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Abstract— Modern data analysis deeply relies on computa-
tional visualization tools, specially when spatial data is involved.
Important efforts in governmental and private agencies are
looking for patterns and insights buried in dispersive, massive
amounts of data (conventional, spatiotemporal, etc.). In Visual
Analytics users must be empowered to analyze data from differ-
ent perspectives, integrating, transforming, aggregating and de-
riving new representations of conventional as well as spatial data.
However, a challenge for visual analysis tools is how to articulate
such wide variety of data models and formats, specially when
multiple representations of geographic elements are involved. A
usual approach is to convert data to a database — e.g., a multi-
representation database — which centralizes and homogenizes
them. This approach has restrictions when facing the dynamic
and distributed model of the Web. In this paper we propose an on
the fly and on demand multi-representation data integration and
homogenization approach, named Lens, as an alternative that fits
better with the Web. It combines a metamodel driven approach
to transform data to a unifying multidimensional and multi-
representation model, with a middleware-based architecture for
seamless and on-the-fly data access, tailored to Visual Analytics.

I. INTRODUCTION

Visual Analytics (VA) is “the science of analytical reasoning
by means of interactive interfaces” [1]. It is multidisciplinary
by nature and has risen from the need of turning the overload
of information into opportunities to get insights and to make
discoveries, even from apparently chaotic data, combining the
best what humans have: reasoning and sight. The VA main
strategy to cope with human limitation of dealing with large
amounts of information involves providing tools that enable
analysts to dynamically settle transformations, representations
and visualizations.

Interactive and customizable visualization and transforma-
tion tools play an essential role in spatiotemporal data analysis,
as patterns and information are usually hidden between the
lines: there are irregular and convoluted borders; phenomena
tend to be specific in scale and are usually correlated in
different scales; locations tend to be inaccurate and are scale,
resolution and time dependent [1]. Spatiotemporal phenomena
may have multiple representations [2], which reflects the
different perspectives of users. Analysts can materialize new
representations of data, on the fly and on demand, and they can
manipulate, publish and share them. Moreover, systems must
deal with massive amounts of data, possibly distributed, con-
cerning distinct time, scale, representation and dimensionality,
achieving good performance in transformation and retrieval.

Therefore, VA is about access, not update, and is about multi-
representation.

Works dealing with spatial and multi-representation data
(e.g., [3] and [4]) have focused on the database level. The
proposed Multi-representation Database (MRDB) models and
architectures extends object-relational databases, being cen-
tralized and monolithic. Object-relational databases excel at
dealing with short, OLTP (online transaction processing),
transactions, but are not effective for query-intensive applica-
tions, as required by VA. On the other hand, multidimensional
databases, usually adopted in OLAP (online analytical process-
ing), can swiftly process analytical queries on huge amounts
of data.

VA usually requires data coming from several and dis-
tributed sources. They can contain unstructured and hetero-
geneous data, represented in distinct formats, e.g., shape
files, KML and spreadsheets. While the Web is expanding
the opportunity to reach data sources, a monolithic central
repository to integrate this data may require excessive costs
to follow the constant updates and stay consistent and up-to-
date. Moreover, in the Web scenario it is not always possible
to access an entire data source at once.

These observations motivated our Multi-representation Lens
proposal. 1t is an on the fly and on demand integration
approach, in which the original data stay in their origins and
are transparently transformed on demand, by a middleware,
into the output format apt to querying and analysis. Users
specify mappings of data sources to a homogeneous unification
model, described in terms of dimensions, facts and measures —
a multidimensional data model. It resorts to metamodeling to
provide an extensible strategy of model mapping. The “lens”
property of our approach facilitates and influences perception,
comprehension or evaluation, without changing the original
data source itself.

The multidimensional and multi-representation unification
model subsidizes building hypercubes (OLAP structures) ex-
tended to afford multi-representation, henceforth named multi-
representation hypercubes. They can maintain different repre-
sentations for each data item, including those resulting from
transformations users apply. Lens middleware-based architec-
ture is designed to support VA activities. It seamlessly con-
nects any data source — structured and unstructured, local or in
the cloud — transparently handling data loading, transformation
and keeping the hypercube up-to-date.

This paper presents the design of our Multi-representation



Lens for Visual Analytics architecture and its unifying meta-
model, which is the main focus of this paper. It is organized as
follows: Section II discusses the requirements expected by a
VA framework; Section III discusses the basis of our work;
Section IV presents our Lens approach; in Section VI we
confront our approach with related work; finally, Section VII
concludes this paper and proposes future work.

II. ARCHITECTURE REQUIREMENTS

Lens defines an architecture intended to VA applications. It
was designed to meet the following requirements: (1) generic
framework, easily adaptable to any domain, (health, security,
etc.); (2) flexible to afford a wide variety of analysis and
operations; (3) apt to store and manipulate large datasets
with good performance; (4) keep source-target database con-
sistency, detecting new versions of data and automatically
reflecting such version changes; (5) able to map data — het-
erogeneous, unstructured and structured (spatial, conventional
databases, text, images, sensor data); local or distributed —
to a seamless and homogeneous model; (6) able of storing,
versioning, sharing and publishing of portrayals defined by
users; (7) web-based, enabling different types of clients to
access and manipulate data.

As VA comprises several disciplines, the expected func-
tionalities provided by our architecture will articulate and
extend those found in original systems, e.g., overlay and
spatial queries (GIS); drill-down, roll-up, slice, dice (OLAP);
regression, variance, etc. (statistical analysis). Users will be
able to plot graphics (pie charts, tag clouds) on top of maps,
or re-portray data applying operations of aggregation, transfor-
mation and generalization. VA empowers users by combining
tools from different disciplines, in order to achieve best results
from data. Therefore, users must be able to combine data from
different repositories seamlessly. All of these functionalities
should be supported by advanced interaction tools, imple-
mented in rich interfaces.

III. BAsic CONCEPTS

This work combines four concepts: the multidimen-
sional/OLAP model; data source metamodeling; data multi-
representation; and Visual Analytics. The multidimensional
model represents data in terms of dimensions and hierarchies.
A multidimensional database is a OLAP database likewise.
OLAP is a class of analytical applications that represents data
in multiple dimensions, organizing data in “hypercubes” (a
cube with possibly more than three dimensions).

In order to afford an expansible approach to align distinct
models, Lens describes each involved model and their map-
pings by using metamodels. The description is represented in
OMG MOF (MetaObject Facility) [5] and adopts the OMG
CWM Common Warehouse Metamodel [6]. In a nutshell,
MOF takes advantage of the UML modeling formalism to
specify metamodels (models that specify models). An instance
of a metamodel will be a specific model, e.g., there is a
metamodel that specifies the relational model; an instance of
this metamodel will be a specific relational schema, which is a

model. CWM is a set of metamodels specified in MOF aimed
to support interchange among different warehouse models
(e.g., relational, XML and multidimensional) and transforma-
tions among them.
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Fig. 1. CWM metamodel of the relational and multidimensional models

Fig. 1 shows a fragment of the CWM metamodel for the
relational and multidimensional models. As the figure shows,
each class (square) in the metamodel specifies an element
of a model. For example, Table, Column and Row are
typical elements of the relational model, as Dimension
and Member are for the multidimensional model. The CWM
specifies an abstract core metamodel aimed to generalize and
bind elements of distinct metamodels. In this sense, Table in
the relational metamodel specializes the same generic Class
of Dimension in the multidimensional metamodel. This
means that they share a role of describing sets of entities
following equivalent approaches. It involves, for example,
specifying their set of attributes (a relational Column and a
multidimensional DimensionObject). This is the basis for
mapping and transformations, which in turn will be modeled
by means of CWM Transformation metaclasses (see [7]).
Transformation metaclasses can map data structures, e.g.,
tables to hypercubes, or data processes, e.g., summarization,
aggregation and reprojection. Although CWM uses inheritance
to relate models, it specifies integrity constraints in OCL
(Object Constraint Language), a declarative language for de-
scribing rules, that is part of UML specification and prevents,
for example, a relational table from owning improperly a
OLAP Measure. In order to illustrate how CWM works, the
object diagram in Fig. 2 is an example of a relational table
being partially modeled by a CWM metamodel, where each
object represents the table or a table element, as instance of
the respective metamodel class.

River :
Table ‘ ‘

‘ Name : ‘ ‘

Center_Line :
Column

Country :
Column

Biome : Water_Volume :
Column

Column

Fig. 2. CWM metamodel of a relational table

While geographic data are essential for many VA appli-
cations, the CWM metamodel does not specify specialized
structures to represent them. So far there is one initiative to
extend the CWM metamodel to afford geospatial types [8].
However, as will be further detailed, they do not consider
the multi-representation dimension of geospatial data. In the
context of GIS and cartography, the concept of generalization
refers to the multiple representations a spatial phenomenon
may assume, according to time and scale variations [9]. For
example, at a 1:10,000 scale, one may represent a building (an



abstract entity) by its edges (representation), meanwhile at a
1:100,000 the same building may be represented by a point
(representation). An object can also vary in its representations,
independently of scale and time, according to the abstraction
level, users’ points of view, or requirements of algorithms.
In our model the representation of an object is a dimension,
orthogonal to time and scale. For example, consider a set of
temperature readings in a city: it’s possible to represent them,
in the same scale, by plotting the point-set, or by aggregating
them in an isoline surface (see Fig. 3).
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Fig. 3. Point set representing temperature sensors (a) and the generated
isoline surface (b)

As mentioned before, our approach is designed to address
VA systems. Through VA tools, people can synthesize infor-
mation, derive insights from massive, dynamic and ambiguous
data [1]. VA comprises multidisciplinary fields like: analytical
reasoning, which enables users to obtain insights to support as-
sessment, planning and decision-making; visual representation
and interaction techniques, which allow users to explore and
understand large amounts of information at once; production,
presentation and dissemination of results.

IV. LENS APPROACH

This work proposes an on the fly and on demand data unifi-
cation approach, named Lens, founded in a multidimensional,
multi-representation homogeneous data model, tailored to VA.
The data metamodel was split in two sub-models: a Unifying
Metamodel and an Analytics Metamodel. In the two following
subsections, we present this data model and its architecture.

A. Unifying Metamodel

A core characteristic in our Lens approach is the ability
of unifying data from different Web sources on the fly. It
involves not only to deal with different schemas, but also
aligning distinct data models in a homogeneous one. Due to
the diversity of models for data sources on the Web, we chose
a representative subset to work with. But we designed our
unifying approach to be extensible to other models.

By unification and homogenization we mean that our ar-
chitecture will afford inputs represented in many data models
and will map them to a single output model. We chose the
multidimensional data model as the unifying one, since this
architecture is tailored to VA operations, which are typically
OLAP operations in the data access perspective.

Any data source to be integrated is described using CWM
metamodels (either relational, object, etc). Then transforma-
tion rules are defined, in terms of CWM Transformation
metamodel classes in order to map each element of the source

schema to the target multidimensional output schema. Further
details on how CWM Transformation is used are out of scope
of this paper.

Since our multidimensional output data is also multi-
represented, the output schema would hold not only conven-
tional data, as a OLAP cube would, but also spatiotempo-
ral (both raster and vector) in multiple aligned dimensions
and representations. To afford spatiotemporal data and multi-
representation, this work extends the CWM metamodels by
adding new spatial data types, multi-representation features
and the corresponding operations. In this sense, our metamodel
unifies the geometry types defined in [10], [11], [4]. A
representative subset of their data types was mapped into a
common metamodel classes.

As illustrated in Fig. 4, we extended the core CWM
type system to represent multi-represented objects based
on two building blocks: the abstract characterization
of an abstract object independent of its representation
(Spatial: :AbstractSpatialObject), and the con-
crete spatial representation of a given spatial object
(Spatial::SpatialObjectType). Henceforth we will
omit the Spatial namespace for simplicity reasons. By
extending the core typing model, any metamodel (either re-
lational, object, multidimensional, etc.) can refer to spatial
representations and thus it is possible to map them to the
Unifying Model.

/N /N

l Spatial::SpatialObjectType I

.* | Core::Attribute
/\ /\

| OLAP::Measure |

I Spatial::AbstractSpatialObject | |Multidimensional“DirnensionedObject

Fig. 4. Geometry and multi-representation extension to CWM data types

Fig. 5 shows an expansion of the class
SpatialObjectType and its relations. It abstracts
either a vector (points, lines), a field (triangulated irregular
networks), or a network (a topological connection of nodes
and arcs) representation. Fig. 6 shows how we achieve a
multi-representation by relating the two building block classes:
AbstractSpatialObject and SpatialObjectType.
Each AbstractSpatialObject can be related to one or
more alternative representations (RepresentationType),
which in turn will be presented as a SpatialObjectType.
As example, a river (AbstractSpatialObject) may
assume different representations (a flood area, a center line,
etc), related to instances of a SpatialObjectType.

B. Analytics Metamodel

While the role of the Unifying Metamodel is to integrate and
homogenize distinct data models, the Analytics Metamodel is
concerned with modeling the VA and OLAP data derived from
the Unifying Metamodel. Therefore, the Analytics Metamodel
extends the CWM OLAP metamodel, being aligned to the Uni-
fying Metamodel, which extends the CWM Multidimensional
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Fig. 5. Full inheritance tree of Spatial::SpatialObjectType

Spatial::AbstractSpatialObject I | Spatial::SpatialObjectType I
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1.3 | Spatial::RepresentationType

Fig. 6. Depiction of Spatial::AbstractSpatialObject

Representation

metamodel. Lens extends CWM OLAP hypercubes, adding
multi-representation capabilities, i.e., allowing several data
materializations of the same elements: they can be generalized
(aggregated, transformed, combined, etc). For example, an
equipotential surface can be generated from a set of points (see
Fig. 3) and both representations will be kept in the hypercube.
While conventional columns are summarized by using usual
traditional OLAP operations, spatiotemporal columns require
spatial operations, e.g. topological relation operators: inter-
sects, overlaps, etc. Therefore, hypercubes require extra op-
erations, modeled as specializations of CWM Transformation,
for data materialization.

In order to add multi-representation capabilities,
we  specialized Core::Classifier class into
SpatialObjectType, a  spatiotemporal  element,
and AbstractSpatialObject, an abstract multi-
representable object, as show in Fig. 4. The Measure class
represents OLAP measures, as presented in Section III. Our
extension turns a Measure into a spatiotemporal measure.
Fig. 7 depicts an example where the River table from
Fig. 2 was used as basis for a cube with two measures:
water_volume which is a Measure and RiverShapes,
that is also a measure, related to RiverRepresentation,
which is an instance of AbstractSpatialObject. It is
in turn associated with two different representations (refer
from Fig. 4 to 6). The CenterLine representation is a
LineSetType, as rivers may have many meanders, while
FloodArea is a PolygonType.

Water_Volume :
Measure

CenterLine :
RepresentationType

FloodArea
RepresentationType

Dimension
LevelHierarchy :
LevelBasedHierarchy

Country : Country :
LevelHierarchy Level
——— 7

Biome : Biome Rivers :
CubeDimensionAssociation Cube

Name :
Attribute

RiverShapes
Measure

RiverRepresentation :
ialObject

Fig. 7. CWM metamodel of Rivers Cube, enriched with multi-representation
measure

The CWM OLAP metamodel is the basis for our analytics
model due to many reasons. First, it describes logical ana-
lytical models but does not specify how these models should
be deployed, providing freedom to choose the best storage
structure (for example, serialized in plain files, star-schemas,
BigTables), as well as transparency, although it is necessary
to map instances of OLAP metaclasses to instances of other
CWM metamodels. Second, as previously said, OLAP is a
model appropriate for high performance analysis and retrieval.

This model subsidizes our storage strategy. Initially data
is transformed to a multidimensional model and kept at the
lowest level of granularity, which is application dependent. As
data is processed and new representations are generated, the
results are stored back into hypercubes. New representations
generated during analytical operations can be stored at the
same granularity level of the previous representation (hori-
zontal materialization) or can be part of a representation at a
coarser level of granularity (vertical materialization). Vertical
materialization thus will append new lines to the hypercube,
while horizontal materialization will append a new represen-
tation to the AbstractSpatialObject aggregated set.
Transformation activities performed by clients (human or other
systems), which lead from one representation to another, are
modeled using a set of TransformationActivity, a
class defined in the Transformation CWM metamodel [5].
It allows to keep track of different materializations, which
analysts produce and store in hypercubes.

V. LENS ARCHITECTURE

The Lens metamodel is the basis to model a set of one or
more multi-representation hypercubes, which are implemented
as data structures, related to a set of components aimed
to manage them. This proposed Lens Architecture aims at
connecting to any data source, structured and unstructured,
local or in the cloud, making data access transparent to users.
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The Lens is intended to be part of a larger architecture
for VA applications. This architecture, shown in Fig. 8, was
designed to fulfill the requirements proposed in Section II. It is



composed of layers responsible for specific tasks. Each layer
communicates with the layer immediately above or below,
through a set of well-defined interfaces and services. Layer
isolation allows transparency and, therefore, reduces coupling,
while being structured as services allows distribution. The
Lens, in the referred architecture, corresponds to the Mid-
dleware layer, whose components are: Data Bus, responsible
for data source connection, thus abstracting original data
repositories. Data sources are read-only. It is possible to add
new data source types by writing new drivers and appending
them to this component. New models are mapped by using
Lens metamodels. The Data Bus is responsible to retrieve
data and forward them to the Data Synchronizer. The data
bus is also responsible for I/O operations in the hypercache
repository, which stores the multi-representation hypercube.
Data Synchronizer detects changes in source repositories
and propagates them to the multi-representation hypercube.
Updates are, ideally, made lazily (i.e., when the workload
is low enough) and as needed, this way avoiding affecting
performance. It also can be made in batch mode, e.g., when
the hypercube is first created. When new data sources are
registered, the Data Synchronizer will activate the Hypercube
Manager in order to generate a new hypercube. Persistence
and Cache Manager, responsible for cache managing and
mediation of I/O operation to the data bus. Hypercube Man-
ager, a key component, responsible for keeping the data
structure that implements the models defined in Section IV-
A, necessary for the multi-representation hypercube and its
capabilities. It can store conventional, spatiotemporal and
hypermedia data. It manages data necessary for analysis and
visualization. Several hypercubes can be available for analysis
and they can be combined by the manager. Data is accessed
via query language, an MDX extension with support to multi-
representation. Metadata Manager maintains metadata and
ontologies related to stored data. They are manipulated by
using an API and an appropriate language.

VA operations are performed by the Analysis Layer. It in-
teracts with the Middleware Layer via the API provided by the
Middleware. The Analysis Layer is composed by the following
modules: Transformation, Mining and Analysis Engines is a
series of engines designed to act on the hypercube, metadata
and ontologies. New algorithms, heuristics, etc. can be im-
plemented as plugins attached to this module. Orchestrator
is responsible for synchronizing and pipelining engines and
procedures invoked by users, thus reducing coupling among
the engines. The Orchestrator will interact with the Hypercube
Manager using an API and query language.

The Context layer, which is responsible for users interaction,
is composed by the following elements: Context Manager
manages dashboards and cockpits users employ in their anal-
ysis. It contains a series of controls and interface elements
(tables, maps, graphics, etc.) users compose in order to analyze
data. Ideally, the context manager is client-aware: web browses
running in tablets or smartphones do not have the same
capabilities of fat clients and workstations, and it must be met
by the context manager. Portrayer is responsible for setting

the appropriate visual representation in GUI (graphical user in-
terfaces) for data and analysis for the intended client. Graphics,
graphs, tables, images, maps, etc. are generated and forwarded
to the Context Manager. User inputs, captured by the Context
Manager, are analogously forwarded to the orchestrator for
treatment. Sharing and Collaboration Manager responsible
for managing, for each user, the data and analysis that are
shared with collaborators.

VI. RELATED WORK

There are many works concerning data models for multi-
representation. Parent et al. [10] propose a entity-relationship
data model, named MADS, comprising data structures for
multi-representation of space and time. This data model is
materialized into a framework named MurMur. Zhou and
Jones [2] proposes a multi-representation model, named Multi-
representation geometry (Mrep-Geometry), concerned with
cartographic generalization. The VUEL concept [4] focuses on
combining semantics, geographic and graphic representation
of spatial elements. These works rely on a centralized and
monolithic database storage, based on a single model, while
Lens rely on a middleware-based integration architecture,
founded in an expansible unification metamodel to transpar-
ently extend any underlying model. None of these works are
concerned with high performance queries, demanded by VA,
as their approach relies on an object-relational model.

Many initiatives address the combination of OLAP with spa-
tiotemporal and hypermedia capabilities, namely hypermedia
hypercubes. However, we have not found so far any work
addressing multi-representation on multidimensional models,
as proposed in this work. Han et al [12] propose spatial data
warehouses based on spatial data cubes, mixing spatial and
non-spatial measures. Papadias et al. [13] proposes structures
for ad-hoc group-by queries on spatial data in star-schema
structures. In [8] the authors propose a metamodel to add geo-
graphical dimensional schemas, based on the OLAP CWM [6]
metamodel. [14] present many possibilities to explore spatial
data in OLAP cubes. The work [15] combines hypermedia
documents and spatial data in OLAP hypercubes (hypermedia
hypercubes). Piet is an implementation of a GIS-OLAP inte-
gration [16] presenting a method for precomputation of spatial
overlay aggregations. The GooLAP [17] proposes a three-tier
architecture to build a system for spatial OLAP operations; but
the authors split data in two different databases, a geographic
boundaries database and a spatial data warehouse, while our
approach unifies shapes in a centralized data repository.

Concerning the architecture, there are many different ap-
proaches for a VA applications, from highly coupled and
centralized, to loosely coupled and distributed. All analyzed
proposals rely on a central repository representing data in
relational or object-relational models, without support to multi-
representation. For example, [18] presents a component-based
architecture, relying on a central repository for time data.
Sunfall [19] is a VA system for collaborative works on
astrophysics, for applications demanding high throughput of
astronomic imagery data processing, built around a central



repository. Finally SQuAVisiT [20] is a plugin based frame-
work, centered on a repository, which receives, forwards and
stores data that is used by analysts.

Relational multi-representation models, like MADS, are
very good for storing elements for transaction processing and
for representing complex relationships; on the other hand,
spatial OLAP cubes, like [17], are apt to queries, but lack
the flexibility for representing and track different perspectives
of data. OMT-G [11], on the other hand, considers multi-
representation only on modeling level. Our proposal combines
the power of OLAP cubes and multi-representation in an
effort to support fast and flexible queries for VA applications.
The hypercube model is a consolidated approach to speed up
queries. Moreover, approaches relying in a central repository,
e.g., MurMur and Piet, will hardly address requirements of
accessing distributed and on demand data, usual in VA ap-
plications. Therefore, this work adopted a middleware-based
approach instead of using a centralized database. Among the
reasons that lead us to this option, we point out: first, there
are a great number of database management systems available,
both free and commercial, and a great amount of data already
available in these databases, as well as data scattered in files,
images, etc. The Lens middleware raises the abstraction level,
keeping data where they are, with no modification or migration
impacts. Copies of data are consolidated transparently by the
middleware, which remains responsible for detecting changes.

VII. CONCLUSIONS AND FUTURE WORK

This work presented Lens, a combination of a unification
metamodeling approach apt to support multi-representation
and multidimensional data, and a middleware based architec-
ture, which allows users to dynamically build perspectives
of data, on the fly and on demand, for VA applications.
Lens supports VA by allowing transformation, aggregation
and analysis of massive, heterogeneous, distributed data. Lens
will transparently and seamlessly allow users to fetch data
from their original sources and build multi-representation
hypercubes, managing metadata, as well as providing an API
and a query language for manipulating the hypercubes.

Future work includes the implementation of the proposed ar-
chitecture and will tackle the following problems: the applica-
tion of interoperable semantics to data and representations; the
design of efficient and intelligent synchronization mechanisms
(deciding when to automatically update hypercubes or not); the
application of efficient mechanisms to deal with sparse data,
and multi-representation hypercubes building on the fly with
good performance.
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