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Abstract

Traceability and Provenanceare often used inter-
changeably in eScience, being associated with the need
scientists have to document their experiments, and so al-
low experiments to be checked and reproduced by oth-
ers. These terms have, however, different meanings:
provenance is more often associated with data origins,
whereas traceability concerns the interlinking and exe-
cution of processes. This paper proposes a set of mech-
anisms to deal with this last aspect, the solution is based
on database research combined with scientific work-
flows, plus domain-specific knowledge stored in ontol-
ogy structures. This meets a need from bioinformatics
laboratories, where the majority of computer systems
do not support traceability facilities. These mechanisms
have been implemented in a prototype, and an example
using the genome assembly problem is given.

Introduction
This paper is concerned with combining research on
databases and on scientific workflows applied to the devel-
opment of a framework that seamlessly supports the back-
wards and forward traceability of bioinformatics experi-
ments, at distinct abstraction levels. The termtraceability is
used here to denote the ability to describe the way in which
some product has been developed, including all processes
it went through. Provenance, on the other hand, is asso-
ciated with a place or origin, and is usually linked to data
i.e., when, where and who produced it. Provenance nor-
mally does not demand a detailed process trace. Both issues
– traceability of processes and provenance of data – are very
important in any kind of scientific experiment.

In bioinformatics, for instance, the quality of an experi-
ment depends heavily on properly identifying both data ori-
gins and the processes that produced these data (Buttleret al.
2002). However, it is common practice that provenance is
captured by laborious manual annotations, which often vary
across laboratories; moreover, the majority of computer sys-
tems in a laboratory do not provide traceability mechanisms.
Our work concerns traceability, and thus the ability to “dis-
cover the cause or origin of something by examining the way
in which it has developed” (Cambridge ).
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Different groups of scientists have distinct needs in terms
of provenance and traceability mechanisms (Barga & Di-
giampietri 2006; 2007). To cope with this issue, we propose
a layered and flexible solution to deal with the range of user
needs. Furthermore, a bioinformatics framework must con-
tain integration mechanisms to provide a transparent access
to heterogeneous data and to provide interoperability among
tools and systems.

Thus, the paper is concerned with how to record detailed
information about all processes involved in an experiment
to produce a given result, such as an assembled genome
or a phylogenetic tree. Our solution is based on combin-
ing annotated scientific workflows with database mecha-
nisms. Annotations and workflows are stored in a database,
which allows supporting traceability requirements through
database queries, allowing for both forward and backward
tracking within a bioinformatics experiment. We are testing
the framework for bioinformatics problems in the tasks of
genome assembly.

The main contributions of this paper include the follow-
ing: (1) Description of a framework to support the tracing
of all steps of a bioinformatics experiment, taking advan-
tage of standard database storage and querying mechanisms;
(2) Extension of database query facilities to support domain-
specific concerns (e.g., in the bioinformatics context, allow-
ing queries concerning alignment, base-calling, etc); (3)Val-
idation of the proposed approach via a prototype, tested us-
ing real laboratory data.

The remainder of this paper is organized as follows. Sec-
tion Main Concepts and Related Work describes basic con-
cepts and related work. Section Architecture presents our
architecture. Section Implementation Issues presents exam-
ples where our system is helping scientists. Section Conclu-
sions contains our conclusions and plans for future work.

Main Concepts and Related Work
This section discusses concepts used in the paper and
reviews related work, focusing on workflow and prove-
nance representation, data integration and interoperability,
and traceability. Finally, we describe our previous work
whose contributions include mechanisms to facilitate bioin-
formatics workflow composition (Digiampietriet al. 2006;
Digiampietri, Ṕerez-Alćazar, & Medeiros 2007), and effi-
cient storage of provenance information (Barga & Digiampi-



etri 2006; 2007).

Basic Concepts
The genome assemblyproblem consists in joining and
matching together pieces of DNA sequences to create a con-
tiguous sequence, much in the way jigsaw puzzles are put
together. Fragment sequences are created inside a laboratory
by procedures that extract pieces from a species’ DNA and
then produce long strings of base pairs (ACGT). The main
challenge in this process is finding the appropriate means of
assembling the fragments together into a biologically cor-
rect sequence. For more details on bioinformatics problems
see (Setubal & Meidanis 1997).

One of the challenges in genome assembly is how to com-
bine the several complex activities that are used in these pro-
cesses. These activities use heterogeneous data from distinct
sites and need a high degree of human intervention.Sci-
entific workflowsare being used as a means to design and
execute these complex activities (Oinnet al. 2004). Asci-
entific workflow(Waineret al. 1996) is the specification of
a process that describes a scientific experiment. Such work-
flows allow the representation and support of complex tasks
that use heterogeneous data and software (Cavalcantiet al.
2005). In particular, in bioinformatics they are characterized
by variability in workflow design for the same task. There
are several open problems involved in scientific workflow
construction, sharing and validation. Among them, the pa-
per is concerned with traceability mechanisms.

Related Work
Scientific workflows (Waineret al. 1996) are being in-
creasingly adopted as a means to specify and coordinate
the execution of experiments that involve participants in
distinct sites. Such workflows allow the representation
and support of complex tasks that use heterogeneous data
and software (Cavalcantiet al. 2005). Bioinformatics
is one of the research domains that has widely profited
from this facility (Hoon et al. 2004; Oinnet al. 2004;
Stevenset al. 2004). However, these systems do not capture
provenance information or provide the necessary features to
exploit it, hampering the validation and reuse of bioinfor-
matics data.

Workflow and Provenance Representation. The Work-
flow Management Coalition (WFMC) (Hollingsworth 1995)
has defined a generic model for workflow representation to
provide interoperability among different workflow systems.
This model has been extended in several ways - e.g. to pro-
vide more semantic information or facilitate the sharing of
scientific experiments. Also to helps interoperability, many
tools invoked by such workflows are now encapsulated into
Web services.

In particular, we take advantage of the extension de-
scribed in (Medeiroset al. 2005; Pastorello Jr.et al. 2005),
which concerns a multi-layered workflow representation to
support sharing and reuse at different abstraction levels.
Workflows are represented in three layers: abstract work-
flow (information about the generic structure of a workflow),
concrete workflow (instances of the abstract workflow) and

executable workflow (a workflow with its input data and pa-
rameters).

Several groups have conducted research on provenance
representation (Moreau & Foster 2006; Pastorello Jr.et al.
2005). A provenance model must represent the “what”,
“when” and “where” of information managed in a system.
We argue that a provenance model must also be flexible to
address distinct levels of detail in workflow representation,
and to consider the needs of distinct user groups. Some
of our previous work concerns a layered provenance model
that considers such flexibility (Barga & Digiampietri 2006;
2007).

Our workflow model combines the features of the lay-
ered workflow model (Medeiroset al. 2005) and the
layered provenance model (Barga & Digiampietri 2006;
2007). This combination allows workflow and provenance
information to be stored, queried and shared at different ab-
straction layers. We also added a fourth layer calledrun-
time workflowto store information about the executions of
anexecutable workflow.

Data Integration and Interoperability. There are several
approaches to deal with data heterogeneity, varying from
the conceptual to the physical level (Hernandez & Kamb-
hampati 2004). All of these approaches require establish-
ing a mapping among different perspectives of the world.
The conceptual level perspective provides to all users a sin-
gle conceptual model of their applications. This approach
has been widely used in bioinformatics frameworks (Peter-
sonet al. 2001; Steinet al. 2002; Diehnet al. 2003); this
kind of solution is useful when the groups involved use the
same model, but it does hamper data sharing among groups
that use different models. At the other end of the spectrum
lies the approach involving structure (and conceptual) map-
ping (Bowers & Lud̈ascher 2004). This approach is based on
keeping a record of all data transformations that are needed
in a system to allow the integration of heterogeneous data
from several sources. This record is then updated whenever
a new kind of transformation is available.

Our framework is unique in that it uses a structure map-
ping record combined with ontological description of the
concepts to provide a flexible way to integrate heteroge-
neous data. This combination takes advantage of the rela-
tionships present in the ontologies to map concepts into each
other, when defined by distinct user groups.

Global conceptual models or structure mapping are com-
mon solutions for data integration. Interoperability among
systems requires additional approaches, including data ex-
change standards, use of Web services and interface match-
ing algorithms (Hernandez & Kambhampati 2004). The lat-
ter are based on trying to match a request for some data or
process (caller request) with candidates that best fit this re-
quest. Approaches vary according to the compatibility be-
tween interfaces – e.g., (Santanchè & Medeiros 2005).

Our proposal combines the matching and ranking al-
gorithm from Santanch̀e and Medeiros (Santanchè &
Medeiros 2005) with the structure mapping of Bowers
and Lud̈ascher (Bowers & Lud̈ascher 2004), enhanced
with workflow composition mechanisms (Digiampietriet al.



2006; Digiampietri, Ṕerez-Alćazar, & Medeiros 2007). The
goal is to facilitate the integration of data and the interoper-
ability among different sites.

Traceability. Traceability mechanisms, in the sense used
in this paper, are typically found in work that deals with
software engineering, electronic commerce or supply chain
problems. In software engineering, traceability is used to
establish relationships among requirements, specifications,
design and the corresponding code (Maletic, Collard, &
Simoes 2005). This allows the verification of, for instance,
how requirements evolve to an implemented functionality
or to start from a piece of software and trace back the cor-
responding requirements. In electronic commerce systems,
traceability is considered a trust enhancer that is used to
trace transactions, payments, and measurements, which pro-
vides the assurance of fairness and methods to establish le-
gal proof and redress (Steinauer, Wakid, & Rasberry 1997).
In supply chain systems, traceability means providing the
identification of all the steps (processes) that were executed
to generate a given product, including all the raw matter and
intermediate inputs used, the quality of each input, the place
where it was produced, etc (Opara 2003).

Our proposal aims to take advantage of these traceability
mechanisms and apply them to bioinformatics, allowing the
back- and forward trace of experiments.

Architecture
We have developed a framework (Digiampietriet al. 2006;
Digiampietri, Ṕerez-Alćazar, & Medeiros 2007) to take ad-
vantage of ontologies to support the specification and anno-
tation of bioinformatics workflows. Our framework extends
Artificial Intelligence planning techniques with ontologies
to support design, reuse and annotation of bioinformatics
experiments, specified as scientific workflows. Each activity
within such a workflow can be executed either by invocation
of a Web service or of another (sub-)workflow. Workflows
are stored in databases, and ontology repositories are used
to enhance the semantics of automatic bioinformatics work-
flow construction.

This paper extends this design and management frame-
work with mechanisms to support full traceability of experi-
ments. This approach takes advantage of a workflow prove-
nance model (Barga & Digiampietri 2006; 2007) to support
efficient storage of provenance information.

Figure 1 shows the resulting architecture, portrayed in
four layers: Interface, Processing, Data Manager and Repos-
itories. The modules in gray correspond to extensions intro-
duced to support traceability. The Interface Layer contains
the graphical interface that presents to the user all the func-
tionalities of the framework. The Processing Layer is com-
posed of several processing modules that are responsible for:
register and discovery of services, design of workflows (in-
cluding their automatic composition) and workflow execu-
tion. The Data Manager Layer is the middleware between
the repositories and the rest of the system. It contains fea-
tures to support interoperability, data integration and trace-
ability. The Repositories Layer stores information about ser-
vices, structure types, ontologies, data transformation rules,

Figure 1: System Architecture - gray boxes show features to
support traceability

workflows and provenance data.

Repositories
Five data repositories, stored in a database, serve as the ba-
sis for the design, annotation, execution, sharing and trace-
ability of bioinformatics experiments:Ontology, Structural
Types, Service Catalog, WorkflowandData Transformation
Rules.

The Ontology Repository contains information about con-
cepts and service types of a given domain. The Structural
Types Repository records information about the ways in
which the instances of a concept can be stored. The Work-
flow Repository stores workflows (and parts thereof), in the
four abstraction layers described in Section Workflow and
Provenance Representation, as well as all data needed to run
these workflows. The Workflow Repository also has now
been extended to contain provenance information and meta-
data. The Data Transformation Rules Repository stores in-
formation about the valid transformations from a data struc-
ture to another.

In more detail, theOntology Repositorystores two kinds
of ontologies:Domain OntologyandService Ontology. The
Domain Ontology contains the relationships among the con-
cepts of an application domain (in our case, bioinformatics
concepts – e.g.,genome). The Service Ontology stores the
types of services used in this domain, without their instanti-
ation – e.g.,alignment serviceor base–calling service.

TheStructural Types Repositoryspecifies the data struc-
tures for storing data used in an experiment – e.g., the inputs,
outputs, parameters of an experiment. Structural types can
be basic (integers, strings, etc) or, recursively, a composition
of types.

The Service Catalogextends the role of an UDDI (Uni-
versal Description, Discovery, and Integration). It stores in-
formation about service providers, the Web services avail-
able and their interfaces. Furthermore, it also stores non-
functional attributes of the service instances, qualifying ser-
vice interfaces with terms from our Domain Ontology and



classifying each operation of the service according to our
Service Ontology. An example of a catalog entry isBLAST,
stating thatBLAST is of type alignment serviceat URI
xml.nig.ac.jp/wsdl/Blast.wsdl.

The Workflow Repositoryextends the layered workflow
model of (Pastorello Jr.et al. 2005), adding information
about provenance (Barga & Digiampietri 2006; 2007). Such
information is stored for each workflow layer; thus, it can
refer to an abstract workflow, a specific instance of a work-
flow, the parameters and input data of a given executable
workflow or to the results of a workflow execution (includ-
ing information about the produced data, steps run, etc). In
other words, the Workflow Repository also stores all data
needed to execute a workflow.

TheData Transformation Rules repositorycontains three
kinds of information:Default Concept Representation, Au-
tomatic Transformationand Structure Mapping. The De-
fault Concept Representationis a table that links each type
in the Structural Types Repository to a concept in the Do-
main Ontology. That type is considered by the system as
the default structural type to represent this ontological con-
cept and it can be customized by the user. For instance, the
entry<blast alignment,alignment> indicates that
typeblast alignment is the default type to represent an
alignment. Structure Mapping and Automatic Transfor-
mation Rule are tables that contain rules to determine addi-
tional transformation across structures in a domain.

Automatic Transformationis a table in which each en-
try contains a set of rules that determine the automatic
execution of workflows to convertinput data into the
desired type. It is stored as<domain concept,
structural type, workflow id, date>. The
date indicates when the automatic transformation should
be executable (for example, every night, every weekend or
every time data is inserted or updated). Following the date
restriction, the workflow indicated by the rule will be ex-
ecuted to transform the input data (if it matches the do-
main concept and the structural type of the rule). For ex-
ample, the user can insert a rule that says that whenever
a chromatogramis inserted in the system using thede-
fault chromatogram structural type, the system must exe-
cute a workflow that transforms thechromatogram(using a
base−calling activity) and produces theDNA sequenceand
thequalityof the sequence.Chromatogramsare binary files
that contain the raw data of aDNA sequence.

Structure Mappingspecifies mappings of the possi-
ble transformations among structural types in a given
domain. Each entry in this table is a tuple of the form
<source type, target type, sub-domain,
workflow id, mapping losslessness,
mapping classification> where the mapping
from source type to target type is executed by the work-
flow. The sub-domain delimits the scope in which the
transformation can be applied. For example, aninteger
(basic structural type) can always be transformed into a
float (another basic structural type), so the sub-domain
of this transformation is our full Domain Ontology. On
the other hand, aflat file can only be transformed into
a xml blast file if the two structures refer to the concept

Figure 2: Data Transformation Classification

blast alignmentfrom the Domain Ontology. This kind
of data transformation mapping is especially useful when
considering data and tools that are heterogeneous and from
distinct sites.

Each transformation can be classified following two cri-
teria: losslessness and equivalence (Santanchè & Medeiros
2005). A transformation can bedegenerative(lossy), when
there is some loss in data precision (e.g., converting float
numbers to integer numbers) ornon-degenerative(loss-
less), when there is no loss of information. In terms of
equivalence, the results of a transformation can beequiva-
lent, super-structure(super-type),sub-structure(sub-type)
or mixed. The results areequivalentwhen all information
from the source structural type is used (and sufficient) to
fill all the information in the target structural type. An ex-
ample is when the difference between the two types is only
the name of a field – such as, if the source structure has a
field calleddna sequenceof typestring and the target struc-
ture has the “same”string field but with the namesequence
of DNA. The result of a transformation is asuper-structure
when the information from the source structure is enough
to fill the target structure but some of the source informa-
tion is not used – e.g., when transforming a structure that
has aDNA sequenceand thequality of this sequence into a
structure that has only theDNA sequence. The result of a
transformation is asub-structurewhen the information from
the source structure is totally used in the transformation but
it is not enough to fill all the information in the target (e.g.,
when transforming a structure that has only aDNA sequence
into a structure that hasDNA sequenceand thequalityof this
sequence), in this case, the missing information can be filled
with default or null values. The results of a transformation
are consideredmixedwhen there is information in the source
structure that is not used in the target structure and there is
information in the target structure that cannot be filled by the
source structure. Figure 2 illustrates these data transforma-
tion examples.

Data Manager
The three main functionalities of theData ManagerLayer
are:

1. It serves as the middleware (interface) between the other
modules and the repositories;

2. It executes the automatic data transformations using the
Data Transformation Rules;



3. It supports traceability requests.

The middleware functionality (1) provides data indepen-
dence - internal storage structures can change without affect-
ing other modules.

The execution of automatic data transformations (2) is
useful to preprocess information (accelerating subsequent
queries involving this information), to convert data to a de-
sired type, and to facilitate traceability functionalities. For
example, suppose a user declares that the input of a work-
flow in the Workflow Repositoryis a chromatogram; there
is little information that can be extracted from this, sincea
chromatogram is a raw binary file. However, if an automatic
transformation is executed to transform the chromatogram
into asequence of nucleotideswith sequence of quality val-
ues, it is possible to pose queries on sequence alignment,
search for patterns, etc.

The third functionality of the Data Manager is to provide
traceability mechanisms. To start, it supports basic queries
about data and metadata – e.g., “show all sequences from
LBI-UNICAMP”, or “show all sequence alignmentspro-
duced byblastpalignment tool”. Moreover it allows queries
about the process that produced the data, as well as queries
on temporal dependencies among activities – e.g. show the
experiments that used theblastnalignment tool whose input
was processed byphredbase-calling tool.

To allow traceability processing, it also supports an ex-
tended set of domain-specific operations, for example, the
sequence alignment operation. This allows formulation of
complex traceability queries – e.g., “select all thechro-
matogramswhoseDNA sequencealigns with a given se-
quence”.

Interactions Between Data Manager and the Other
Modules
The Data Manager provides the required functionality for
data integration and traceability. It translates requestsfrom
the other modules to the data Repositories and vice-versa,
providing data independence. This simplified the specifi-
cation of the other modules of the architecture and ensured
it extensibility. Here, we briefly describe the messages ex-
changed between these modules and the Data Manager. A
detailed description of the modules’ functionality can be
found in (Digiampietriet al. 2006; Digiampietri, Ṕerez-
Alcázar, & Medeiros 2007).

The Service Registermodule lets users register services
into the Repository layer, via the Data Manager. The Data
Manager provides information about the ontologies that are
used to classify the Web service operations. The user must
classify each operation offered by a service according to
some type (from the Service Ontology) and must assign an
ontological concept (from the Domain Ontology) to each op-
eration parameter. Parameters structural types can be de-
duced from the WSDL specification of the service.

TheService/Workflow Discoverymodule searches for ser-
vices or workflows that can perform a given task. It starts
by requesting from the Data Manager the list of services
of a given ontological type from the Service Ontology, and
services with a given interface which produce results of

a given concept type from the Domain Ontology. When-
ever no suitable service or workflow is found, the Ser-
vice/Workflow Discovery module notifies the user, who
takes the appropriate action – e.g. designing a new work-
flow. More details can be found in (Digiampietriet al. 2006;
Digiampietri, Ṕerez-Alćazar, & Medeiros 2007).

TheDesignmodule provides support to workflow design
and composition. It asks the Data Manager information
about the services and workflows available; the input and
output data of a workflow already executed; and sends to
Data Manager user updates to a given workflow.

TheService requestmodule asks to the Data Manager in-
formation about how to invoke a given Web service, such as
the provider URL, the messages that will be sent, the struc-
tural type of the service answer, etc.

Finally, the user can pose traceability and provenance
queries via the interface. These queries are forwarded to
the Data Manager, which processes them, and results follow
the inverse path.

Implementation Issues
The first version of the architecture has been implemented
as follows. All repositories are stored in a database under
the MySQL 5.0 DBMS.

Most other modules are implemented in Java. Design fa-
cilities incorporate modules to support workflow composi-
tion and edition; one of these modules was specified using
SHOP2, an Artificial Intelligence planner. The Data Man-
ager contains the core functionalities to support traceabil-
ity and provenance tasks. It is also programmed in Java,
and acts as an interface between MySQL and the remaining
modules.

Domain Specific Query Operators
The Data Manager encapsulates transformation mechanisms
that let the other modules pose queries that have domain
specific operators – e.g.,base calling, alignment, etc. It
translates these queries into a sequence of basic MySQL 5.0
queries, to be executed on the underlying database.

Domain specific operators can be used in two clauses:SE-
LECT and WHERE. Let op be a domain specific operator
andy some repository element to which it is meaningful to
apply op. Thus,SELECT op(y) FROM ...first retrievesy
from the repositories according to the query predicate in the
WHEREclause, and then computesop(y)– executingop on
y.

The same kind of procedure is applied in theWHERE
clause: the predicate to be satisfied is the result of the com-
putation ofop(y).

Let us first exemplify theSELECTclause. A user wants to
see all thechromatogramsthat have been used/referenced in
any workflow stored in theWorkflow Repository– which, we
recall, contains workflows at several abstraction levels, data,
provenance information, and annotations. However, since
chromatograms are stored in binary files, the user wants to
see only theid of the chromatograms and theirnucleotide
sequence. Thenucleotide sequencecan be produced by the
basecalling domain specific operator. However, this op-
erator returns objects of typesequenceand quality, which



Figure 3: Examples of objects of typeschromatogram, se-
quenceand qualityandblast alignment

have three attributes – see example of such an object in Fig-
ure 3. In this case, the user must specify which components
of sequenceand qualityobjects are to be returned, using the
standarddot notation of query languages. The select state-
ment to execute this query is:
SELECT chromatogram.id,

base calling(chromatogram).nucleotide sequence

FROM WorkflowRepository

Consider now aWHEREwith special computations. For
example, suppose a user wants to retrieve allreadsthat align
with a givenread whoseidentity is greater than or equal to
a given value:
SELECT read FROM WorkflowRepository WHERE

alignment(read,’GGAAGGCGCCAACGCCATCGGCGACGTCG’).hsp identity >= 25

A read is the sequence of lettersA, C, G, and T ex-
tracted from a chromatogram;alignmentis a domain spe-
cific operator whose result is represented in the form of
a blast alignment structure (see Figure 3). This opera-
tor receives as input twoDNA sequences(read is a sub–
type of DNA sequence) and produces an object of the type
blast alignment. This operator invokes a tool called BLAST
(Basic Local Alignment Search Tool) (Altschulet al. 1997)
to execute this operator. Blastalignment is a structure com-
posed by several fields (based in the XML blast model (Mad-
den 2002); we highlight the fields named hitnum (the num-
ber of the alignment), the hspscore (the score of the align-
ment) and the hspidentity value (the number of nucleotides
that matched in the alignment).

Tool and Data Traceability
The implementation of traceability mechanisms depends on
two factors: (i) a storage infrastructure that stores all rele-
vant information about the data and the processes; and (ii)
tools to support forward and backward traceability.

Section Repositories presented our storage infrastructure.
The second factor depends on the user’s needs. This section
presents an example of a sequence assembly experiment, for
which we discuss six traceability queries to illustrate specific
points.

Suppose a user wants to assemble a set of DNA se-
quences to produce theassemblyresult. This set is com-
posed of three subsets:read1 (reads extracted from chro-
matograms and inserted in the system by the user);read2
(reads inserted by the user but without corresponding chro-
matograms) andcontigs (preassembled reads). After be-
ing assembled, not all of the sequences may be present in the

Figure 4: Example of an assembly experiment.

assemblyresult (which always happens in big assemblies).
The input sequences subsets can be redistributed in six
groups: read1in, read1out, read2in, read2out,
contigsIn andcontigsOut – where the suffixes mean
that the group of sequences is present in theassemblyresult
(in) or not (out). Note that it is only possible to know if a
sequence (or parts thereof) was actually used in the assembly
experiment after the execution of the assembly workflow,
and then only if the assembly workflow stores (as part of its
result) a description of the read composition of the resulting
assembled sequence.

Figure 4 shows a graphical representation of this ex-
periment. READ1, READ2, andCONTIG correspond to
the subsetsread1, read2, andcontigs, respectively.
CHROMATS corresponds to the raw data from the chro-
matograms (before thebase–callingoperation, invoked to
extract chromatogram fields sequence and quality – see
Fig. 3). The data in the datasetsCHROMATS, READ1 and
CONTIG was partially inserted by the users and partially
produced by the system. To simplify the explanation, let
us consider that theCONTIG dataset has only four contigs
(calledcontig1, contig2, contig3 andcontig4).
The rectangles in the figure correspond to workflows.
There are five workflows:base–calling wf1, which con-
verts data fromCHROMATS to READ1 assemblywf1,
assemblywf2, assemblywf3, which produce, respectively,
contig1, contig2 andcontig3; contig4 was in-
serted by the user.ASSEMBLY WORKFLOW, the fifth work-
flow, produces theassemblyresult. The elements in gray
are the sequences that are present in theassemblyresult –
that is, they belong to the groupsread1in, read2in and
contigsIn.

When querying the databases, the user can choose be-
tween two kinds of answers: nonrecursive (which shows
only the immediate result of a query) and recursive (which
recursively navigates in an experiment to give a more com-
plete traceability answer). The latter is useful in the caseof a
workflow with composite activities (i.e., where one activity
itself encapsulates a workflow). This supports traceability
at distinct abstraction levels. There follows a six represen-
tative traceability demands, two of which (1 and 5) involve
data used in processes, and the others process execution de-
tails.

1. What is the input data that was used to run the AS-
SEMBLY WORKFLOW? The nonrecursive answer is



the data from the setsread1, read2, andcontigs.
The recursive answer also includes the data fromCHRO-
MATS that generates the data from the setread1, and all
the DNA sequences and chromatograms that were used to
produce the contigs (from thecontigs set). This ques-
tion requires backward tracing and its answer involves all
data used in a workflow execution. It is useful when a
user intends to re-execute an experiment and needs all the
input information to do this.

2. What are the input sequences that are present in the
assembly result? The answer is equivalent to the pre-
vious one, but will contain sequences fromread1in,
read2in, andcontigsIn. This question also requires
backward tracing and is useful to distinguish the input
data (query 1) from the data actually used.

3. What processes were used to produceassembly result?
The nonrecursive answer is onlyASSEMBLY WORK-
FLOW. The recursive answer also includesassembly wf1,
assembly wf2andbase–calling wf1. The answer - a set of
processes (workflows) - uses backward tracing. Note that
contig3, the data produced byassembly wf3, was not
used in theassemblyresult).

4. What services/tools were used to produceassem-
bly result? This requests all the services that compose
the workflows from the previous query. It uses backward
tracing that, recursively, looks inside each workflow for
services used to produce theassemblyresult.

5. What data was produced using raw chromatogram
number 1 (from the CHROMATS dataset)? The re-
sult is the DNA sequence produced through the use of the
base–callingworkflow and all the assemblies that use this
sequence. This needs forward tracing and is useful when
a user wants to update a given information and needs to
know what data derives from this information.

6. What services or processes produce analignment? The
answer is the set of all services and workflows whose
outputs produce analignmentor any sub–concept (in the
Domain Ontology) ofalignment. This requires a combi-
nation of interface matching and semantic relationships,
being useful when a user wants to know what tools can
produce a desired concept (or data type).

We point out that we provide traceability functionality
that is normally unavailable in standard mechanisms. This is
achieved thanks to the fact that we store extended semantic
knowledge about each tool and process used in an experi-
ment.

For instance, query 2 wants to know which of the input se-
quences effectively contributed to construct the result. This
cannot be deducted in standard representations, where the
only information available is some kind of tuple<input
data, process, output>. Our repository manage-
ment mechanisms instead, annotate processes and tools with
a sophisticated type facility. Here, for instance, our system
knows that this execution ofAssembly Workflowinvoked a
specific tool whose results include logs of its intermediate
steps. The processing of query 2 is thus transformed into a
set of queries that first identify the type of the tool used in the

assembly and, afterward, process all of its logs, themselves
annotated with structural types and ontology terms.

Conclusions
This paper presented a framework to support bioinformatics
experiments enhanced with traceability mechanisms. This
framework helps scientists to record detailed information
about all processes involved in an experiment. Our solu-
tion takes advantage of structure mapping to facilitate data
integration, and of interface matching to provide interoper-
ability. It also extends database query facilities to support
domain-specific concerns. The framework has been vali-
dated by a prototypical implementation with real data.

Several bioinformatics laboratories use a scientific work-
flow infrastructure to design and execute their experiments
- e.g., (Hoonet al. 2004; Oinnet al. 2004; Stevenset al.
2004). Our work extends these approaches through the use
of the Data Manager layer that, when combined with data
repositories, provides interoperability, data integration and
traceability mechanisms.

As future work we intend to specify and implement a
ranking algorithm to sort the results of a query, based on the
suitability of each result. We also intend to develop mech-
anisms for sharing transformation rules. Finally, we intend
to develop graphical tools to facilitate data presentationand
include user feedback loops to improve retrieval facility.
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