources, users and tags, including their relations. Statistical data were computed and

stored during data collection, avoiding extra post-processing work. These data – co-

occurrence between tags and frequency (used to calculate probability and information

content) – feeds subsequent phases that compute the values addressed by the functions

F1 and F3 of a FO, previously in the formal model. The updating process is incremental,

i.e., it collects and stores just the differences of a previous execution.

The output of the collect phase stored in the database is a collection of tags – rep-

resented as vertexes of a graph in Figure 4.3 –, their relations – represented as edges –,

the frequency of each tag and co-occurrence between tags. The meaning of each symbol

– “#”, “∗” and “@” – is described in Table 4.1. Data concerning users and resources are

stored as well.

In the pre-processing phase, unusual tags were eliminated to improve the quality of

the tag set. We classify as unusual those tags with low number of occurrences, i.e., ≤ a

constant LO. The value of LO varies according to the size of the data set and the domain.

In our practical experiments, we achieved the best results with LO = 4. The amount of

unusual tags corresponded to less than 5% of the total. Those tags are, in most of the

cases, wrong spelled tags – e.g., folsonomy – or personal tags – e.g., toread.

After this pre-processing phase, we aggregated tags that refer to the same term. For

instance, the tags tip and tips are tightly connected and represent the same term. The

grouping algorithm is divided in two steps: marks analysis – the algorithm groups tags

differing only by special characters, e.g., “ ”, “-”, “.”, etc –; and morphological analysis –

it groups tags by morphological relatedness.

In order to represent multiple-word tags, users resort to different strategies, e.g.,

concatenating words with or without separating signs. By analyzing the similarity of

tags without the special characters we group tags like search-engine, search engine, and

searchengine. These tags are clearly very close to each other and represent different user

approaches for using multiple-word tags. So, all special characters of tags were removed,
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Figure 4.4: Tagset nodes.

allowing to group tags that became equal without punctuation.

The morphological analysis and grouping go beyond spelling comparisons, considering

morphological variations as singular and plural tags, or tags of different verb tenses. The

algorithm retrieves morphological variations of tags from the WordNet ontology, grouping

them together.

The output of the pre-process/aggregate phase is a collection of tagsets – represented

as vertexes of a graph in Figure 4.3 –, their relations, frequencies and co-occurrences –

represented as edges, asterisks and sharps respectively (see Table 4.1). The gray node

of a tagset represents a set of tags that share the same meaning. Figure 4.4 illustrates a

transition from a graph in which the nodes are tags to a graph in which nodes are tagsets.

As illustrated in the figure, many edges connecting tag nodes of the original graph are

combined in a single edge connecting tagset nodes.

Each tagset represents a folksonomic concept. Tagsets will be the concept units to

be confronted to concepts in the ontology. In the Evolution step, tagsets will play two

important roles in ontology review and enhancement. In an external perspective, each

tagset is an atom, embedding a concept shared by a community. In an internal perspec-

tive, a tagset encapsulates a network of interrelated tags concerning a shared meaning.

Both perspectives are explored in the Evolution step, when confronting the folksonomic

perception with ontologies.

4.3.3 Enrichment

This step is organized in two phases: map and fuse. The map phase involves mapping

tagsets produced in the previous phase to concepts of an ontology. The fuse phase involves

fusing the ontology to the folksonomic data to produce the folksonomized ontology.

The map phase is not a simple task, due to the lack of semantic information related to

the tagsets. The tagsets cannot be directly mapped based on their words, since the same
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word can have multiple meanings in the ontology. In WordNet, for instance, a word can

have multiple senses, called synsets, which are differentiated through identifiers combining

the original word plus two affixes. The first one is a character that describes the synset

type (namely noun, verb, adjective, or adverb) and the second one is a sequential number

to differentiate each meaning. For instance, the synset dog.n.01 represents a noun and it

is one of the synsets for the word dog.

To find out which concept – or which synset in Wordnet – corresponds of each tagset,

we developed a technique that encompasses the relation of concepts (WordNet synsets)

and tag co-occurrences, divided in three steps: (i) tagset key election – a tag of each

tagset is chosen to represent it; (ii) co-occurrence selection – the co-occurrence values

of the tags are selected; (iii) tagset key mapping – finally, each tagset is mapped to an

ontology concept.

Consider a tag t, a tagset key, to be mapped to a synset and a set C containing the tags

having the highest co-occurrence related to t (obtained in the pre-process step). Consider

a group S containing all synset candidates for mapping. Our algorithm evaluates the

distance of each synset s of S compared with t, in the following way: (i) the set C must

have a minimum set of tags already mapped to synsets; this minimum is defined by a

threshold constant minmap; (ii) the similarity of a given s to t is calculated by the sum of

the distances of all c already mapped to s; (iii) since there is no IC data yet, a path-based

similarity algorithm is applied. The synset s with the highest sum is the target of the

mapping.

A tag group will only be processed if a minimum of the elements in the corresponding

co-occurrence list had already been processed and mapped. Since the algorithm always

selects a synset based on tags already mapped, it was necessary to create a starting set

of tags manually mapped, to work as seeds. This initial selection of seeds influences the

coverage of the mapping process; there is a tradeoff between the effort to manually map

tags to concepts and the coverage obtained with the algorithm. See further details of

the mapping algorithm at [3]. To the best of our knowledge, this algorithm has many

innovative characteristics. In order to go beyond individual similarity analysis, it explores

the network of relations among terms. The quality of the association between tagsets and

concepts of an ontology, produced by this phase, will be essential to better analyze the

ontology by confronting it with folksonomic data.

The result of this phase is illustrated in Figure 4.3. The graph of tagsets, their rela-

tions and statistical data, produced in the previous phase, is mapped to the graph of an

ontology. The ontology represented as a graph – following the abstract model defined in

Section 4.2.1 – is presented in the figure, the vertexes represent concepts and the edges

their relations. The meanings of the symbols “@”, “#” and “∗” are defined in Table 4.1.

The product of the map phase is a set of edges (dashed lines) mapping tagsets to concepts.
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Each of these edges stores the degree of similarity between the tagset and the concept, to

be further used in the ontology analysis.

The fusion phase combine the data from the previous phase to produce a single unified

Folksonomized Ontology. The resulting graph presented in Figure 4.3 is expanded in

Figure 4.2. It departs from the ontology and enriches it with the statistical data obtained

in the previous phases. Therefore, concepts – which were mapped to tagsets – are enriched

with information content (asterisks) and their relations are enriched with co-occurrence

rates (sharps) – see Table 4.1.

Resuming the formal model presented in Section 4.3.1, the graph G, the RT set and

the function F2 are derived from the preexisting ontology. The functions F1 and F3

represent the enrichment computed from folksonomies.

Besides its value in ontology analysis, we showed in an experimental evaluation [3]

– involving 1,049,422 triples of resources retrieved from Delicious – that the enrichment

provided by FOs can be explored to improve similarity analysis among concepts. The

statistical data associated to the concepts support enhanced comparisons by applying the

Resnik approach [31].

4.3.4 Evolution

During the implementation of the two previous steps we observed that our approach to

relate folksonomies and ontologies produced a rich data set, which can support ontology

review and enhancement:

A popular tagset without a respective concept in the ontology. It can indicate a candi-

date to a new concept to be added in the ontology.

A strong relation between two tagsets that has no correspondent relation between the

respective concepts. It can indicate some important relation not represented in the ontol-

ogy.

Tagsets embed rich information about relations among tags and concepts. A tagset

aggregates many tags around a meaning. Its internal network of relations and the con-

nections they have with the concepts in the ontology are rich sources for the analysis of

how words are related to the meaning of concepts.

Therefore, the two previous steps were incorporated in our 3E Steps technique, in

which the third step is the evolution of the ontology. This is also an important step,

because it leads to a symbiotic cycle, in which folksonomized ontologies help to tune up

the underlying ontologies which, in turn, will improve the results of the folksonomized

ontology itself.
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4.4 Visual Review/Enhancement Tool

In order to support ontology evolvement, we developed a tool to visually explore the

interplay between the latent semantics of the folksonomy system and a given ontology. It

is important to point out that our tool is built upon the idea of offering more information

to the managers of the ontology. It is designed to explore data and to suggest changes,

but does not apply any automatic modification and does not offer support for ontology

editing.

In this section, we describe the tool we developed to support ontology review and

enhancement. In Subsection 4.4.1, we present the implementation details of the tool. In

Subsection 4.4.2, we summarize its main characteristics. In Subsection 4.4.3, we describe

the process of reviewing and enhancing ontology relations. In Subsection 4.4.4, we present

practical examples of this process. In Subsection 4.4.5, we describe the process of analysis

inside a tagset with examples.

4.4.1 Implementation Aspects

Figure 4.5 presents an architectural diagram of the tool. These are the main modules:

Figure 4.5: Architectural diagram of the review/enhancement tool

Web System Web-based repositories aimed at sharing content, links or metadata – e.g.,

Delicious and Flickr – which use tag-based classification mechanisms.

FO Builder Responsible for collecting folksonomy data from web systems. It imple-

ments the two first steps of the 3E Steps technique (see Figure 4.3). The module

is implemented in python and uses SQLite to manage the database. It is designed

to be extensible, i.e., it allows developers to extend it to work with different kinds
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of web systems. The default implementation works with Flickr and Delicious. The

Delicious extension adopts a third-party library, the DeliciousAPI [29]. The module

retrieves and stores the data in an incremental way, i.e., only the difference from

the previous processing is stored, saving processing resources. The data is further

filtered, cleaned, and homogenized as described in the 3E Steps technique. Finally,

the module maps tagsets to ontology concepts and fuse them to produce a FO.

Review/Enhancement Server The interactive module – responsible for visually pre-

senting the data to the user – is designed to run over the browser. It is organized

in two sub-modules, a server module implemented in python and a client module

implemented in HTML + JavaScript. The server sub-module is responsible for the

following operations: (i) it builds the HTML + JavaScript module from a tem-

plate and dispatches to the client (web browser); (ii) it interacts with the database

retrieving and filtering relevant information for the client.

Visual Review/Enhancement Client This module uses a third-party library,

JavaScript InfoVis Toolkit [9] to provide the interactive visualizations. It is re-

sponsible for visually presenting data to the end-user. This tool is detailed in the

next sub-section.

4.4.2 Visual Review/Enhancement

Figure 4.6 shows a screenshot of the main screen of the Visual Review/Enhancement

Client, illustrated in Figure 4.5. It is organized in two main areas: control panel –

displayed in the bottom side – and an interactive graph area – displayed in the top side.

The control panel can switch among three possible sub-panels: navigation, details and

history.

In Figure 4.6, the Details Panel is selected. In the interactive graph area, a segment

of an FO is displayed, centered in the physical entity node. The tool generates an interac-

tive graphical representation of the segment. In this representation, the user can drag the

nodes, zoom, and pan the visualization. When a node is clicked, the information associ-

ated with it is showed in the Details Panel. The data can be explored in two modalities:

relations and concepts. They are detailed in the next subsections.

4.4.3 Analyzing Relations

The goal of this modality is to analyze the relations among concepts in the ontology

and confront them with relations captured from the folksonomy. Figure 4.7 shows a

typical graph presented for analysis. It derives from our abstract model presented in



56Chapter 4. Folksonomized Ontologies and the 3E Steps Technique to Suport Ontology Evolvement

Figure 4.6: FO Visualization

Subsection 4.3.1. Its elements are described in Table 4.2. There are three parameters

that control the details of the visualization: more nodes, virtual nodes, and edge.

As mentioned before, the Details panel shows the correspondent information of the

selected node. It shows co-occurrence and ic values – representing the functions of the

formal model F1 and F3, respectively.

There are two approaches for navigation: overview or compare. In the overview ap-

proach, the user can freely navigate in the entire FO tree, by using the interactive focus

provided by the hyperbolic tree. In the compare approach, the user will analyze a given

pair of concepts, the path of relations that connects both and the relations with near

concepts. Therefore, the first step for an analysis in this approach is to select that pair

of concepts.

When the user selects the compare approach to navigate, it is possible to manually

assign two concepts of the FO or enter in the assisted mode, in which the tool finds
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Table 4.2: Description of the elements of a graph to visualize and to analyze relations.
Element Description
Graph Visually presents a clip of the graph G of the formal model.
Vertex All vertexes are members of the V set of the formal model.

Rounded black Concept of the originating ontology fused to a correspon-
dent tagset coming from the originating folksonomy. It
contains a value of information content for the vertex, de-
fined in the formal model by the function F3.

Square gray Virtual node – concept of the originating ontology which
has no correspondent tagset in the originating folksonomy.
They are necessary in the FO to maintain its topology. For
example, two concepts A and B coming from the originat-
ing ontology have correspondent tagsets in the originating
folksonomy. The path between A and B in the originating
ontology includes a third concept C in the middle. This
concept has no correspondent tagset in the folksonomy.
Therefore, C is included in the FO to keep the topology,
but it is considered a virtual node.

Rectangular Focus of a given analysis – an analysis can focus on the
comparison of two concepts, which will be presented as
rectangular vertexes.

Rounded big Considering that the FO shows subsumption relations,
when two concepts are the focus of the analysis (rectangu-
lar), for each concept, the tool will show the path to the
most specialized ancestor shared by both. This ancestor
is highlighted as a big rounded node. The analysis of a
common ancestor is fundamental to define the similarity
between two concepts, as described in Section 4.2.

Edge All regular edges are members of the set E of the formal
model.

Thin Regular edge – relation between two concepts of the origi-
nating ontology fused to a correspondent relation between
two tagsets coming from the originating folksonomy. Each
edge has a weight (of the relation) and is typed, defined in
the formal model by the functions F1 and F2 respectively.
As mentioned before, the current implementation of the
tool handles only subsumption relations coming from the
ontology, but it was designed to afford other relations in
future versions.

Thick Strong relation between two tagsets of the originating folk-
sonomy which has no correspondent relation in the orig-
inating ontology. Strong relations in the folksonomy are
those having high co-occurrence value. The thickness of
the edge is proportional to the amount of co-occurrences.
This type of edge can indicate important relations dis-
covered in the originating folksonomy, which can trigger a
review and/or an enhancement of the originating ontology.
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Figure 4.7: Graph to visualize and to analyze relations.

two candidates to review. The basic principle of the assisted mode is to look for relevant

discrepancies among data coming from the ontology and from the folksonomy. The current

version can find two concepts in the FO that have a weak similarity in the originating

ontology, but have a strong connection in the originating folksonomy.

In the assisted mode, the tool runs the following process to automatically two candi-

dates for analysis:

• A set of candidate concepts is selected to be tested. The size of this set can be

configured.

• The tool creates an analysis tree with a branch of the original FO for each selected

candidate. This branch includes all concepts (and the respective relations) that can

be reached departing from the candidate concept, in a given customizable depth.

• The next step involves finding two nodes with low similarity – considering the path

coming from the FO – and high co-occurrence – considering the data extracted from

the folksonomy.

• For each concept in a given branch, the tool tests if its co-occurrence with the

candidate concept is higher than a threshold. If so, the distance of both is tested.

• If the two conditions – higher co-occurrence and long distance (low similarity) – are

satisfied, the pair of concepts is selected to be analyzed in the visual tool.
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4.4.4 Practical Examples of Relations Analysis

In this subsection, we will show practical examples of the tool, illustrating its support for

ontology enhancement and the improvements achieved by the use of FOs.

Figure 4.8 shows a visualization generated by the tool. The pair of concepts to be

analyzed in the visualization is (bible, christian), and the common ancestor – entity –

is highlighted as well. This example shows a scenario in which the tool can be used to

improve the ontology. The concepts bible and christian are separated by a long path and

their common ancestor, entity, is the most general concept – the root – in the ontology.

Any ontology-based approach to compare the terms – see Section 4.2.1 – will return a

low similarity, due to the long path and the generic common ancestor, which has zero of

information content. This was also observed in our practical experiments confronting our

approach to related work.

Figure 4.8: Default Visualization

When the parameter edge is activated, the tool draws a strong edge between bible

and christian, as they have a strong co-occurrence in the originating folksonomy – see

Figure 4.9. This edge does not mean that both nodes should have a direct link, but just

emphasizes that something must be reviewed or improved in the ontology, considering the

observations of the folksonomy.

In this scenario, the ontology managers – facing the task of enhancing the ontology

– can use the tool to find and visualize how and where the ontology could be improved.

If they need more nodes in the visualization, they can use the respective parameter to

increase the number of nodes.

Figure 4.10 shows the resulting visualization when More Nodes and Virtual Nodes

parameters are selected. This parameter highlights the real nodes making the virtual

nodes (see Table 4.2) less visible. The distinction between regular and virtual nodes

makes explicit the contrast between concepts shared by the ontology and the folksonomy,
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Figure 4.9: Visualization with more nodes, virtual nodes, and edge

and concepts of the ontology not present in the folksonomy. This is an useful synthesis

to analyze the popular use of concepts present in the ontology.

Figure 4.10: Visualization with more nodes and virtual nodes

Besides the review/enhancement process, the visualization tool can be used to inspect

the improvements of the FOs, when confronted with traditional ontologies. In Figure

4.11, the tool is focusing on the pair of nodes (graphics, inspiration). This pair has a high

relation in the folksonomy, but they are separated by a great distance in the ontology.

Our practical experiments showed that when statistical data – information content and
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co-occurrences – embedded in the FOs are explored in the similarity algorithm, they

achieve better results than ontologies alone. This case shows that the FO is an entity

that can support improvements in the operations over its data, because it can use more

than one source of semantics – folksonomies and ontologies.

Figure 4.11: Visualization: Improvement of FOs

The following example shows another improvement of the FO in the opposite direction.

In Figure 4.12, the tool is focusing on the pair of nodes (war, conflict). Conflict is a

concept coming from the originating ontology, which has no corresponding tagset in the

folksonomy. Conflict is a virtual node, inserted to keep the topology of the ontology.

Conflict is a virtual node, and in the traditional folksonomies it would not be considered.

Since the FO considers virtual nodes in the comparison algorithm, even if they do not

appear in the folksonomy, it will achieve better results in this kind of scenarios when

compared with traditional folksonomies.

4.4.5 Inside Concepts

As mentioned in Subsection 4.4.2, the second approach to review/enhance ontologies

allows the user to inspect inside a tagset and its relation with other tags in the folksonomy.

As described in Section 4.3.1, in order to relate tags to concepts of an ontology, the

tag is not evaluated alone. There is a network of relations among a tag and other tags,

which have high co-occurrence with it. This network is essential to provide a context to

the tag. It is the basis to relate a tagset to a given concept.
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Figure 4.12: Visualization: Improvement of virtual nodes

A graphical presentation of a tag and its co-occurrences is therefore a rich source of

information. Figure 4.13 shows that presentation. Table 4.3 describes the elements of the

figure.

The intensity evaluation of relations among tags considers also transitive relations

among tags.

4.5 Related Work

Our work has some common aspects with the related work presented here. We process

sets of tags to create clusters of high-related tags and we use knowledge bases to map

those clusters to ontologies as well. The main limitation observed in related work concerns

their unidirectionality. Proposals to automatically build ontologies from scratch, based

on data coming from texts or folksonomies produce rather simple structures and do not

explore the richness of preexisting engineered ontologies. Proposals which explore the

interplay between folksonomies and ontologies are limited to map tags or sets of tags to

ontologies. Nevertheless, they do not enrich the ontology itself with the statistical data

extracted from folksonomies.

Beyond this unidirectional enrichment, we proposed a fusion approach. The result

is the Folksonomized Ontology, which combines semantics from both contexts. These

characteristics are also the differential of our 3E Steps technique, which explores the

information derived of this function to support ontology evolvement.

Many approaches to automatically or semi-automatically develop ontologies were pro-

posed. Some of them aim at discovering relations and building ontologies from a given

corpus of texts [25, 24]. Alternative approaches adopt folksonomic data [42, 35], instead
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Figure 4.13: Diagram to diagram to inspect a tagset

of texts. In either case, the ontologies are built from scratch. These approaches con-

trast of our proposal, which does not build new ontologies, but departs from existing

ones and takes advantage of their structure to build a new entity, which is an enriched

(folksonomized) ontology.

Damme et al. [42] employ folksonomic data and lexical/sematic resources, like Leo

Dictionary, Wordnet, Google and Wikipedia, to build and to maintain ontologies. They

aggregate sets of tags, mapping them to ontology concepts. The relations of those on-

tologies are mapped back to the folksonomy, in order to produce a social ontology. One

important aspect of their proposal is the mechanism to validate the ontology, in which the

community that produced the folksonomy validates the results by accepting or discarding

the proposed concepts.

They employ stemming algorithms to clean the folksonomic data, specially plural

nouns and conjugated verbs. This operation occurs in the pre-process phase of the ex-

traction step – as in 3E Steps – aiming to improve the quality of the data, grouping the

tags that have strong relations.

Specia et al. [35] proposed a technique to map clusters of tags to ontology concepts,
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Table 4.3: Description of the elements of the diagram to inspect a tagset.
Element Description
Label Tag of a folksonomy. The figure always shows more than ten

tags. One of the tags is the focus of the analysis, nine tags
are those which have more co-occurrences with it, and the
remaining tags are the ones obtained transitively from the
nine others.

Highlighted label The highlighted label (the largest thickness in the graphic –
spellcheck in the example) is the tag which is the focus on the
analysis. In the example, is the spellcheck tag. It is also the
key tag of a given tagset (see Section 4.3.1).

Line connecting labels Co-occurrence relation between two labels.
Label thickness The thickness is the space occupied by the label in the circle.

It defines the intensity of the relation of a given tag with the
focus of the analysis, i.e., the number o co-occurrence with
these two tags.

making explicit the semantics of the tag space. They depart from a set of tags, creating

clusters of high-related tags, using co-occurrence information. The relations between these

clusters are aligned with external resources like Wikipedia, Google and ontology bases to

produce an ontology. Those resources were used to improve the folksonomic data, mainly

making explicit the semantics of the tags.

In the step of pre-processing, they group morphologically similar tags using Leven-

shtein similarity metric [21]. As the authors point out, this technique could find minor

variations (cat and cats, and san francisco, sanfrancisco and san.francisco are the exam-

ples given by them). But it is important to mention that the use of this technique could

led to undesired results. For example, the distance between the pair of words range and

orange is the same as the distance between the pair orange and oranges. While the latter

have much semantic relatedness, the former does not. For this reason, we used stemming

algorithms to group tags.

Angeletou [7] proposed a tool, called FLOR, to perform semantic enrichment on folk-

sonomic data. The first enrichment step is connecting tags to semantic entities and then

connecting those entities directly to resources managed by the system. Connecting tags

to semantic entities is divided into three sub-steps: (i) lexical processing, in which the de-

cision of which tags are meaningful is made; and the normalization step, selecting lexical

representations for each tag; (ii) semantic expansion, in which the tags are processed in

order to disambiguate their meanings, using WordNet; (iii) semantic enrichment, where

the tags are finally mapped to ontology concepts – ontologies that were found by querying

web repositories.
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Our approach to map ontology concepts and tags are very close to this tool. For

example, both approaches organize the tags into tagsets, i.e., sets of tags with strong

relations. Both approaches use WordNet to extract the latent semantics of the folksonomic

data. But, differently of our approach, the FLOR tool aim to annotate resources annotated

by tags with semantic entities. We focused on mapping folksonomic data on concepts of

a single ontology, enriching it in the process.

Cattuto et al. [11] calculated several measures of tag relatedness, based in their co-

occurences, mapping them to WordNet synsets (sets of synonyms). They do not group

related tags; each individual tag of the folksonomy is associated with a concept in the

WordNet ontology. Synsets are sets of synonyms that play an equivalent role of concepts

in ontologies. The similarity of the related synsets are then transferred to the respective

tags. The step Enrichment of our approach have similar objectives, but are not based

only in the co-ocurrences of the tags, but in the topology of the target ontology and the

relations between its concepts as well.

Cantador et al. [10] proposed a mechanism to filter and classify tags, producing a

graph of clusters. Then, they mapped these clusters to knowledge bases, like WordNet

and Wikipedia, aiming to discover the corresponding semantic entities. Different from

previous approaches, in order to map clusters to ontologies, they predefine a set of possible

categories and relation types among tag sets, using direct association or natural language

processing heuristics.

They build categories and them classify tags into them. Our approach, on the other

hand, does not classify tags in predefined categories, but map them to ontologies concepts.

In this way, we can build more malleable entities, apt to easy expansion, in order to

accommodate new tags and relations.

Like many of the related work, Tesconi et al. [40] used external resources, namely

Wikipedia, and ontologies like WordNet and YAGO [37]. Their objective was disam-

biguate tags, “semantifying” them. They developed an algorithm to disambiguate tags,

grouping them by sense. Its tagsets are finally linked to Wikipedia categories and ontology

concepts, producing social ontologies.

Therefore, they cannot take into account tags that does not have a direct map to an

external resource – e.g., Wikipedia concept. As folksonomies allow users to create tags

as they wish, it is likely that new terms would emerge. In our approach, tags without

direct map to ontology concepts would still be considered because they could be grouped

to ones that are mapped.

Bang et al. [8] proposed the concept of “structurable tags”, in which tags can be

linked through relations, allowing basic inference operations. They expanded the folkso-

nomic model, allowing users to create two types of relations between tags: inclusion and

synonymy. These types of relations support the transformation of folksonomic data into
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semantically richer models. Due to the synonymy relation, the system can group tags

with the same meaning. On the other hand, the inclusion relation led to an hierarchical

organization, as a simplified ontology.

In the 3E Steps, the users are not forced to change their natural use of folksonomies.

The extra effort of creating relations between the tags is responsibility of the system, in

an automated way.

Heymann et al. [16] proposed an algorithm to build a graph departing from folksonomic

data. It first aggregates tags in tag vectors, in which the vtl [om] corresponds to the number

of times that the tag tl annotates the object om. In the resulting unweighted graph, the

vertexes will be the tags, and there will be an edge for each pair of tags whose relatedness

is above a threshold. The resulting graph, without weights and maintaining just the

relevant edges, contains a “latent hierarchical taxonomy”. It is captured by an algorithm

that builds a subsumption hierarchy, derived from the centrality of each node in the graph.

As ontologies become bigger and more complex, the process of evolving them requires

an increasing effort. As pointed out by Ding et al. [12], almost all techniques to evolve

ontologies require manual intervention. According to Stumme et al. [36], even though

the ontology evolving process requires human experts, in order to address the increasing

complexity of modern and large ontologies, tools to support the evolving process are

necessary. This observation motivated our work to propose a technique and a related tool

to support ontology evolvement.

4.6 Conclusion

This chapter presented our 3E Steps technique to review and enhance ontologies and our

approach to build and use a folksonomized ontology (FO) in this context. A FO is a hybrid

entity fusing folksonomies and ontologies. It is a symbiotic combination, taking advantage

of both semantic organizations. Ontologies provide a formal semantic basis, which is

contextualized by folksonomic data, improving operations over tags based on ontologies.

Conversely, the FOs were used as tools to analyze the ontology and to support the process

of ontology evolvement, showing the discrepancies between the emergent knowledge of a

community and the formal representation of this knowledge in the ontology.

In this chapter, we described the 3E Steps : Extraction, Enrichment, and Evolution.

Extraction is the step where the semantic information is collected from the folksonomies

and processed. In the Enrichment step, we combine the two entities, building a third

one, with the best of both worlds. Finally, Evolution is the step where the folksonomized

ontology is used to support the review and enhancement in the original ontology, closing

the circle. A review and enhancement tool was presented in this chapter.

In our point of view, the work presented here opens an interesting field of applying la-



4.6. Conclusion 67

tent semantics, socially produced by wide communities, to improve engineered ontologies.

Related work addressing ontologies and folksonomies does not explore the full potential of

this interaction, due to their unidirectionality. Our fusion approach explores the symbiotic

complementarity of ontologies and folksonomies.

Future work include: (i) to expand the folksonomized model to include other relations

(besides the generalization); (ii) to run tests in specialized contexts applying domain

ontologies; (iii) to expand our tool that allows the visualization of the individual tags

inside a cluster, improving the observation of the interrelation between the tags.

We consider the technique and the respective tool presented in this chapter a first

step that opens a perspective to review and enhance ontologies. We oversee many other

relevant information that we can obtain from folksonomies, which can be computed,

fused to ontologies and displayed in our tool. Nevertheless, there is still a wide range of

possibilities to visually explore the available data.





Chapter 5

Conclusão

Os sistemas de tagging obtiveram um grande sucesso em aplicações sociais na web devido à

sua facilidade de uso e flexibilidade. Por outro lado, operações de organização, indexação e

busca encontram limitações devido à carência de semântica expĺıcita no corpo de tags das

folksonomias. Diversas iniciativas buscaram usar o conhecimento latente das folksonomias

para construir ontologias sociais, eventualmente utilizando ontologias preexistentes para

dar suporte ao processo.

Diferente dos trabalhos relacionados, propomos aqui uma abordagem de fusão, em

que folksonomias e ontologias são combinadas dando origem a uma terceira entidade que

chamamos de ontologias folksonomizadas.

5.1 Contribuições

O desafio deste trabalho foi demonstrar que é posśıvel a fusão de ontologias e folksonomias,

a fim de se explorar de uma forma mais completa seus papéis complementares em relação

aos trabalhos relacionados. Para atingi-lo, desenvolvemos modelos, algoritmos, técnicas e

protótipos, cada um perfazendo uma contribuição diferente. São elas:

Abordagem de fusão de ontologias e folksonomias: Esta é a contribuição central

deste trabalho e envolveu um modelo de ontologia folksonomizada e uma técnica

para integração de ontologias e folksonomias. Dentro desta contribuição podemos

destacar: o processo para coleta de tags; o algoritmo de mapeamento de tags e

conceitos de ontologias, bem como as estat́ısticas sobre o corpo de tags; a integração

de métricas nas ontologias folksonomizadas, tais como os valores de conteúdo de

informação, expandindo o trabalho de Resnik [31] para o contexto de folksonomias.

Ferramenta para coleta de dados de folksonomias: O protótipo desenvolvido per-

mite a coleta de dados de folksonomias e o seu armazenamento em um banco de
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dados. Os módulos para acesso ao flickr e ao delicious foram desenvolvidos em uma

abordagem extenśıvel, e é posśıvel desenvolver módulos para outras folksonomias e

acoplá-los ao protótipo.

Definição de um framework formal para ontologias sociais: Desenvolvemos neste

trabalho um framework formal abrangendo as ontologias folksonomizadas, além das

abordagens a elas relacionadas. Tal framework subsidiou a análise comparativa

entre as diferentes abordagens dos trabalhos relacionados.

Metodologia e ferramenta de suporte à evolução de ontologias: As ontologias folk-

sonomizadas apresentam a possibilidade de utilizá-las para oferecer suporte para

evolução de ontologias. Assim desenvolvemos uma técnica e um respectivo protótipo

de ferramenta para suporte a revisão e evolução de ontologias [4].

5.2 Extensões

Existem extensões deste trabalho em dois âmbitos: teórico e de implementação. Nesta

seção descrevemos as principais extenções:

Expandir o modelo da ontologia folksonomizada: Atualmente, o modelo da onto-

logia folksonomizada prevê a representação de qualquer tipo de relacionamento.

No protótipo atualmente implementado, porém, foi considerado apenas o relacio-

namento de generalização / especialização como abordagem inicial. Uma posśıvel

extensão do trabalho é a inserção de diferentes tipos de relacionamento e a análise

do impacto delas na aplicação das ontologias folksonomizadas.

Expandir a ferramenta de coleta de dados: A ferramenta de coleta e armazenagem

de dados implementada funciona em módulos e foi projetada para a expansão pela

adição de novos módulos, de modo que possa ser aplicada em outras folksonomias.

A ferramenta atual possui módulos desenvolvidos para acesso ao flickr e delicious [6].

Aplicação em ontologias e folksonomias de domı́nio: Os testes desenvolvidos fo-

ram feitos levando em consideração consultas genéricas, com o objetivo de testar as

vantagens da nossa proposta em ambientes gerais de uso. Uma posśıvel expansão

do trabalho é a aplicação das técnicas e abordagens desenvolvidas em folksonomias

de domı́nio, combinando com o uso de ontologias destes domı́nios espećıficos.

Avaliar os custos e impactos da aplicação: Isto envolve medir as variações em tempo

de consulta, volume de dados armazenados e complexidade de manutenção, com o

objetivo de verificar a viabilidade de uso das ontologias folksonomizadas em ambi-

entes reais.



Apêndice A

Retrieving and Storing Data from

Folksonomies

A.1 Introduction

The popularization of web-based systems offering services for content storage, indexing

and sharing fostered a rapid growth of content available on-line. There are more than 5

billion images hosted on Flickr1 and more than 180 million URL addresses on Delicious2.

These systems increasingly rely on tag-based metadata to organize and index all the

amount of data. The tags are provided by users connected in social networks, who are

free to use any word as tag; there is no central control. The term folksonomy – combining

the words “folk” and “taxonomy” [43] – has been used to characterize the product which

emerges from this tagging in a social environment.

In order to analyze, index and classify their content, web systems compare tags at-

tached to resources. Instead of considering the semantics of each tag in the comparison,

tag-based systems usually rely on string matching approaches. While ontologies are in-

creasingly adopted to enrich tags semantics, one common problem with the proposals to

associate tags to formal ontologies concerns their unidirectionality, i.e., ontologies improve

tags semantics, or the implicit/potential semantics of folksonomies is extracted to produce

ontologies.

Differently from traditional techniques, we proposed a fusion approach, called folk-

sonomized ontology (FO), which goes beyond this unidirectional perspective [3]. In one

direction, the ontologies are “folksonomized”, i.e., the latent semantics from the folkso-

nomic tissue is extracted and fused to ontologies. On the other direction, the knowledge

systematically organized and formalized in ontologies gives structure to the folksonomic

1http://blog.flickr.net/en/2010/09/19/5000000000/ - retrieved on November, 2011
2http://blog.delicious.com/blog/2008/11/delicious-is-5.html - retrieved on November, 2011
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semantics, enhancing operations involving tags, e.g., content indexation and discovery.

The folksonomic data fused to an ontology will tune it up to contextualize inferences over

the repository.

In our fusion approach both ontologies and folksonomies are enriched in the process.

This symbiosis is explored to:

Tag disambiguation: by finding groups of related tags and mapping them to ontology

concepts, the FO can be applied to disambiguate tags and find the ones that are

more related, going beyond statistical analyses by using semantic similarity metrics.

Tag suggestion: the current folksonomy systems consider only co-occurrence informa-

tion to suggest related tags to users; a FO has a richer set of semantic relations

among concepts, supporting suggestion of tags that were not used together before

– folksonomies cannot do that.

Semantic similarity: a FO can support the computation of semantic similarity between

concepts and, by extension, between tags; so, they can expand the usual techniques

that focus only at syntactical similarity and co-occurrence of tags, achieving better

results in discovery operations.

Ontology evolvement: a FO can be used to find missing relations in ontologies; the

high co-occurrence between two groups of tags, and their corresponding concepts,

can indicate a necessary relation in the ontology, if it does not exist yet.

In order to build a practical tool to validate our proposal, we have implemented a

software module to access and collect data from folksonomy-based web systems. We

confronted the model adopted by each system with models proposed in the literature, in

order to propose a generic model to represent and store the collected data.

The goal of this appendix is to detail this work. In Section A.2 we synthesize related

work concerning formal models to represent folksonomies. In Section A.3 we discuss imple-

mentation aspects of our module, which interacts with these systems to collect and store

folksonomic data. In Section A.4 we analyse the approach adopted by folksonomy-based

systems to represent and store their folksonomies, including their Application Program-

ming Interfaces (APIs). The systems that will be analysed here are Delicious [1] and

Flickr [2].

A.2 Formal Model for Folksonomies

In folksonomy-based systems, users can attach a set of tags to resources. These tags

are not tied to any central vocabulary, so the users are free to create and combine tags.
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Some strengths of folksonomies are their easiness of use and the fact that they reflect the

vocabulary of their users [26]. In a first glimpse, tagging can transmit the wrong idea

of a poor classification system. However, thanks to its simplicity, users are producing

millions of correlated tags. It is a shift from classical approaches – in which a restricted

group of people formalize a set of concepts and relations – into a social approach – in

which the concepts and their relations emerge from the collective tagging [34]. In order

to perform a systematic folksonomy analysis, to subsidize the extraction of its potential

semantics, researchers are proposing models to represent its key aspects. Gruber [15]

models a folksonomy departing from its basic “tagging” element, defined as the following

relation:

Tagging(object, tag, tagger, source) (A.1)

In which object is the described resource, tag is the tag itself – a string containing a word

or combined words –, tagger is the tag’s author, and source is the folksonomy system,

which allows to record the tag provenience (e.g., Delicious, Flickr etc.).

In order to formalize a folksonomy Mika [27] departs from a tripartite graph with

hyperedges. There are three disjoint sets representing the vertices:

T = {t1, . . . , tk}, U = {u1, . . . , ul}, R = {r1, . . . , rm} (A.2)

In which the sets T, U and R correspond to tags, users and resources sets respectively.

A folksonomy system is a set of annotations A relating these three sets:

A ⊆ T × U ×R (A.3)

The folksonomy itself is a tripartite hypergraph:

H(T ) = 〈V,E〉 (A.4)

In which V = T ∪ U ∪R, and E = {{t, u, r} | (t, u, r) ∈ A}
The folksonomy analysis can be simplified and directed by reducing this tripartite

hypergraph into three bipartite graphs: TU relating tags to users, UR relating users to

resources and TR relating tags to resources [27]. A graph TT is a relevant extension of this

model for representing relations between tags. It allows to represent the co-occurrence of

tags. The same approach can be applied to the user and resource sets.

A.3 Implementation

In this section we describe the tool we have implemented to retrieve data from Delicious

and Flickr, as well as the database model. The implementation adopted the python
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language3. The data was stored by using the SQLite4 database manager.

The access of Flickr data required the implementation of the code to handle its protocol

and to treat the results of the requests. The module to retrieve the data from Delicious,

on the other hand, adopted a third-party library: DeliciousAPI5.

During the development, we faced an unexpected behavior of the library. The reason

was a change in the structure of Delicious’ pages. This is still a challenge to be faced

in web services research, mainly in public web services: whenever servers change their

interfaces, the clients will break if there is not backwards compatibility. In order to fix

it, we developed a patch to adjust the access, contributing to the community to fix the

error6.

A.3.1 Database Model

As mentioned before, our database model results from a comparative analysis of related

work and models adopted by folksonomy based systems. The logical modeling is depicted

in the Figure A.1. There are three main entities – User, Resource and Tag – follow-

ing the model presented in Section A.2. The Resource entity was specialized to better

characterize its representation in the systems Flickr (Photo) and Delicious (URL). As the

database was designed to simultaneously afford tags of many systems, the Source entity

keeps track of the origin of the tag. This is an important information, since our algorithms

were designed to work with a single folksonomy system each time.

The physical modeling is based on the logical one. However, it includes control tables

and flags to indicate: users already processed, resources already visited, and so on. Some

auxiliary tables – prefixed by count – record the counts of occurrences or co-occurrences

of analyzed items; they will support statistics produced by our system. It is composed of

13 tables, as we further detail:

control: records control data related to the execution of the process, like the timestamps

of the last requisition to the systems. (name TEXT, value TEXT)

count resource: records the count of each resource. (rid INTEGER, sid INTEGER,

count INTEGER)

count rt: records the count of each pair (resource, tag). (rid INTEGER, tid INTEGER,

sid INTEGER, count INTEGER)

count tag: records the count of each tag. (tid INTEGER, sid INTEGER, count INTEGER)

3http://www.python.org/
4http://www.sqlite.org/
5https://github.com/quuxlabs/DeliciousAPI
6https://github.com/quuxlabs/DeliciousAPI/commit/1cea76941797d6807ac8411b0e8437aa92a35aa5
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Figure A.1: Logical modeling of the database

count tt: records the count of each pair of tags. (t1 INTEGER, t2 INTEGER, sid INTEGER,

count INTEGER)

count tu: records the count of each pair (tag, user). (tid INTEGER, uid INTEGER,

sid INTEGER, count INTEGER)

count ur: records the count of each pair (user, resource). (uid INTEGER, rid INTEGER,

sid INTEGER, count INTEGER)

count user: records the count of each user. (uid INTEGER, sid INTEGER, count INTEGER)

resource: records each resource, which has an internal id rid and a reference to the

specific identification in the source system – e.g., a URL for Delicious or a Flickr in-

ternal identifier – in the value field. (rid INTEGER PRIMARY KEY, sid INTEGER,

value TEXT, done NUMERIC)

source: records each source, which has an internal id sid and the specification of the

source (e.g., delicious or flickr) in the value field. (sid INTEGER, value TEXT)
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tag: records each tag, assigning an internal id tid to each one. (tid INTEGER, sid

INTEGER, value TEXT)

tagging: records each tagging triple (resource, tag, user) in a given source. (sid INTEGER,

uid INTEGER, rid INTEGER, tid INTEGER, time TEXT)

user: records each user, assigning for each value (string of the username) an internal id.

(uid INTEGER, sid INTEGER, value TEXT, done NUMERIC)

The complete schema of the database is as follows:

1 CREATE TABLE source (sid INTEGER PRIMARY KEY, value TEXT);

2 CREATE TABLE control (name TEXT, value TEXT);

3 CREATE TABLE user (uid INTEGER PRIMARY KEY, sid INTEGER, value TEXT COLLATE NOCASE,

done NUMERIC, FOREIGN KEY(sid) REFERENCES source(sid), UNIQUE(sid, value));

4 CREATE TABLE tag (tid INTEGER PRIMARY KEY, sid INTEGER, value TEXT COLLATE NOCASE,

FOREIGN KEY(sid) REFERENCES source(sid), UNIQUE(sid, value));

5 CREATE TABLE resource (rid INTEGER PRIMARY KEY, sid INTEGER, value TEXT COLLATE

NOCASE, done NUMERIC, FOREIGN KEY(sid) REFERENCES source(sid), UNIQUE(sid,

value));

6 CREATE TABLE tagging (sid INTEGER, uid INTEGER, rid INTEGER, tid INTEGER, time TEXT,

FOREIGN KEY(sid) REFERENCES source(sid), FOREIGN KEY(uid) REFERENCES user(uid),

FOREIGN KEY(rid) REFERENCES resource(rid), FOREIGN KEY(tid) REFERENCES tag(tid),

UNIQUE(sid, uid, rid, tid));

7 CREATE TABLE ’count_tu’ (tid INTEGER, uid INTEGER, sid INTEGER, count INTEGER,

FOREIGN KEY(tid) REFERENCES tag(tid), FOREIGN KEY(uid) REFERENCES user(uid),

FOREIGN KEY(sid) REFERENCES source(sid), UNIQUE(tid, uid, sid));

8 CREATE TABLE ’count_ur’ (uid INTEGER, rid INTEGER, sid INTEGER, count INTEGER,

FOREIGN KEY(uid) REFERENCES user(uid), FOREIGN KEY(rid) REFERENCES resource(rid),

FOREIGN KEY(sid) REFERENCES source(sid), UNIQUE(uid, rid, sid));

9 CREATE TABLE ’count_rt’ (rid INTEGER, tid INTEGER, sid INTEGER, count INTEGER,

FOREIGN KEY(rid) REFERENCES resource(rid), FOREIGN KEY(tid) REFERENCES tag(tid),

FOREIGN KEY(sid) REFERENCES source(sid), UNIQUE(rid, tid, sid));

10 CREATE TABLE ’count_tt’ (t1 INTEGER, t2 INTEGER, sid INTEGER, count INTEGER, FOREIGN

KEY(t1) REFERENCES tag(tid), FOREIGN KEY(t2) REFERENCES tag(tid), FOREIGN

KEY(sid) REFERENCES source(sid), UNIQUE(t1, t2, sid));

11 CREATE TABLE ’count_tag’ (tid INTEGER, sid INTEGER, count INTEGER, FOREIGN KEY(tid)

REFERENCES tag(tid), FOREIGN KEY(sid) REFERENCES source(sid), UNIQUE(tid, sid));

12 CREATE TABLE ’count_user’ (uid INTEGER, sid INTEGER, count INTEGER, FOREIGN KEY(uid)

REFERENCES user(uid), FOREIGN KEY(sid) REFERENCES source(sid), UNIQUE(uid, sid));

13 CREATE TABLE ’count_resource’ (rid INTEGER, sid INTEGER, count INTEGER, FOREIGN

KEY(rid) REFERENCES resource(rid), FOREIGN KEY(sid) REFERENCES source(sid),

UNIQUE(rid, sid));
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Figure A.2: Class diagram

A.3.2 Tool Model

Figure A.2 presents a UML diagram of the main classes of our tool. The five classes

depicted in the figure are:

Source: represents a specific folksonomy system.

Database: abstracts and centralizes all database operations.

Crawler: abstract class whose instances represent a crawler a its operations.
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DeliciousCrawler: implements the crawler operations for the Delicious context.

FlickrCrawler: implements the crawler operations for the Flickr context.

The Crawler abstract class makes simpler to extend the system, since it standardize

the API to the crawler mechanism. Each new system will require only a new implemen-

tation extending Crawler.

A.3.3 Source Code

In this section we present the source of the tool, according the model presented in the

previous section. Each block contains a class and comments explaining its functionality.

1 import sys # print without \n

2 import urllib # http request and manipulation

3 import sqlite3 # database

4 import time, datetime # time processing

5 from xml.etree.ElementTree import parse # parser xml

6 import deliciousapi # delicious data access

7 import random

8

9 """ Object Source - encapsulates the current folksonomy system

10 """

11 class Source(object):

12 def __init__(self, source = ’all’):

13 if source in [’all’, ’flickr’, ’delicious’]:

14 self.name = source

15 else:

16 self.name = ’all’

17

18 def __str__(self):

19 return self.name

20

21 """ true if the source is delicious

22 """

23 def isDelicious(self):

24 return self.name == ’delicious’

25

26 """ true if the source is flickr

27 """

28 def isFlickr(self):

29 return self.name == ’flickr’

30 """ Object Database - encapsulates the database operations

31 """
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32 class DataBase(object):

33

34 """ constructor - try to create the tables if they don’t exist

35 dbfile - name of the database file

36 """

37 def __init__(self, dbfile = ’folk.sqlite’):

38 self.conn = sqlite3.connect(dbfile)

39 self.conn.text_factory = str

40 self.cursor = self.conn.cursor()

41 self.cursor.execute(’CREATE TABLE IF NOT EXISTS user (uid INTEGER PRIMARY

KEY, sid INTEGER, value TEXT COLLATE NOCASE, done NUMERIC, FOREIGN

KEY(sid) REFERENCES source(sid), UNIQUE(sid, value))’)

42 self.cursor.execute(’CREATE TABLE IF NOT EXISTS tag (tid INTEGER PRIMARY KEY,

sid INTEGER, value TEXT COLLATE NOCASE, FOREIGN KEY(sid) REFERENCES

source(sid), UNIQUE(sid, value))’)

43 self.cursor.execute(’CREATE TABLE IF NOT EXISTS source (sid INTEGER PRIMARY

KEY, value TEXT COLLATE NOCASE)’)

44 self.cursor.execute(’CREATE TABLE IF NOT EXISTS resource (rid INTEGER PRIMARY

KEY, sid INTEGER, value TEXT COLLATE NOCASE, done NUMERIC, FOREIGN

KEY(sid) REFERENCES source(sid), UNIQUE(sid, value))’)

45 self.cursor.execute(’CREATE TABLE IF NOT EXISTS tagging (sid INTEGER, uid

INTEGER, rid INTEGER, tid INTEGER, time TEXT, FOREIGN KEY(sid) REFERENCES

source(sid), FOREIGN KEY(uid) REFERENCES user(uid), FOREIGN KEY(rid)

REFERENCES resource(rid), FOREIGN KEY(tid) REFERENCES tag(tid))’)

46 self.cursor.execute(’CREATE TABLE IF NOT EXISTS control (name TEXT, value

TEXT)’)

47 self.cursor.execute(’CREATE TABLE IF NOT EXISTS count_tag (tid INTEGER, sid

INTEGER, count INTEGER, FOREIGN KEY(tid) REFERENCES tag(tid), FOREIGN

KEY(sid) REFERENCES source(sid))’)

48 self.cursor.execute(’CREATE TABLE IF NOT EXISTS count_user (uid INTEGER, sid

INTEGER, count INTEGER, FOREIGN KEY(uid) REFERENCES user(uid), FOREIGN

KEY(sid) REFERENCES source(sid))’)

49 self.cursor.execute(’CREATE TABLE IF NOT EXISTS count_resource (rid INTEGER,

sid INTEGER, count INTEGER, FOREIGN KEY(rid) REFERENCES resource(rid),

FOREIGN KEY(sid) REFERENCES source(sid))’)

50 self.cursor.execute(’CREATE TABLE IF NOT EXISTS count_tu (tid INTEGER, uid

INTEGER, sid INTEGER, count INTEGER, FOREIGN KEY(tid) REFERENCES

tag(tid), FOREIGN KEY(uid) REFERENCES user(uid), FOREIGN KEY(sid)

REFERENCES source(sid))’)

51 self.cursor.execute(’CREATE TABLE IF NOT EXISTS count_ur (uid INTEGER, rid

INTEGER, sid INTEGER, count INTEGER, FOREIGN KEY(uid) REFERENCES

user(uid), FOREIGN KEY(rid) REFERENCES resource(rid), FOREIGN KEY(sid)

REFERENCES source(sid))’)

52 self.cursor.execute(’CREATE TABLE IF NOT EXISTS count_rt (rid INTEGER, tid

INTEGER, sid INTEGER, count INTEGER, FOREIGN KEY(rid) REFERENCES

resource(rid), FOREIGN KEY(tid) REFERENCES tag(tid), FOREIGN KEY(sid)
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REFERENCES source(sid))’)

53 self.cursor.execute(’CREATE TABLE IF NOT EXISTS count_tt (t1 INTEGER, t2

INTEGER, sid INTEGER, count INTEGER, FOREIGN KEY(t1) REFERENCES tag(tid),

FOREIGN KEY(t2) REFERENCES tag(tid), FOREIGN KEY(sid) REFERENCES

source(sid))’)

54 self.conn.commit()

55

56

57 """ destructor - close the resources

58 """

59 def __del__(self):

60 self.cursor.close()

61 self.conn.close()

62

63

64 """ find the id of the given entity

65 if more than one entity is given, the order [tag; user; resource; source] is

important

66 return the id or ’None’ if failed

67 """

68 def getID(self, sid, tag = None, user = None, resource = None, source = None):

69 res = None

70 try:

71 if tag is not None:

72 self.cursor.execute(’select tid from tag where value = ? and sid =

?’, (tag.lower(), sid,))

73 elif user is not None:

74 self.cursor.execute(’select uid from user where value = ? and sid =

?’, (user.lower(), sid,))

75 elif resource is not None:

76 self.cursor.execute(’select rid from resource where value = ? and sid

= ?’, (resource.lower(), sid,))

77 elif source is not None:

78 self.cursor.execute(’select sid from source where value = ?’,

(source.lower(),))

79 res = self.cursor.fetchone()

80 if res is not None: res = res[0]

81 except:

82 pass

83 return res

84

85

86 """ return the id of the given entity, if it isn’t in the database, insert and

return the id

87 if more than one entity is given, the order [tag; user; resource; source] is

important
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88 return a pair <id, already>:

89 id - the id of the given entity - None if failed

90 already - [boolean] True if the entity was already in the db; False

otherwise - None if failed

91 """

92 def getIDInsert(self, sid, tag = None, user = None, resource = None, source =

None):

93 # try to find the id in database

94 id = self.getID(sid, tag = tag, user = user, resource = resource, source =

source)

95 if id is not None: return id, True

96

97 # if it isn’t, try to insert

98 try:

99 if tag is not None:

100 self.cursor.execute(’insert into tag values(NULL, ?, ?)’, (sid,

tag.lower(),))

101 self.conn.commit()

102 return self.getID(sid, tag = tag), False

103 elif user is not None:

104 self.cursor.execute(’insert into user values(NULL, ?, ?, 0)’, (sid,

user.lower(),))

105 self.conn.commit()

106 return self.getID(sid, user = user), False

107 elif resource is not None:

108 self.cursor.execute(’insert into resource values(NULL, ?, ?, 0)’,

(sid, resource.lower(),))

109 self.conn.commit()

110 return self.getID(sid, resource = resource), False

111 elif source is not None:

112 self.cursor.execute(’insert into source values(NULL, ?)’,

(source.lower(),))

113 self.conn.commit()

114 return self.getID(sid, source = source), False

115 except Exception,e:

116 print ’[!]’, e

117 return None, None

118

119

120 """ execute the given query and return the results of it

121 """

122 def execute(self, query, params):

123 try:

124 self.cursor.execute(query, params)

125 self.conn.commit()

126 return self.cursor.fetchall()
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127 except Exception,e:

128 print ’[!]’, e

129 return None

130

131

132 """ execute the given select query and return the results of it

133 """

134 def select(self, query, params):

135 try:

136 self.cursor.execute(query, params)

137 return self.cursor.fetchall()

138 except Exception,e:

139 print ’[!]’, e

140 return None

141

142 """ execute the given update query

143 if the parameter ’commit’ is False, the commit is delayed

144 """

145 def update(self, query, params, commit = True):

146 try:

147 self.cursor.execute(query, params)

148 if commit: self.conn.commit()

149 except Exception,e:

150 print ’[!]’, e

151

152

153 """ execute the given insert query

154 if the parameter ’commit’ is False, the commit is delayed

155 """

156 def insert(self, query, params, commit = True):

157 try:

158 self.cursor.execute(query, params)

159 if commit: self.conn.commit()

160 except Exception,e:

161 print ’[!]’, e

162

163

164 """ execute the given delete query

165 if the parameter ’commit’ is False, the commit is delayed

166 """

167 def delete(self, query, params, commit = True):

168 try:

169 self.cursor.execute(query, params)

170 if commit: self.conn.commit()

171 except Exception,e:

172 print ’[!]’, e
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173

174 """ execute the commit in the database

175 """

176 def commit(self):

177 self.conn.commit()

178 """ Object Crawler - encapsulates the crawler operations

179 """

180 class Crawler(object):

181

182 """ constructor - sets the database

183 """

184 def __init__(self, db = None):

185 if db is None:

186 self.db = DataBase()

187 else:

188 self.db = db

189

190

191 """ destructor - deletes the database

192 """

193 def __del__(self):

194 del self.db

195

196

197 """ calls the select of the current database

198 """

199 def dbSelect(self, query, params):

200 return self.db.select(query, params)

201

202

203 """ calls the update of the current database

204 """

205 def dbUpdate(self, query, params):

206 self.db.update(query, params)

207

208

209 """ calls the delete of the current database

210 """

211 def dbDelete(self, query, params):

212 self.db.delete(query, params)

213

214

215 """ get the id of the given entity.

216 the optional parameter ’insert’ indicates if is necessary to insert the

entity in the database
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217 """

218 def dbGetId(self, sid, insert = False, tag = None, user = None, resource = None,

source = None):

219 if not insert:

220 return self.db.getID(sid, tag, user, resource, source)

221 else:

222 return self.db.getIDInsert(sid, tag, user, resource, source)

223

224

225 """ insert a ’tagging object’ (a triple user, resource, tag associated with a

source) in the database

226 """

227 def dbInsertTagging(self, sid, uid, rid, tid, time = None):

228

229 # no parameter (except ’time’) can be ’None’

230 if sid is None or uid is None or rid is None or tid is None:

231 print ’invalid values’, sid, uid, rid, tid

232 return

233

234 # transaction [begin] - delay commit until transaction ends

235 # update the counters -

236 # if there’s no entity in db: counter = 1; else counter += 1.

237 r = self.db.select(’select count from count_tag where tid = ? and sid = ?’,

(tid, sid))

238 if r == []: self.db.insert(’insert into count_tag values (?, ?, 1)’, (tid,

sid), commit = False)

239 else: self.db.update(’update count_tag set count = ? where tid = ? and sid =

?’, (int(r[0][0]) + 1, tid, sid), commit = False)

240

241 r = self.db.select(’select count from count_user where uid = ? and sid = ?’,

(uid, sid))

242 if r == []: self.db.insert(’insert into count_user values (?, ?, 1)’, (uid,

sid), commit = False)

243 else: self.db.update(’update count_user set count = ? where uid = ? and sid =

?’, (int(r[0][0]) + 1, uid, sid), commit = False)

244

245 r = self.db.select(’select count from count_resource where rid = ? and sid =

?’, (rid, sid))

246 if r == []: self.db.insert(’insert into count_resource values (?, ?, 1)’,

(rid, sid), commit = False)

247 else: self.db.update(’update count_resource set count = ? where rid = ? and

sid = ?’, (int(r[0][0]) + 1, rid, sid), commit = False)

248

249 r = self.db.select(’select count from count_tu where tid = ? and uid = ? and

sid = ?’, (tid, uid, sid))
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250 if r == []: self.db.insert(’insert into count_tu values (?, ?, ?, 1)’, (tid,

uid, sid), commit = False)

251 else: self.db.update(’update count_tu set count = ? where tid = ? and uid = ?

and sid = ?’, (int(r[0][0]) + 1, tid, uid, sid), commit = False)

252

253 r = self.db.select(’select count from count_ur where uid = ? and rid = ? and

sid = ?’, (uid, rid, sid))

254 if r == []: self.db.insert(’insert into count_ur values (?, ?, ?, 1)’, (uid,

rid, sid), commit = False)

255 else: self.db.update(’update count_ur set count = ? where uid = ? and rid = ?

and sid = ?’, (int(r[0][0]) + 1, uid, rid, sid), commit = False)

256

257 r = self.db.select(’select count from count_rt where rid = ? and tid = ? and

sid = ?’, (rid, tid, sid))

258 if r == []: self.db.insert(’insert into count_rt values (?, ?, ?, 1)’, (rid,

tid, sid), commit = False)

259 else: self.db.update(’update count_rt set count = ? where rid = ? and tid = ?

and sid = ?’, (int(r[0][0]) + 1, rid, tid, sid), commit = False)

260

261 # insert the ’tagging object’

262 self.db.insert(’insert into tagging values(?, ?, ?, ?, ?)’, (sid, uid, rid,

tid, time), commit = False)

263

264 # get all tags in the same post

265 tags = self.db.select(’select distinct tid from tagging where rid = ? and uid

= ? and sid = ?’, (rid, uid, sid))

266

267 for _t in tags:

268 t = _t[0]

269 # convention - id t1 is always less than id t2

270 if tid < t:

271 t1 = tid

272 t2 = t

273 else:

274 t1 = t

275 t2 = tid

276

277 # update the counter of tag - tag relation

278 r = self.db.select(’select count from count_tt where t1 = ? and t2 = ?

and sid = ?’, (t1, t2, sid))

279 if r == []:

280 self.db.insert(’insert into count_tt values (?, ?, ?, 1)’, (t1, t2,

sid), commit = False)

281 else:

282 self.db.update(’update count_tt set count = ? where t1 = ? and t2 = ?

and sid = ?’, (int(r[0][0]) + 1, t1, t2, sid), commit = False)
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283

284 # transaction [end]

285 self.db.commit()

286

287 """ the main method that get the data

288 the parameter ’proctime’ is the minimum amount of time processing. The actual

time may be (and usually is) greater.

289 """

290 def crawl(self, source = Source(), proctime = 10, trace = False):

291

292 # create the crawler object of the given source

293 if source.isDelicious():

294 dc = DeliciousCrawler(self)

295 try: dc.crawl(proctime = proctime, trace = trace)

296 except Exception,e:

297 print e

298 pass

299 elif source.isFlickr():

300 fc = FlickrCrawler(self)

301 try: fc.crawl(proctime = proctime, trace = trace)

302 except Exception,e:

303 print e

304 pass

305 # all sources

306 else:

307 start = time.time()

308 dc = DeliciousCrawler(self)

309 fc = FlickrCrawler(self)

310 td = dc.initCrawlResult()

311 tf = fc.initCrawlResult()

312

313 # run until the timeout

314 while True:

315 try:

316 # minimum processing time

317 t = dc.crawl(proctime = 1, trace = trace)

318 td = dc.sumCrawlResults(td, t)

319 except Exception,e:

320 print e

321 pass

322 try:

323 # minimum processing time

324 t = fc.crawl(proctime = 1, trace = trace)

325 tf = fc.sumCrawlResults(tf, t)

326 except Exception,e:

327 print e
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328 pass

329

330 # verify if the timeout has ben reached

331 end = time.time()

332 delta = end - start

333 if (delta / 60) > proctime: break

334

335 # print the results

336 if trace:

337 print ’$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$’

338 print ’Total time:’, datetime.timedelta(seconds = delta)

339 dc.printCrawlResults(td)

340 fc.printCrawlResults(tf)

341 """ Object DeliciousCrawler - encapsulates the delicious crawler operations

342 """

343 class DeliciousCrawler(object):

344

345 """ constructor - initialize the variables

346 """

347 def __init__(self, contr):

348

349 # api object

350 self.dapi = deliciousapi.DeliciousAPI(user_agent = "folklicious v0.1.5")

351 # controller - the main crawl object

352 self.contr = contr

353 # source id

354 self.sid, ondb = self.contr.dbGetId(None, insert = True, source = ’delicious’)

355 # waiting time for each data category

356 self.waiting = {’hotlist’: 1800, ’user’: 300, ’url’: 30}

357 # max elements in the ’not done’ list

358 self.max_notdone = {’resources’: 200}

359

360 """ the main method that get the data

361 the parameter ’proctime’ is the minimum amount of time processing.

362 the actual time may be (and usually is) greater.

363 """

364 def crawl(self, proctime = 10, trace = False):

365

366 # start the processing

367 start = time.time()

368

369 # verify if more than x seconds have been elapsed since the last

370 # requisition to hotlist - delicious restriction

371 oldtime = self.contr.dbSelect("select value from control where name =

’del.hotlist.timestamp’", ())
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372 old = int(oldtime[0][0])

373 interval = time.time() - old

374 if interval < self.waiting[’hotlist’]: # 30min

375 if trace: print ’wait more’, (self.waiting[’hotlist’] - interval),

’seconds to call populateWithHotList’

376 size_hot = 0

377 else:

378 # populate the hotlist

379 size_hot = self.populateWithHotList(trace)

380 # set the time of the requisition

381 self.contr.dbUpdate(’update control set value = ? where name =

"del.hotlist.timestamp"’, (int(round(time.time())),))

382

383 # initialize the variables

384 waiting = 0

385 size_url = 0

386 size_usr = 0

387 count_pop_user = 0

388

389 # process until timeout

390 while True:

391

392 # ’progress bar’

393 for i in range(10, waiting):

394 sys.stdout.write(’.’)

395 time.sleep(1)

396 if i == waiting - 1: print ’’

397 count_pop_user += 1

398

399 # verify if more than x seconds have been elapsed since the last

400 # requisition to hotlist - delicious restriction

401 oldtime = self.contr.dbSelect("select value from control where name =

’del.url.timestamp’", ())

402 old = int(oldtime[0][0])

403 interval = time.time() - old

404 if interval < self.waiting[’url’]: # 15min

405 if trace: print ’wait more’, (self.waiting[’url’] - interval),

’seconds to call populateWithUrl’

406 waiting += 1

407 else:

408 # populate with url as seed

409 size_url += self.populateWithUrl(1, trace)

410

411 # only populate with user if tried to populate with url 20 times

412 if count_pop_user == 20:

413
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414 # verify if more than x seconds have been elapsed since the last

415 # requisition to hotlist - delicious restriction

416 oldtime = self.contr.dbSelect("select value from control where name =

’del.user.timestamp’", ())

417 old = int(oldtime[0][0])

418 interval = time.time() - old

419 if interval < self.waiting[’user’]: # 15min

420 if trace: print ’wait more’, (self.waiting[’user’] - interval),

’seconds to call populateWithUser’

421 waiting += 1

422 else:

423 # populate with user as seed

424 size_usr += self.populateWithUser(1, trace)

425

426 # reset the counter

427 count_pop_user = 0

428

429 # verify if the minimum processing time has been reached

430 end = time.time()

431 delta = end - start

432 if (delta / 60) > proctime:

433 if trace:

434 print ’del :: time reached’, datetime.timedelta(seconds=delta)

435 print ’del ::’, size_hot, ’new resources from hotlist’

436 print ’del ::’, size_url, ’new tuples’

437 print ’del ::’, size_usr, ’new urls’

438 break

439

440 # return the elapsed time, and the amount of elements

441 return (delta, size_hot, size_url, size_usr)

442

443 """ initialize the results

444 """

445 def initCrawlResult(self):

446 return (0, 0, 0, 0)

447

448 """ sum two sets of results

449 """

450 def sumCrawlResults(self, t1, t2):

451 return (t1[0] + t2[0], t1[1] + t2[1], t1[2] + t2[2], t1[3] + t2[3])

452

453 """ print the results

454 """

455 def printCrawlResults(self ,t):

456 print ’$del :: total time’, datetime.timedelta(seconds=t[0])

457 print ’$del ::’, t[1], ’new resources from hotlist’
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458 print ’$del ::’, t[2], ’new tuples’

459 items = self.contr.dbSelect(’select count(*) from resource where sid = ? and

done = 0’, (self.sid,))

460 print ’$del ::’, t[3], ’new urls,’, items[0][0], ’to be processed’

461

462 """ populate the db using the hotlist

463 """

464 def populateWithHotList(self, trace = False):

465 if trace: print ’del :: populateWithHotList’

466

467 # get the resources not processed yet

468 notdone = self.contr.dbSelect(’select count(*) from resource where sid = ?

and done = 0’, (self.sid,))[0][0]

469 if notdone > self.max_notdone[’resources’]:

470 if trace: print ’There are %d (%d) resources notdone.’ % (notdone,

self.max_notdone[’resources’])

471 return 0

472 # get the URLs in hotlist

473 urls = self.dapi.get_urls()

474 if trace: print len(urls), ’urls retrieved’

475 count = 0

476

477 # for each URL

478 for u in urls:

479 # try to insert in db

480 rid, ondb = self.contr.dbGetId(self.sid, insert = True, resource = u)

481 if not ondb:

482 count += 1

483 if trace: print ’inserted’, u

484 elif trace: print ’already inserted’, u

485 if trace: print count, ’new urls’

486

487 # return the number of new objects stored

488 return count

489

490 """ populate the db using the URL

491 """

492 def populateWithUrl(self, max_urls = 10, trace = False):

493 if trace: print ’del :: populateWithUrl - max_urls:’, max_urls

494

495 # get the resources not processed yet

496 res = self.contr.dbSelect(’select value from resource where done = 0 and sid

= ? limit ?’, (self.sid, max_urls,))

497 total = len(res)

498 if total > max_urls: total = max_urls

499 if trace: print total, ’urls’
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500 curr = 1

501 count = 0

502

503 # process each resource ...

504 for _r in res:

505 # ... until reach the maximum

506 if curr > max_urls: break

507

508 r = _r[0]

509 if trace: print ’resource %03d/%03d’ %(curr, total)

510

511 # get the bookmarks associated with that URL

512 # with ’max_bookmarks=0’ all of them are retorned, but it consumes more

time

513 meta = self.dapi.get_url(r, max_bookmarks=0)

514 # store the requisition time

515 self.contr.dbUpdate(’update control set value = ? where name =

"del.url.timestamp"’, (int(round(time.time())),))

516

517 # process the bookmarks

518 total_bookmarks = len(meta.bookmarks)

519 if trace: print ’resource %s - %d bookmarks’ %(r, total_bookmarks)

520 if total_bookmarks > 0 :

521 curr_bookmarks = 0

522 for b in meta.bookmarks:

523 curr_bookmarks += 1

524 # [user, taglist, comment, time]

525 user = b[0]

526 taglist = b[1]

527 timestamp = b[3]

528

529 # user id

530 uid, ondb = self.contr.dbGetId(self.sid, insert = True, user =

user)

531 # resource id

532 rid, ondb = self.contr.dbGetId(self.sid, insert = True, resource

= r)

533

534 # failed to insert

535 if uid is None or rid is None:

536 break

537

538 for t in taglist:

539 count += 1

540 # tag id
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541 tid, ondb = self.contr.dbGetId(self.sid, insert = True, tag =

t)

542 # insert the tagging object

543 self.contr.dbInsertTagging(self.sid, uid, rid, tid,

str(timestamp))

544 if trace:

545 print ’ids:’, uid, rid, tid

546 print ’inserted’, (user, r[:60], t, str(timestamp))

547 print ’[%03d/%03d resources][%03d/%03d bookmarks][%4d

inserts]’ %(curr, total, curr_bookmarks,

total_bookmarks, count)

548

549 # set the resource as done

550 self.contr.dbUpdate(’update resource set done = 1 where value = ? and

sid = ?’, (r, self.sid,))

551 else:

552 # set the resource as done - no tags

553 self.contr.dbUpdate(’update resource set done = 1 where value = ? and

sid = ?’, (r, self.sid,))

554 if trace: print ’no tags -> done’, r[:75]

555 curr += 1

556

557 # return the number of new objects stored

558 return count

559

560 """ populate the db using the URL

561 """

562 def populateWithUser(self, max_users = 10, trace = False):

563 if trace: print ’del :: populateWithUser - max_users:’, max_users

564

565 # get the resources not processed yet

566 notdone = self.contr.dbSelect(’select count(*) from resource where sid = ?

and done = 0’, (self.sid,))[0][0]

567 # if there are more resources than the maximum, don’t try to populate with

user

568 if notdone > self.max_notdone[’resources’]:

569 if trace: print ’There are %d (%d) resources not done.’ % (notdone,

self.max_notdone[’resources’])

570 return 0

571

572 # get the users not processed yet

573 users = self.contr.dbSelect(’select value from user where done = 0 and sid =

? limit ?’, (self.sid, max_users,))

574 total = len(users)

575 if total > max_users: total = max_users

576 if trace: print total, ’users’
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577 curr = 1

578 count = 0

579

580 # process each user ...

581 for _u in users:

582 # ... until reach the maximum

583 if curr > max_users: break

584

585 u = _u[0]

586 if trace: print ’user %03d/%03d’ %(curr, total)

587

588 try:

589 # get the bookmarks associated with that user

590 meta = self.dapi.get_user(u, max_bookmarks = 10)

591 # store the requisition time

592 self.contr.dbUpdate(’update control set value = ? where name =

"del.user.timestamp"’, (int(round(time.time())),))

593 except:

594 # if there was an error, mark that resource as already processed and

continue to the next one

595 if trace: print ’Delicious error: user’, u, ’marked as done’

596 self.contr.dbUpdate(’update user set done = 1 where value = ? and sid

= ?’, (u, self.sid,))

597 continue

598

599 if len(meta.bookmarks) > 0 :

600 for b in meta.bookmarks:

601 # [url, taglist, title, comment, time]

602 r = b[0]

603 # resource id

604 rid, ondb = self.contr.dbGetId(self.sid, insert = True, resource

= r)

605 if not ondb:

606 count += 1

607 if trace: print ’inserted’, r, ’id:’, rid

608 else:

609 if trace: print ’already inserted’, r, ’id:’, rid

610 if trace: print ’[%03d/%03d] %d inserts’ %(curr, total, count)

611

612 # set the user as done

613 self.contr.dbUpdate(’update user set done = 1 where value = ? and sid =

?’, (u, self.sid))

614 curr += 1

615

616 # return the number of new objects stored

617 return count
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618 """ Object FlickrCrawler - encapsulates the flickr crawler operations

619 """

620 class FlickrCrawler(object):

621

622 """ constructor - initialize the variables

623 """

624 def __init__(self, contr):

625 # controller - the main crawl object

626 self.contr = contr

627 # source id

628 self.sid, ondb = self.contr.dbGetId(None, insert = True, source = ’flickr’)

629 # base URL

630 self.url = ’http://api.flickr.com/services/rest/’

631 # api key - REPLACE WITH YOUR OWN API KEY

632 self.api_key = ’xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’

633 # api methods

634 self.methods = {

635 ’echo’: ’flickr.test.echo’,

636 ’pInfo’: ’flickr.photos.getInfo’,

637 ’pPList’: ’flickr.people.getPublicPhotos’,

638 ’uPList’: ’flickr.contacts.getPublicList’,

639 ’uPPhotos’: ’flickr.photos.getContactsPublicPhotos’,

640 ’pRecent’: ’flickr.photos.getRecent’,

641 ’tHot’: ’flickr.tags.getHotList’,

642 ’tPhoto’: ’flickr.tags.getListPhoto’,

643 ’panda’: ’flickr.panda.getPhotos’,

644 }

645

646 """ the main method that get the data

647 the parameter ’proctime’ is the minimum amount of time processing.

648 the actual time may be (and usually is) greater.

649 """

650 def crawl(self, proctime = 10, trace = False):

651

652 # start the processing

653 start = time.time()

654

655 # initialize the variables

656 size_tag = 0

657 size_res = 0

658 count_pop_res = 0

659

660 # process until timeout

661 while True:

662 count_pop_res += 1
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663

664 # populate the db with tags

665 size_tag += self.populateTags(1, trace = trace)

666

667 # only populate with user if tried to populate with tags 20 times

668 if count_pop_res == 20:

669 size_res += self.populateResources(1, trace = trace)

670 count_pop_user = 0

671

672 # verify if the minimum processing time has been reached

673 end = time.time()

674 delta = end - start

675 if (delta / 60) > proctime:

676 if trace:

677 print ’fli :: time reached’, datetime.timedelta(seconds=delta)

678 print ’fli ::’, size_tag, ’new tuples’

679 print ’fli ::’, size_res, ’new resources’

680 break

681

682 # return the elapsed time, and the amount of elements

683 return (delta, size_tag, size_res)

684

685 """ initialize the results

686 """

687 def initCrawlResult(self):

688 return (0, 0, 0)

689

690 """ sum two sets of results

691 """

692 def sumCrawlResults(self, t1, t2):

693 return (t1[0] + t2[0], t1[1] + t2[1], t1[2] + t2[2])

694

695 """ print the results

696 """

697 def printCrawlResults(self, t):

698 print ’$fli :: total time’, datetime.timedelta(seconds=t[0])

699 print ’$fli ::’, t[1], ’new tuples’

700 items = self.contr.dbSelect(’select count(*) from resource where sid = ? and

done = 0’, (self.sid,))

701 print ’$fli ::’, t[2], ’new resources,’, items[0][0], ’to be processed’

702

703 """ execute a post request

704 """

705 def post(self, params):

706 return urllib.urlopen(self.url, params)

707
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708 """ create the params object

709 """

710 def createParams(self, method, params, trace = False):

711 params[’method’] = method

712 params[’api_key’] = self.api_key

713 if trace: print params

714 return urllib.urlencode(params)

715

716 """ get random photos - this service is called panda in flickr

717 """

718 def getPhotosPanda(self, per_page = None, panda = None):

719 # choose the panda - ’ling ling’, ’hsing hsing’, and ’wang wang’

720 if panda is None: panda = random.randint(1, 3)

721 if panda == 1:

722 lst = {’panda_name’: ’ling ling’}

723 elif panda == 2:

724 lst = {’panda_name’: ’hsing hsing’}

725 else:

726 lst = {’panda_name’: ’wang wang’}

727 if per_page is not None:

728 lst[’per_page’] = per_page

729

730 # return the result

731 return self.post(self.createParams(self.methods[’panda’], lst))

732

733 """ populate the db using resources

734 """

735 def populateResources(self, num_photos, pandaid = None, trace = False):

736 if trace: print ’fli :: populateResources - num_photos:’, num_photos,

’pandaid:’, pandaid

737

738 # the limit is 500 photos

739 if num_photos <= 500:

740

741 # xml with photos from pandas

742 pxml = self.getPhotosPanda(num_photos, pandaid)

743 # get the information

744 root = parse(pxml).getroot().find(’photos’)

745 interval = root.get(’interval’)

746 lastupdate = root.get(’lastupdate’)

747 photos = root.findall(’photo’)

748 total = len(photos)

749 curr = 1

750 count = 0

751

752 # for each photo of the xml
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753 for p in photos:

754 # insert in the db

755 pid = p.get(’id’)

756 rid, ondb = self.contr.dbGetId(self.sid, insert = True, resource =

pid)

757 if not ondb:

758 count += 1

759 if trace: print ’%s: %03d/%03d’ % (rid, curr, total)

760 curr += 1

761

762 # flickr gives the lastupdate time and the waiting interval

763 wait = time.time() - (int(lastupdate) + int(interval))

764 # so, verify if need to wait

765 if wait > 0:

766 if trace: print ’waiting’, wait, ’before next requisition’

767 time.sleep(wait)

768

769 # more than 500 photos - multiple requests

770 else:

771 n = 0

772 r = 0

773 while n < num_photos:

774 r += self.populateResources(500)

775 n += 500

776 return r

777

778 # return the number of new objects stored

779 return count

780

781 """ populate the db using tags

782 """

783 def populateTags(self, num_resources = 10, trace = False):

784 if trace: print ’fli :: populateTags - num_resources:’, num_resources

785

786 # get the resources not processed yet

787 res = self.contr.dbSelect(’select rid from resource where done = 0 and sid =

? limit ?’, (self.sid, num_resources,))

788 curr = 1

789 if len(res) > num_resources:

790 total = num_resources

791 else:

792 total = len(res)

793 count = 0

794

795 # process each resource ...

796 for _r in res:
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797 rid = _r[0]

798

799 # ... until reach the maximum

800 if curr > total:

801 break

802

803 if trace: print ’resources: %03d/%03d’ % (curr, total)

804

805 # get the data from photo

806 data = self.getDataFromPhoto(rid, trace = trace)

807 notags = True

808

809 for d in data:

810 # user id

811 uid, ondb = self.contr.dbGetId(self.sid, insert = True, user =

d[’user’])

812 # tag id

813 tid, ondb = self.contr.dbGetId(self.sid, insert = True, tag =

d[’tag’])

814

815 # insert the tagging object

816 self.contr.dbInsertTagging(self.sid, uid, rid, tid)

817 count += 1

818 if trace: print ’%d new tuple: %s’ % (count, (self.sid, uid, rid,

tid,))

819 notags = False

820

821 # set the resource as done

822 self.contr.dbUpdate(’update resource set done = 1 where rid = ? and sid =

?’, (rid, self.sid,))

823 if trace: print ’rid:’, rid, ’set done - notags:’, notags

824 curr += 1

825

826 # return the number of new objects stored

827 return count

828

829 """ return the xml file with the tags of a given photo

830 """

831 def getTagsFromPhoto(self, photo_id):

832 return self.post(self.createParams(self.methods[’tPhoto’], {’photo_id’:

photo_id}))

833

834 """ return the data from a given photo

835 """

836 def getDataFromPhoto(self, photo_id, trace = False):

837
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838 # get the tags

839 tags = self.getTagsFromPhoto(photo_id)

840 root = parse(tags).getroot()

841 stat = root.get(’stat’)

842 if stat == ’fail’ and trace: print ’[!] Flickr error:’,

root.find(’err’).get(’msg’), ’photo_id’, photo_id

843

844 # prepare the result with all pairs {user; tag}

845 result = []

846 for t in root.findall(’photo/tags/tag’):

847 result.append({’user’: t.get(’author’), ’tag’: t.text})

848

849 # return the result data

850 return result

851 # the main execution

852 if __name__ == "__main__":

853 # create the crawler object

854 c = Crawler()

855 # execute a crawl operation in all sources and with minimum 60 minutes

856 c.crawl(Source(), proctime=60, trace=True)

857

858 # example of crawl in delicious with minimum 45 minutes

859 # c.crawl(Source(’delicious’), proctime = 45, trace = True)

860 # example of crawl in flickr with minimum 15 minutes

861 # c.crawl(Source(’flickr’), proctime = 15, trace = True)

862 # delete the object and release all resources

863 del c

A.4 Folksonomy Systems

A.4.1 Flickr

Flickr is an online community and an image and video hosting website. It has a large user

community and huge amount of resources (mainly images). Whenever authors uploads

an image they insert tags to describe it. The main search mechanism of Flickr is based

on tags.

Flickr offers a web service API to access its data by non-commercial applications.

One important aspect of the API is that all data should be codified by using the UTF-8

standard. If the API receives a sequence in any codification but UTF-8, it assumes that

the codification is ISO-8859-1 and then transforms it to UTF-8. Any other codification

could result in incorrect data. In the following subsections we detail aspects of the Flickr
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API.

Authentication

The services can be accessed in non-authenticated or authenticated modes. There are API

methods that are only available to the authenticated users. The authentication process

is described in the Flickr OAuthAPI webpage7. In our study we focused on public data.

Therefore, we did not use the authenticate methods.

Definitions

Services’ protocols and data objects exchanged by Flickr and clients follow a set of basic

standard definitions further detailed.

Dates8 There are two types of dates: taken – the date when the photo was taken; posted

– the date when the photo was posted on the system. Taken dates must follow

the MySQL ‘datetime’ format (e.g., 2004-11-29 16:01:26) and they have 4 levels of

accuracy:

0 Y-m-d H:i:s

4 Y-m

6 Y

8 circa...

On the other hand, posted dates are always in the unix timestamp format, i.e., an

unsigned integer specifying the number of seconds since Jan 1st 1970 GMT.

Buddyicons9 Buddyicon is a 48x48 pixel image that represent the user – an “avatar”.

It is necessary to inform the user’s NSID (user id), icon server and icon farm to

access the buddyicon of a user.

If the icon server parameter is a number greater than zero. A URL to request the

icon takes the format:

http://farm{icon-farm}.static.flickr.com/{icon-server}/

buddyicons/{nsid}.jpg

There is also a URL to request the default buddyicon:

http://www.flickr.com/images/buddyicon.jpg

7http://www.flickr.com/services/api/auth.oauth.html
8http://www.flickr.com/services/api/misc.dates.html
9http://www.flickr.com/services/api/misc.buddyicons.html
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URLs10 The photo URL is built by using the following parameters: photo ID, server ID,

farm ID, and secret. The URL takes the format:

http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}.jpg

or

http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}_[mstzb].jpg

or

http://farm{farm-id}.static.flickr.com/{server-id}/

{id}_{o-secret}_o.(jpg|gif|png)

The second URL affords one of the following size suffixes (indicated in the URL by

brackets):

s – small square 75x75

t – thumbnail, 100 on longest side

m – small, 240 on longest side

- – medium, 500 on longest side

z – medium 640, 640 on longest side

b – large, 1024 on longest side

The last URL is specific for images in the original size:

o – original image, either a jpg, gif or png, depending on source format

Tags11 When a photo has tags, the format of the tag field in XML is as follows:

<tag id="1234" author="12037949754@N01" raw="woo yay">wooyay</tag>

The parameters are:

id – The photo id.

author – The NSID of the user who added the tag.

raw – The “raw” version of the tag - as entered by the user. This version can contain

spaces and punctuation.

tag-body – The “clean” version of the tag – as processed by Flickr.

Access

API keys are necessary to access and use the flickr data. The process to obtain those keys

is the following:

1. Register to Flickr (as a user).

2. Go to the API request page (http://www.flickr.com/services/apps/create/

apply/).

10http://www.flickr.com/services/api/misc.urls.html
11http://www.flickr.com/services/api/misc.tags.html
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3. Choose the appropriate option (in this work we used “Non-Commercial”).

4. Fill in the form.

In the end of this process the API keys are generated.

Request Protocols

There are three request protocols: REST12, XML-RPC13, and SOAP14. We adopted REST

since it is the simplest option and it meets our needs.

The following pair requisition/response illustrates a REST requisition on Flickr. In

this case we are using a fictitious API key.

http://www.flickr.com/services/rest/?method=flickr.test.echo&format=rest

&foo=bar&api_key=cc4094c55264c02ec2a83001b95a0837

<rsp stat="ok">

<method>flickr.test.echo</method>

<format>rest</format>

<foo>bar</foo>

<api_key>cc4094c55264c02ec2a83001b95a0837</api_key>

</rsp>

Response Formats

There are five response formats: REST15, XML-RPC16, SOAP17, JSON18, and PHP19.

Again, we chose the REST format.

API Methods

In this section we briefly describe the API methods that are of most relevant to this work.

The complete list of methods can be viewed in the API page (http://www.flickr.com/

services/api/).

auth: methods to authenticate the app.

12http://www.flickr.com/services/api/request.rest.html
13http://www.flickr.com/services/api/request.xmlrpc.html
14http://www.flickr.com/services/api/request.soap.html
15http://www.flickr.com/services/api/response.rest.html
16http://www.flickr.com/services/api/response.xmlrpc.html
17http://www.flickr.com/services/api/response.soap.html
18http://www.flickr.com/services/api/response.json.html
19http://www.flickr.com/services/api/response.php.html
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• flickr.auth.checkToken20: returns the credentials attached to a token

• flickr.auth.getFrob21: returns the frob to be used in authentication

• flickr.auth.getFullToken22: returns the full token from a mini-token

• flickr.auth.getToken23: returns the token from a frob

contacts

• flickr.contacts.getList24: returns the contact list from a user

• flickr.contacts.getPublicList25: returns the public contact list from a user (doesn’t

need authentication)

galleries

• flickr.galleries.getInfo26: returns the information of a gallery

• flickr.galleries.getList27: returns the list of galleries

• flickr.galleries.getListForPhoto28: returns the list of galleries that contains a

given photo

• flickr.galleries.getPhotos29: returns the photos of a given gallery

interestingness

• flickr.interestingness.getList30: returns the most interesting photos of a specific

date

machinetags

• flickr.machinetags.getNamespaces31: returns a list of unique namespaces

• flickr.machinetags.getPairs32: returns a list of unique namespace and predicate

pairs

20http://www.flickr.com/services/api/flickr.auth.checkToken.html
21http://www.flickr.com/services/api/flickr.auth.getFrob.html
22http://www.flickr.com/services/api/flickr.auth.getFullToken.html
23http://www.flickr.com/services/api/flickr.auth.getToken.html
24http://www.flickr.com/services/api/flickr.contacts.getList.html
25http://www.flickr.com/services/api/flickr.contacts.getPublicList.html
26http://www.flickr.com/services/api/flickr.galleries.getInfo.html
27http://www.flickr.com/services/api/flickr.galleries.getList.html
28http://www.flickr.com/services/api/flickr.galleries.getListForPhoto.html
29http://www.flickr.com/services/api/flickr.auth.getToken.html
30http://www.flickr.com/services/api/flickr.interestingness.getList.html
31http://www.flickr.com/services/api/flickr.machinetags.getNamespaces.html
32http://www.flickr.com/services/api/flickr.machinetags.getPairs.html
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• flickr.machinetags.getPredicates33: returns a list of unique predicates

• flickr.machinetags.getRecentValues34: returns the most recent machinetags

• flickr.machinetags.getValues35: returns a list of unique values for a namespace

and predicate

panda

• flickr.panda.getList36: returns a list of pandas (photo services)

• flickr.panda.getPhotos37: returns a list of photos of the given panda

people

• flickr.people.findByEmail38: returns a user’s NSID, given his/her email address

• flickr.people.findByUsername39: returns a user’s NSID, given his/her username

• flickr.people.getInfo40: gets information about a user

• flickr.people.getPhotos41: returns photos from the given user’s photostream

• flickr.people.getPhotosOf42: returns a list of photos containing a particular

Flickr member

• flickr.people.getPublicPhotos43: gets a list of public photos for the given user

photos

• flickr.photos.getAllContexts44: returns all visible sets and pools the photo be-

longs to

• flickr.photos.getContactsPhotos45: fetches a list of recent photos from the call-

ing users’ contacts

33http://www.flickr.com/services/api/flickr.machinetags.getPredicates.html
34http://www.flickr.com/services/api/flickr.machinetags.getRecentValues.html
35http://www.flickr.com/services/api/flickr.machinetags.getValues.html
36http://www.flickr.com/services/api/flickr.panda.getList.html
37http://www.flickr.com/services/api/flickr.panda.getPhotos.html
38http://www.flickr.com/services/api/flickr.people.findByEmail.html
39http://www.flickr.com/services/api/flickr.people.findByUsername.html
40http://www.flickr.com/services/api/flickr.people.getInfo.html
41http://www.flickr.com/services/api/flickr.people.getPhotos.html
42http://www.flickr.com/services/api/flickr.people.getPhotosOf.html
43http://www.flickr.com/services/api/flickr.people.getPublicPhotos.html
44http://www.flickr.com/services/api/flickr.photos.getAllContexts.html
45http://www.flickr.com/services/api/flickr.photos.getContactsPhotos.html
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• flickr.photos.getContactsPublicPhotos46: fetches a list of recent public photos

from a users’ contacts

• flickr.photos.getContext47: returns next and previous photos for a photo in a

photostream

• flickr.photos.getCounts48: gets a list of photo counts for the given date ranges

for the calling user

• flickr.photos.getInfo49: gets information about a photo. The calling user must

have permission to view the photo

• flickr.photos.getPerms50: gets permissions for a photo

• flickr.photos.getRecent51: returns a list of the latest public photos uploaded to

flickr

• flickr.photos.getSizes52: returns the available sizes for a photo. The calling user

must have permission to view the photo

• flickr.photos.getUntagged53: returns a list of your photos with no tags

• flickr.photos.getWithGeoData54: returns a list of your geo-tagged photos

• flickr.photos.getWithoutGeoData55: returns a list of your photos which haven’t

been geo-tagged

• flickr.photos.recentlyUpdated56: returns a list of your photos that have been

recently created or which have been recently modified

• flickr.photos.search57: returns a list of photos matching some criteria

photos.licenses

• flickr.photos.licenses.getInfo58: fetches a list of available photo licenses for

Flickr

46http://www.flickr.com/services/api/flickr.photos.getContactsPublicPhotos.html
47http://www.flickr.com/services/api/flickr.photos.getContext.html
48http://www.flickr.com/services/api/flickr.photos.getCounts.html
49http://www.flickr.com/services/api/flickr.photos.getInfo.html
50http://www.flickr.com/services/api/flickr.photos.getPerms.html
51http://www.flickr.com/services/api/flickr.photos.getRecent.html
52http://www.flickr.com/services/api/flickr.photos.getSizes.html
53http://www.flickr.com/services/api/flickr.photos.getUntagged.html
54http://www.flickr.com/services/api/flickr.photos.getWithGeoData.html
55http://www.flickr.com/services/api/flickr.photos.getWithoutGeoData.html
56http://www.flickr.com/services/api/flickr.photos.recentlyUpdated.html
57http://www.flickr.com/services/api/flickr.photos.search.html
58http://www.flickr.com/services/api/flickr.photos.licenses.getInfo.html
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photosets

• flickr.photosets.getContext59: returns next and previous photos for a photo in

a set

• flickr.photosets.getInfo60: gets information about a photoset

• flickr.photosets.getList61: returns the photosets belonging to the specified user

• flickr.photosets.getPhotos62: gets the list of photos in a set

reflection

• flickr.reflection.getMethodInfo63: returns information for a given flickr API

method

• flickr.reflection.getMethods64: returns a list of available flickr API methods

tags

• flickr.tags.getClusterPhotos65: returns the first 24 photos for a given tag cluster

• flickr.tags.getClusters66: returns a list of tag clusters for the given tag

• flickr.tags.getHotList67: returns a list of hot tags for the given period

• flickr.tags.getListPhoto68: gets the tag list for a given photo

• flickr.tags.getListUser69: gets the tag list for a given user (or for the user

currently logged)

• flickr.tags.getListUserPopular70: gets the popular tags for a given user (or for

the user currently logged)

• flickr.tags.getListUserRaw71: gets the raw versions of a given tag (or all tags)

for the user currently logged

59http://www.flickr.com/services/api/flickr.photosets.getContext.html
60http://www.flickr.com/services/api/flickr.photosets.getInfo.html
61http://www.flickr.com/services/api/flickr.photosets.getList.html
62http://www.flickr.com/services/api/flickr.photosets.getPhotos.html
63http://www.flickr.com/services/api/flickr.reflection.getMethodInfo.html
64http://www.flickr.com/services/api/flickr.reflection.getMethods.html
65http://www.flickr.com/services/api/flickr.tags.getClusterPhotos.html
66http://www.flickr.com/services/api/flickr.tags.getClusters.html
67http://www.flickr.com/services/api/flickr.tags.getHotList.html
68http://www.flickr.com/services/api/flickr.tags.getListPhoto.html
69http://www.flickr.com/services/api/flickr.tags.getListUser.html
70http://www.flickr.com/services/api/flickr.tags.getListUserPopular.html
71http://www.flickr.com/services/api/flickr.tags.getListUserRaw.html
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• flickr.tags.getRelated72: returns a list of tags ’related’ to a given tag, based on

clustered usage analysis

test

• flickr.test.echo73: a testing method which echo’s all parameters back in the

response

• flickr.test.login74: a testing method which checks if the caller is logged and

then returns his/her username

• flickr.test.null75: null test

urls

• flickr.urls.getGroup76: returns a url pointing to a group’s page

• flickr.urls.getUserPhotos77: returns a url pointing to a user’s photos

• flickr.urls.getUserProfile78: returns a url pointing to a user’s profile

• flickr.urls.lookupGallery79: returns a gallery info

• flickr.urls.lookupGroup80: returns a group NSID, given the url pointing to a

group’s page or photo pool

• flickr.urls.lookupUser81: returns a user NSID, given the url pointing to a user’s

photos or profile

API Examples

In this section we show some examples of the API. In each example there are two blocks,

one containing the request and other with the response.

Getting Photo Information

72http://www.flickr.com/services/api/flickr.tags.getRelated.html
73http://www.flickr.com/services/api/flickr.test.echo.html
74http://www.flickr.com/services/api/flickr.test.login.html
75http://www.flickr.com/services/api/flickr.test.null.html
76http://www.flickr.com/services/api/flickr.urls.getGroup.html
77http://www.flickr.com/services/api/flickr.urls.getUserPhotos.html
78http://www.flickr.com/services/api/flickr.urls.getUserProfile.html
79http://www.flickr.com/services/api/flickr.urls.lookupGallery.html
80http://www.flickr.com/services/api/flickr.urls.lookupGroup.html
81http://www.flickr.com/services/api/flickr.urls.lookupUser.html
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http://api.flickr.com/services/rest/?method=flickr.photos.getInfo

&api_key=f629fbcf316fbea8611ca0b2d33f2ea7&photo_id=120292580

/**

api_key (required): api key

photo_id (required): photo id

secret (optional): if correct the permission check is not performed

**/

<rsp stat="ok">

<photo id="120292580" secret="fca8637ab6" server="47" farm="1"

dateuploaded="1143731314" isfavorite="0" license="5" rotation="0"

originalsecret="fca8637ab6" originalformat="png" views="10163" media="photo">

<owner nsid="67526850@N00" username="Alex Osterwalder" realname="Alexander

Osterwalder" location="Genvea, Switzerland" />

<title>Web2.0 Business Model Characteristics</title>

<description>The outcome of a short late-night brainstorming session on the

characteristics of a Web2.0 business model. The reflections are based on what

I write at my (...)</description> <visibility ispublic="1" isfriend="0"

isfamily="0" />

<dates posted="1143731314" taken="2006-03-30 22:08:34" takengranularity="0"

lastupdate="1202967678" />

<editability cancomment="0" canaddmeta="0" />

<usage candownload="1" canblog="0" canprint="0" canshare="0" />

<comments>2</comments>

<notes />

<tags>

<tag id="2017715-120292580-380852" author="67526850@N00" raw="business model"

machine_tag="0">businessmodel</tag>

<tag id="2017715-120292580-11227" author="67526850@N00" raw="web2.0"

machine_tag="0">web20</tag>

<tag id="2017715-120292580-2956157" author="67526850@N00" raw="business model

innovation" machine_tag="0">businessmodelinnovation</tag>

<tag id="2017715-120292580-2956158" author="67526850@N00" raw="business model

ontology" machine_tag="0">businessmodelontology</tag>

<tag id="2017715-120292580-2109580" author="67526850@N00" raw="osterwalder"

machine_tag="0">osterwalder</tag>

</tags>

<urls>

<url type="photopage">

http://www.flickr.com/photos/osterwalder/120292580/

</url>

</urls>

</photo>

</rsp>
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Photo Galleries Information

http://api.flickr.com/services/rest/?method=flickr.galleries.getListForPhoto

&api_key=f629fbcf316fbea8611ca0b2d33f2ea7&photo_id=2080242123&per_page=5

/**

api_key (required): api key

photo_id (required): photo id

per_page (optional): number of galleries in result. default 100 - max 500

page (optional): the page of the result. default 1

**/

<rsp stat="ok">

<galleries total="19" page="1" pages="4" per_page="5" photo_id="2080242123">

<gallery id="25845796-72157624218638653"

url="http://www.flickr.com/photos/25891118@N06/galleries/72157624218638653"

owner="25891118@N06" primary_photo_id="2080242123" date_create="1277335620"

date_update="1278257567" count_photos="4" count_videos="0"

primary_photo_server="2209" primary_photo_farm="3"

primary_photo_secret="55c93c007d"> <title>Nature</title>

<description />

</gallery>

<gallery id="51165959-72157624161029199"

url="http://www.flickr.com/photos/fer10/galleries/72157624161029199"

owner="51198098@N04" primary_photo_id="4691319257" date_create="1276662136"

date_update="1276906396" count_photos="14" count_videos="0"

primary_photo_server="4007" primary_photo_farm="5"

primary_photo_secret="f411f6ba4e">

<title>Bellezas</title>

<description>Expectacular</description>

</gallery>

<gallery id="1344252-72157623919289749"

url="http://www.flickr.com/photos/68196577@N00/galleries/72157623919289749"

owner="68196577@N00" primary_photo_id="4536144000" date_create="1273628141"

date_update="1278099389" count_photos="15" count_videos="0"

primary_photo_server="4032" primary_photo_farm="5"

primary_photo_secret="49a59c20ff">

<title>WHAT?!</title>

<description />

</gallery>

<gallery id="15624814-72157623792903801"

url="http://www.flickr.com/photos/15646144@N07/galleries/72157623792903801"

owner="15646144@N07" primary_photo_id="2080242123" date_create="1272049888"

date_update="1272052268" count_photos="1" count_videos="0"

primary_photo_server="2209" primary_photo_farm="3"

primary_photo_secret="55c93c007d">

<title>For Mobile</title>
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<description />

</gallery>

<gallery id="20945644-72157623529610741"

url="http://www.flickr.com/photos/20966974@N07/galleries/72157623529610741"

owner="20966974@N07" primary_photo_id="2080242123" date_create="1269051584"

date_update="1269051616" count_photos="1" count_videos="0"

primary_photo_server="2209" primary_photo_farm="3"

primary_photo_secret="55c93c007d">

<title>Fall</title>

<description />

</gallery>

</galleries>

</rsp>

Public List of User Contacts

http://api.flickr.com/services/rest/?method=flickr.contacts.getPublicList

&api_key=f629fbcf316fbea8611ca0b2d33f2ea7&user_id=67526850@N00

/**

api_key (required): api key

user_id (required): photo id

per_page (optional): number of result items. default 1000 - max 1000

page (optional): the page of the result. default 1

**/

<rsp stat="ok">

<contacts page="1" pages="1" per_page="1000" perpage="1000" total="19">

<contact nsid="28404674@N00" username="(^_^) wellwin" iconserver="41"

iconfarm="1" ignored="0" />

<contact nsid="38075047@N00" username="dgray_xplane" iconserver="32" iconfarm="1"

ignored="0" />

<contact nsid="27009262@N00" username="Dion Hinchcliffe" iconserver="7"

iconfarm="1" ignored="0" />

<contact nsid="80095026@N00" username="fanstone" iconserver="53" iconfarm="1"

ignored="0" />

<contact nsid="80739942@N00" username="keystone1111" iconserver="3128"

iconfarm="4" ignored="0" />

<contact nsid="46752978@N00" username="kisco" iconserver="34" iconfarm="1"

ignored="0" />

<contact nsid="92455005@N00" username="laurenthaug" iconserver="4" iconfarm="1"

ignored="0" />

<contact nsid="89529267@N00" username="LynetteRadio" iconserver="40" iconfarm="1"

ignored="0" />

<contact nsid="92518516@N00" username="modahome" iconserver="120" iconfarm="1"

ignored="0" />
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<contact nsid="73314839@N00" username="Naaaif" iconserver="110" iconfarm="1"

ignored="0" />

<contact nsid="20056291@N00" username="nicolasnova" iconserver="4059"

iconfarm="5" ignored="0" />

<contact nsid="21296916@N03" username="Paul Hughes: Design Thinking"

iconserver="2186" iconfarm="3" ignored="0" />

<contact nsid="54412022@N00" username="publicmind" iconserver="17" iconfarm="1"

ignored="0" />

<contact nsid="46557603@N00" username="Ralf Beuker" iconserver="2386"

iconfarm="3" ignored="0" />

<contact nsid="49147885@N00" username="squidish" iconserver="21" iconfarm="1"

ignored="0" />

<contact nsid="36112663@N00" username="tangyg" iconserver="0" iconfarm="0"

ignored="0" />

<contact nsid="34862120@N08" username="think.smith" iconserver="3126"

iconfarm="4" ignored="0" />

</contacts>

</rsp>

Public Photos of User Contacts

http://api.flickr.com/services/rest/?method=flickr.photos.getContactsPublicPhotos

&api_key=f629fbcf316fbea8611ca0b2d33f2ea7&user_id=67526850@N00

/**

api_key (required): api key

user_id (required): user id

count (optional): number of photos. default 10 - max 50. only used if without

parameter ’single_photo’

just_friends (optional): if 1 returns only photos of family and friends

single_photo (optional): only returns the last photo of each contact

include_self (optional): if 1 includes photos of the user (specified in ’user_id’)

extras (optional): extra information (license, date_upload, date_taken, owner_name,

icon_server, original_format, last_update)

**/

<rsp stat="ok">

<photo id="120292580" secret="fca8637ab6" server="47" farm="1"

dateuploaded="1143731314" isfavorite="0" license="5" rotation="0"

originalsecret="fca8637ab6" originalformat="png" views="10163" media="photo">

<owner nsid="67526850@N00" username="Alex Osterwalder" realname="Alexander

Osterwalder" location="Genvea, Switzerland" />

<title>Web2.0 Business Model Characteristics</title>

<description>The outcome of a short late-night brainstorming session on the

characteristics of a Web2.0 business model. The reflections are based on what
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I write at my &lt;a

href=&quot;http://business-model-design.blogspot.com&quot;&gt;business model

design blog&lt;/a&gt;</description>

<visibility ispublic="1" isfriend="0" isfamily="0" />

<dates posted="1143731314" taken="2006-03-30 22:08:34" takengranularity="0"

lastupdate="1202967678" />

<editability cancomment="0" canaddmeta="0" />

<usage candownload="1" canblog="0" canprint="0" canshare="0" />

<comments>2</comments>

<notes />

<tags>

<tag id="2017715-120292580-380852" author="67526850@N00" raw="business model"

machine_tag="0">businessmodel</tag>

<tag id="2017715-120292580-11227" author="67526850@N00" raw="web2.0"

machine_tag="0">web20</tag>

<tag id="2017715-120292580-2956157" author="67526850@N00" raw="business model

innovation" machine_tag="0">businessmodelinnovation</tag>

<tag id="2017715-120292580-2956158" author="67526850@N00" raw="business model

ontology" machine_tag="0">businessmodelontology</tag>

<tag id="2017715-120292580-2109580" author="67526850@N00" raw="osterwalder"

machine_tag="0">osterwalder</tag>

</tags>

<urls>

<url type="photopage">

http://www.flickr.com/photos/osterwalder/120292580/

</url>

</urls>

</photo>

</rsp>

Latest Public Photos

http://api.flickr.com/services/rest/?method=flickr.photos.getRecent

&api_key=f629fbcf316fbea8611ca0b2d33f2ea7&per_page=10

/**

api_key (required): api key

extras (optional): extra information (description, license, date_upload,

date_taken, owner_name, icon_server, original_format, las_update, geo, tags,

machine_tags, o_dims, views, media, path_alias, url_sq, url_t, url_s, url_m,

url_o)

per_page (optional): number of result items. default 100 - max 500

page (optional): page of the result. default 1

**/
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<rsp stat="ok">

<photos page="1" pages="100" perpage="10" total="1000">

<photo id="4771876711" owner="30428372@N05" secret="94ef60dcfa" server="4098"

farm="5" title="Picture0136" ispublic="1" isfriend="0" isfamily="0" />

<photo id="4771876775" owner="10047346@N00" secret="5cd4161426" server="4122"

farm="5" title="Aberdeenshire" ispublic="1" isfriend="0" isfamily="0" />

<photo id="4771876795" owner="29221546@N07" secret="4b06f6eb86" server="4080"

farm="5" title="P1030381" ispublic="1" isfriend="0" isfamily="0" />

<photo id="4771876809" owner="89235411@N00" secret="30b600dcd9" server="4123"

farm="5" title="P1000277" ispublic="1" isfriend="0" isfamily="0" />

<photo id="4771876827" owner="51617540@N07" secret="085439dc86" server="4095"

farm="5" title="01winery1" ispublic="1" isfriend="0" isfamily="0" />

<photo id="4772515510" owner="58562067@N00" secret="d1e84f605b" server="4134"

farm="5" title="IMG_5164" ispublic="1" isfriend="0" isfamily="0" />

<photo id="4772515590" owner="50585245@N06" secret="db914e1f92" server="4079"

farm="5" title="DSC00558" ispublic="1" isfriend="0" isfamily="0" />

<photo id="4772515614" owner="10887912@N03" secret="cc143872a3" server="4116"

farm="5" title="IMG_2268" ispublic="1" isfriend="0" isfamily="0" />

<photo id="4772515634" owner="32128624@N05" secret="f171de864e" server="4093"

farm="5" title="DSC00216" ispublic="1" isfriend="0" isfamily="0" />

<photo id="4772515640" owner="73657575@N00" secret="71e526d11e" server="4118"

farm="5" title="Therion @ GMM 2010" ispublic="1" isfriend="0" isfamily="0" />

</photos>

</rsp>

Most Popular Tags

http://api.flickr.com/services/rest/?method=flickr.tags.getHotList

&api_key=f629fbcf316fbea8611ca0b2d33f2ea7&period=week

/**

api_key (required): api key

period (optional): time period of result. ’day’ (default) or ’week’

count (optional): number of result items. default 20 - max 200

**/

<rsp stat="ok">

<hottags period="week" count="20">

<tag score="100">me2mobileme2photo</tag>

<tag score="100">canadaday2010</tag>

<tag score="100">tdf10</tag>

<tag score="100">japanexpo</tag>

<tag score="100">happybirthdayamerica</tag>

<tag score="100">animeexpo2010</tag>

<tag score="100">zurifascht</tag>
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<tag score="100">cosfest</tag>

<tag score="100">glasto2010</tag>

<tag score="100">huracanalex</tag>

<tag score="100">macysfireworks</tag>

<tag score="100">canadadayfireworks</tag>

<tag score="100">happy4th</tag>

<tag score="100">peachtreeroadrace</tag>

<tag score="100">jul10</tag>

<tag score="100">redwhiteandboom</tag>

<tag score="100">goodwoodfestivalofspeed2010</tag>

<tag score="100">rondevanfrankrijk</tag>

<tag score="100">marincountyfair</tag>

<tag score="100">stpaulscarnival</tag>

</hottags>

</rsp>

A.4.2 Delicious

Delicious is a social bookmarking service on the web launched in 2003, i.e., a service where

its users can save and share bookmarks (URL adresses). It is important to stress that our

study was done before the acquisition of delicious by AVOS Systems. Thus, the following

content might be outdated.

Authentication

It is possible to access public data from Delicious in an anonymously way, by using the

web feeds (a data format to publish content) service of the system. On the other hand, in

order to access private data, the requests must be authenticated by using the OAuth – an

open protocol to enable an application to access end user information from a Web service.

The process of authentication is described in OAuth Authorization Flow web page82.

OAth Python Library There is a python library that supports Oauth authentication:

oauth283.

Feeds

To access public data from Delicious, there are read-only data feeds84, which adopted in

our study, since our work is focused on public data. The response of feed requests comes

82http://developer.yahoo.com/oauth/guide/oauth-auth-flow.html
83http://github.com/simplegeo/python-oauth2
84http://delicious.com/help/feeds
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in two possible formats – RSS85 and JSON86.

Update Rate

Due to practical reasons, the Delicious system does accept update requests of the feeds

very often. RSS feeds, for instance, may not be updated more than twice an hour.

Requesting data more often than allowed by the system may result in HTTP 503 errors,

indicating either that the requests were blocked or throttled by the servers.

Feeds Available

All feeds follow this base URL prefix:

http://feeds.delicious.com/v2/{format}/

Where the placeholder {format} is the feed format: rss or json.

The following parameters are accepted:

?count = {1..1000} limit the results – default (15).

?plain or ?fancy disable or enable HTML content.

?callback=js call allows the inclusion of a wrapper call. Only JSON data.

Additional placeholders used in URLs further described are:

{format} rss or json.

{username} user’s login name on delicious

{tag+[tag+. . . +tag]} tag or intersection of tags.

{url md5} MD5 hash of a URL.

{key} security key that allows view private data.

URL Patterns for Feeds

• Recent bookmarks:

http://feeds.delicious.com/v2/{format}/recent

• Recent bookmarks by tag:

85http://en.wikipedia.org/wiki/RSS_(protocol)
86http://json.org/
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http://feeds.delicious.com/v2/{format}/tag/{tag[+tag+...+tag]}

• Bookmarks for a specific user:

http://feeds.delicious.com/v2/{format}/{username}

• Private bookmarks for a specific user:

http://feeds.delicious.com/v2/{format}/{username}?private={key}

• Bookmarks for a specific user by tag(s):

http://feeds.delicious.com/v2/{format}/{username}/{tag[+tag+...+tag]}

• Private bookmarks for a specific user by tag(s):

http://feeds.delicious.com/v2/{format}/{username}/{tag[+tag+...+tag]}

?private={key}

• Public summary information about a user:

http://feeds.delicious.com/v2/{format}/userinfo/{username}

• A list of all public tags for a user:

http://feeds.delicious.com/v2/{format}/tags/{username}

• A list of related public tags for a user/tag combination:

http://feeds.delicious.com/v2/{format}/tags/{username}/{tag[+tag+...+tag]}

• Bookmarks from subscriptions of a given user:

http://feeds.delicious.com/v2/{format}/subscriptions/{username}

• Private feed for of third-party suggested bookmarks for a given user:

http://feeds.delicious.com/v2/{format}/inbox/{username}?private={key}

• Bookmarks from network members of a given user:

http://feeds.delicious.com/v2/{format}/network/{username}
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• Bookmarks from network members of a given user by tag:

http://feeds.delicious.com/v2/{format}/network/{username}/{tag[+tag+...+tag]}

• A list of network members of a given user:

http://feeds.delicious.com/v2/{format}/networkmembers/{username}

• Recent bookmarks for a URL:

http://feeds.delicious.com/v2/{format}/url/{url md5}

• Summary information about a URL:

http://feeds.delicious.com/v2/json/urlinfo/{url md5}

A.5 Conclusion

Folksonomies maintained by web systems are an important source of information. In

order to access and manage them these web systems usually provide web APIs. As a

partial result of a research we are conducting concerning folksonomies, we have developed

the tool presented here, which can access, retrieve and store data from folksonomies.

In this paper we showed the tool we developed, detailing the strategy to access folk-

sonomy based systems. We also showed our work of a unified tag database, derived from

the comparison of related work and models adopted by web systems.
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[3] Hugo Alves and André Santanchè. Folksonomized Ontologies - from social to formal.

In XVII Brazilian Symposium on Multimedia and the Web, pages 58–65, 2011.
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