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ABSTRACT
Content-based image retrieval (CBIR) is a challenging task.
Common techniques use only low-level features. However,
these solutions can lead to the so-called ‘semantic gap’ prob-
lem: images with high feature similarities may be different
in terms of user perception. In this paper, our objective is
to retrieve images based on color cues which may present
some affine transformations. For that, we present CSIR: a
new method for comparing images based on discrete dis-
tributions of distinctive color and scale image regions. We
validate the technique using images with a large range of
viewpoints, partial occlusion, changes in illumination, and
various domains.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Infor-
mation Search and Retrieval

General Terms
Information Retrieval.

Keywords
Content-Based Image Retrieval (CBIR), color and scale rep-
resentative features.

1. INTRODUCTION
Content-based image retrieval (CBIR) is a challenging

task. Common techniques use low-level features and ex-
plores local shape and intensity information for viewpoint
and occlusion [30]; wavelets and autoregressive models [35];
surface reflection [3]; and Gabor filters [9]. Even fractal
transformations can hold interesting results [6].

Some CBIR techniques use segmentation as a pre-proc-
essing stage. However, experience has demonstrated that
segmentation is suited only for narrow domains due to its
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own difficulty [31,36]. The most preferred descriptors for re-
trieval in broad-image domains use color and texture infor-
mation [8,25,31]. Some approaches rely on color histograms
and color correlograms [11,34], color coherence vectors [26],
and border/interior pixel classification [33]. Sometimes, fea-
tures such as shape and silhouette [2,37], and moment invari-
ants [14,28] can reduce the ‘semantic gap’ problem: images
with high feature similarities may be different in terms of
user perception.

Recent developments have used middle- and high-level in-
formation to improve the low-level features. Li et al. [17]
have performed architectonics building recognition using
color, orientation, and spatial features of line segments.
Raghavan et al. [29] have designed a similarity-preserving
space transformation method of low-level image space into
a high-level vector space to improve retrieval. Some re-
searchers have used bag of features for image categoriza-
tion [10, 13, 21]. Others have used Bayesian approaches
to unsupervised one-shot learning of object categories [7].
However, these approaches often require complex learning
stages and can not be directly used for image retrieval tasks.

To address these problems, we present a new method to
compare images using discrete distributions of distinctive
Color and Scale representative Image Regions (CSIR). The
key advantages of this method are: (1) it is robust to view-
point, occlusion, and illumination changes; (2) it is invariant
to image transformations such as rotation and translation;
(3) it does not require any learning stage; and (4) it uses
an effective metric to compare images with different num-
ber of features. Hence, it does not require a fixed number
of features for an image.

To support such statements, and to show that the method
can be used in CBIR tasks, we validate the technique using
images with a large range of viewpoints, partial occlusion,
changes in illumination, and various domains.

2. IMAGE DESCRIPTORS
In this section, we present some low-level feature descrip-

tors widely used in the literature. In Section 3, we compare
these descriptors with our technique.

In general, we classify color image descriptors into three
categories: (1) global-based; (2) partition-based; and (3)
region-based.

1. Global-based. It comprises methods that globally
describe the color distribution of images. Such meth-
ods do not take into account the color spacial dis-
tribution. These methods are both time and space



computational efficient. GCH (c.f., Sec. 2.1), and
BIC (c.f., Sec. 2.2), are examples of such techniques.

2. Partition-based. It comprises methods that spa-
tially decompose the image into a fixed number of
regions. Regions are individually analyzed in order
to capture the color spatial distribution. Such meth-
ods do not take into account image’s visual cues.
CCV (c.f., Sec. 2.3), and LCH (c.f., Sec. 2.4) are ex-
amples of such approaches.

3. Region-based. It comprises methods that use seg-
mentation to decompose images according to visual
cues. The number of obtained regions as well as shape,
size, and location vary from image to image. The ob-
jective is not to find and separate objects in the image
but to find similar group of pixels. CBC (c.f., Sec. 2.5)
is an example of such techniques.

2.1 Global Color Histogram (GCH)
The simplest approach to encode the information present

in an image is the Global Color Histogram (GCH) [34]. A
GCH is a set of ordered values, one for each distinct color,
representing the probability of a pixel being of that color.
Uniform quantization and normalization are used to reduce
the number of distinct colors and to avoid scaling bias [34].
The L1 (City-block) or L2 (Euclidean) are the most used
metrics for histogram comparison.

Histograms are effective for retrieval if there is unique-
ness in the color pattern present in the images we want to
compare. However, GCH can be sensitive to changes in
viewpoint, occlusion, and illumination [36].

2.2 Border/Interior Classification (BIC)
Stehling et al. [33] have presented the border/interior pixel

classification (BIC), a compact approach to describe images.
BIC relies on the RGB color-space uniformly quantized in
4 × 4 × 4 = 64 colors. After the quantization, the image
pixels are classified as border or interior. A pixel is classified
as interior if its 4-neighbors (top, bottom, left, and right)
have the same quantized color. Otherwise, it is classified as
border.

After the image pixels are classified, two color histograms
are computed: one for border pixels and another for interior
pixels. The two histograms are stored as single histogram
with 128 bins. BIC compares the histograms using the dLog

distance function [33]

dLog(q, d) =
i<M
X

i=0

‖f(q[i]) − f(d[i])‖ (1)

f(x) =

8

<

:

0, if x = 0
1, if 0 < x < 1
⌈log

2
x⌉ + 1, otherwise

(2)

where q and d are two histograms with M bins each. The
value q[i] represents the ith bin of histogram q, and d[i] rep-
resents the ith bin of histogram d.

2.3 Color Coherence Vectors (CCVs)
Zabih et al. [26] have presented an approach to compare

images based on color coherence vectors. They define color’s
coherence as the degree to which pixels of that color are
members of large similarly-colored regions. They refer to

these significant regions as coherent regions. Coherent pixels
are part of some sizable contiguous region, while incoherent
pixels are not.

In order to compute the CCVs, first the method blurs
and discretizes the image’s color-space to eliminate small
variations between neighboring pixels. Next, it finds the
connected components in the image aiming to classify the
pixels within a given color bucket as either coherent or in-
coherent.

CCV binary classification is based on a non-binary visual
property of the images (the size of the connected compo-
nents) and an empirical size threshold is needed. Hence the
most of the useful information about the size of the con-
nected components is lost in this reduction.

2.4 Local Color Histogram (LCH)
Tan et al. [20] have presented an approach based on local

color histograms (LCH). This technique decomposes the im-
age into equally-sized cells and individually describes each
cell using a local color histogram.

The image contents are represented using a local color
histogram matrix, one for each cell

hi,j,k =
ai,j,k

n
(3)

where n is the number of image’s pixels, ai,j is a cell, and k

is a quantized color. The LCH distance between two images
is the difference of corresponding cell histograms using L1.

2.5 Color-based clustering (CBC)
Stehling et al. [32] have presented a region based approach

to retrieve images named color-based clustering (CBC). This
method decomposes the image into disjoint connected com-
ponents. Each region presents a minimum size smin and a
maximum color dissimilarity dmax. Each region is defined
in terms of the average color in the Lab space (L,a,b), its
normalized horizontal and vertical center (h,v), and its size
in pixels normalized with respect to the image’s size (s).

The L2 Euclidean distance between two regions ai of im-
age A and bj of image B, is

D(ai, bj) = α×L
color
2 (ai, bj) + (1−α)×L

center
2 (ai, bj) (4)

where Lcolor
2 (ai, bj) considers the L, a, b color differences of

images A and B. Lcolor
2 (ai, bj) considers the center differ-

ences. The parameter α measures which sum component
needs to be most valued. The distance d(A,B) of two im-
ages is the weighted distance D(ai, bj) ∀ai, bj ∈ A, B. We
have used IRM [16] for such computation.

3. THE CSIR FRAMEWORK
In presence of different viewpoint, occlusion, and illumi-

nation in broad-image domains, the direct use of color and
texture descriptors can fail.

To address this problem, we present a new method for
CBIR based on images’ discrete distributions of distinctive
local representative features and color properties: CSIR. It
is a region-based technique to retrieve images using color
visual cues which are robust to pose, orientation, and scale
changes. Our framework is based on three key steps: (1)
feature region detection; (2) description; and (3) comparison
metric; as we illustrate in Algorithm 1.

Our CSIR approach is different from previous litera-
ture [15,19], where the authors describe the images based on



Algorithm 1 The CSIR framework.

Require: Input image I ;
1: Feature region detection: search for local scale and

rotation invariant feature regions R. ⊲ Sec. 3.1

2: Description: ⊲ Sec. 3.2

i Construct a separate Gaussian pyramid GR,
GG, and GB for each color channel (R,G,B) of
the image I .

ii For each feature region r ∈ R

• Extract local scaled and oriented
patches P from the Gaussian color
pyramids GR, GG, and GB .

• For each patch p ∈ P

– Calculate a local low-level
color descriptor (e.g., BIC,
GCH).

3: Comparison metric: use an appropriate metric to
compare the images. ⊲ Sec. 3.3

histograms of gradient orientation and do not codify color
information of the images. In other related work, the au-
thors transform the image to an invariant color-space [1]
while here we merge low-level information and local repre-
sentative features using the image color-space.

3.1 Feature region detection
In this stage, we are interested in patterns that can be re-

peatedly found amongst similar images independent of some
affine transformations (e.g., pose, orientation, and scale).

To find such regions, we use a feature region detector or
operator [23]. The detectors provide regions which later we
use as support regions to compute color descriptors.

Many different techniques for describing local image re-
gions are available: the rotation invariant Harris points [23];
the rotation and scale invariant Harris-Laplace, Laplace-of-
Gaussian [18], Difference-of-Gaussian [5, 19], and Hessian-
Laplace regions [19, 22]. Furthermore, there are the affine
transformations invariant Harris-Affine [24], and Hessian-
Affine regions [24], among others.

Here, we use the Difference-of-Gaussian (DoG) operator.
This idea was first proposed by Crowley and Parker [5]. We
search for local extrema in the 3D scale-space representa-
tion of an image I(x, y, σ) where σ is the scale. In this ap-
proach, we create a pyramid representation of an image us-
ing difference-of-Gaussian filters. We detect a feature point
if a local 3D extremum is present and if its absolute value is
higher than a threshold.

To build the scale-space pyramid, we successively smooth
and sample the input image with a Gaussian kernel. We
obtain the DoG representation by subtracting two successive
smoothed images. The local 3D extrema in the pyramid
representation determine the localization and the scale of
the feature regions.

We have used the DoG operator for a number of reasons.
First, it is very efficient: we build all DoG levels by us-

ing only smoothing and sub-sampling operations. Second,
DoG operator provides a close approximation to the scale-
normalized Laplace of Gaussian (LoG) regions [18]. This
approximation is interesting because Mikolajczyk [22] have
showed that the maxima and minima of LoG operator pro-
duces the most stable image features compared to a range of
other possible operators, such as gradient, Hessian, or Har-
ris corner. However, LoG is more computational intensive
than DoG.

We perform the feature region detection in the luminance
channel and do not codify color information. Our experi-
ments have shown that two good choices are the V channel
for HSV color representation or Y for YCbCr. In Figure 1,
we present the result of this stage for an input image.

(a) Input image. (b) V channel. (c) Regions.

Figure 1: Feature regions detection.

Formally, let the scale space of an image be a function
L(x, y, σ), produced from the convolution of a Gaussian ran-
dom variable G(x, y, σ) with an input image I(x, y)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (5)

where ‘*’ is the convolution operator in x and y, and

G(x, y, σ) =
1

2πσ2
e
−

x
2+y

2

2σ2 . (6)

As proposed by Lowe [19], to find good representative
and invariant regions in scale-space, we can search for lo-
cal extrema in the DoG function convolved with the image,
D(x, y, σ). We can compute this step using two successive
scales separated by a constant multiplicative k. The con-
stant factor k is required for true scale invariance [18,19].

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ) − L(x, y, σ). (7)

3.2 Description
In this stage, our objective is to describe each persistent

region found in Stage 1. It is important that each region
codifies color information that present repeatable patterns
amongst similar images.

Stage 1 provides important information that enables us to
retrieve similar images even when such images are slightly
modified by some affine transformations. However, this ap-
proach still does not consider color information or even cap-
ture the color spatial distribution. In Stage 2, we use the
Stage 1 resulting regions to find similar image color cues
capturing their distribution and location in the images.

When we use color descriptors, we represent images’ color
patterns. Given a query image, we are interested in finding



similar images and we use repeatable color patterns to find
the answers. CSIR approach introduces a new concept. In-
stead of using the color pattern analysis in the whole image
(like previous approaches), we analyze color patterns in rep-
resentative image’s regions. We show, experimentally, that
analyzing only these regions, instead of the whole image, it
is possible to improve effectiveness in CBIR tasks.

In order to describe the representative image’s regions, we
construct a separate Gaussian pyramid GR, GG, GB for each
color channel (R,G,B) of the input image I . Figure 2 shows
the RGB-composed resulting pyramid of an input image.

Figure 2: Six-octave RGB-composed resulting pyra-
mid of the image in Figure 1(a). Each octave has 6
scales.

For each region of Stage 1, we extract a local scaled and
oriented patch feature region from the Gaussian color pyra-
mid. The patches capture the different illumination, view-
point, and orientations of the image. Figure 3 shows the
resulting patches for the input image in Figure 1(a). There
are three patches for each scale, eight patches for each oc-
tave, from left to right, top to bottom.

Figure 3: Some resulting patches of the image in
Figure 1(a).

Next, for each extracted patch, we calculate a local low-
level image descriptor (e.g., BIC, GCH, CCV) that repre-
sents patches’ local color information. Figure 4 shows the re-
sulting features for three patches for each scale, eight patches
for each octave, from left to right, top to bottom. In this

case, we have used BIC to encode the low-level information
on each patch. According to the BIC classification, white
color represents border and black represents interior.

Figure 4: Some resulting low-level information
patches of the image in Figure 1(a).

3.3 Comparison metric
CSIR method provides color and scale information regions

that describe an image. The number of feature for each im-
age is different. The more complex an image the more fea-
ture regions CSIR provides for it. Hence, we need to com-
pare images with different number of features. For that, we
model the image features as hyper points under an unknown
distribution. Further, we use the Earth Mover’s Distance
(EMD) metric to evaluate dissimilarity between two multi-
dimensional distributions (image features). The advantage
is that EMD “lifts” this distance from individual features to
full distributions [27].

Intuitively, given two distributions Bp and Bq, we can
view Bp as a mass of earth properly spread in space, and Bq

as a collection of holes in that same space. Then, the EMD
measures the least amount of work needed to fill the holes
with earth. Here, a unit of work corresponds to transporting
a unit of earth by a unit of ground distance.

EMD provides a way to compare images based on their
discrete distributions of local features. Let (X ,D) be a met-
ric space, Bp,Bq ⊂ X be two equal-mass sets, and π be a
matching between Bp and Bq. The EMD is the minimum
possible cost of π and is defined as

EMD(Bp,Bq) = min
π:Bp→Bq

X

s∈Bp

D(s, π(s)). (8)

The computation of D is based on establishing the corre-
spondence between two images’ unordered features. How-
ever, the complexity of finding the optimal exact correspon-
dence between two equal-mass sets is cubic in the number of
features per set. Hence, we have used a low-distortion EMD
embedding [12] to reduce the problem of correspondence be-
tween sets of local features to an L1 distance.



4. EXPERIMENTS
In this section, we compare our CSIR approach to the set

of image descriptors described in Section 2. For each image,
we compute the feature vector using the selected descrip-
tors. We sort the resulting feature vectors using a proper
comparison metric.

We show that our approach is more resilient to some affine
transformations than previous approaches that use color in-
formation on the whole image. Further, we provide results
that point out that CSIR is indeed suitable for CBIR tasks.

4.1 Methodology
In this work, we have used the query-by-example (QBE)

paradigm [36]. In QBE, we give an image as a visual example
to the system and we query for images that are similar to the
given example. Clearly, the effectiveness of these systems is
dependent on the properties of the example image.

In order to assess the system effectiveness, we have a
database with reference models, a set of images that rep-
resent the queries, and a common metric to be used in the
effectiveness retrieval assessment. Here, our reference mod-
els are equal to the query models, and we test all images in
the database against the remaining images, one at a time.

To evaluate the descriptors we present in this paper, we
have used two image databases described in the literature.
To create a more realistic scenario, we have merged these
two databases.

The first database is a selection of the Corel Photo Gallery
and is the same as the reported in [33]. This database is
highly heterogeneous and comprises images with different
domains.

The second database is freely available1 and comprises
images with a common background and different viewpoint,
occlusion, and illumination.

As our objective in this paper is to retrieve objects in
a database, we have excluded images in both databases
that do not represent an explicit object. The resulting
combined database we use in the experiments comprises
1,320 broad-image domains spanned into 72 different object
classes. Each class contains at least 5 images. We present
some examples of the resulting database in Figure 5.

Figure 5: Resulting database. Boats, Rodeo and Car

classes.

We use the Precision × Recall [31,36] metric to assess the
retrieval effectiveness. Precision is the ratio of the number of

1http://www.mis.informatik.tu-darmstadt.de/
Research/Projects/categorization/eth80-db.html

relevant images retrieved to the total number of irrelevant
and relevant images retrieved. Recall is the ratio of the
number of relevant images retrieved to the total number of
relevant images in the database.

Also, we have used some unique value measurements in
the validation. The first one corresponds to the resulting
precision when the number of retrieved images is enough to
include all relevant images for a given query. This measure-
ment is named R-value [4], hence pR stands for the precision
in this point.

We also evaluate the measurements p30, r30, p100, and
r100. These values are estimatives of the number of retrieved
images which a common user would assess in a practical
retrieval system [4].

Finally, we considered the average value for three (3P ) and
eleven (11P ) points in the precision/recall curve [4]. We ob-
tain the 3P value averaging the precision through three pre-
defined recall points (usually 20%, 50% e 80%). We obtain
the 11P value averaging 11 predefined recall points (usually
0%, 10%, . . . , 90%, 100%).

4.2 Overall results
Figure 6 shows the results for seven image descrip-

tors [15, 20, 26, 32–34]. Here, CSIR is represented by two
curves: CSIRBIC and CSIRGCH that uses BIC and GCH
respectively as the local low-level image descriptor.
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Figure 6: CSIRBIC, GCH vs. existing approaches.

Table 1 presents the average result for seven unique value
measures we use in this paper: 3P , 11P , p30, r30, p100, r100

e pR.

Table 1: Unique values measurements results.
3P 11P p30 r30 p100 r100 pR

CSIRBIC .67 .58 .53 .66 .32 .90 .28

BIC .49 .42 .39 .52 .23 .76 .17
CSIRGCH .44 .38 .37 .49 .21 .70 .13

CBC .31 .27 .27 .38 .16 .58 .09
GCH .27 .24 .23 .34 .14 .50 .10
LCH .26 .23 .23 .34 .14 .51 .10
CCV .26 .23 .23 .34 .14 .50 .10

In fact, the use of representative regions to better rep-
resent color cues in the image does improve the retrieval
effectiveness for broad-domain images under different illumi-
nation, occlusion, and focus conditions as we see in Figure 6



and Table 1. The greater the value the better the descriptor.
For instance, the CSIRBIC is ≈ 37% better than traditional
BIC and CSIRGCH is ≈ 63% better than GCH.

4.3 Visual examples
In this section, we show two resulting queries Q1 and Q2

for CSIRBIC and BIC. We show the query on top left and
the resulting retrieved images sorted from left to right, top
to bottom.

We show Q1 and its top-11 results in Fig-
ures 7(a) and 7(b). The use of discrete distributions
of distinctive color and scale image regions of CSIRBIC

yields better results than the BIC global analysis. For
instance, BIC retrieves the non-relevant image R9.

We show Q2 and its top-11 results in Fig-
ures 8(a) and 8(b). CSIRBIC captures the variations
in viewpoint, partial occlusion, and illumination. Note that
BIC retrieves the non-relevant images R2, R4, R5, R7 and
R9.

5. CONCLUSIONS
In this paper, we have presented CSIR: a new method for

comparing images based on their discrete distributions of
distinctive color and scale representative regions.

Our method is robust to viewpoint, occlusion, and illu-
mination changes; it is invariant to image transformations
such as rotation and translation; and it does not not require
any learning stage.

Our key contribution is that instead of using the color pat-
tern analysis in the whole image (as previous approaches) we
use distinctive color and scale representative patterns that
can be repeatedly found amongst similar images indepen-
dent of some affine transformations.

We have provided experiments showing that CSIR is suit-
able for CBIR tasks and that it provides good retrieval ef-
fectiveness.

Future work includes the evaluation of other feature region
operators and low-level image descriptors to improve the
image representation.
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