A Software Architecture Framework for
Geographic User Interfaces

Juliano Lopes de Oliveira! and Claudia Bauzer Medeiros?

! Instituto de Informética - UFG
CP 131 - Goidnia-GO 74001-970 Brazil juliano@inf.ufg.br
2 Instituto de Computagio - Unicamp
CP 6176 - Campinas-SP 13081-970 Brazil cmbm@dcc.unicamp.br

Abstract. This work presents an architectural framework to support
the design and implementation of user interfaces for geographic applica-
tions. It adopts a pragmatic and innovative perspective, considering two
key aspects: dialogue with the user and connection with the underlying
supporting software (DBMS, interface toolkits and others). The frame-
work covers both the construction of the interface and the mechanisms
for its run-time execution, which are based on object-oriented databases
and on interoperability concepts. It was applied to the development of
interfaces for two large geographic application systems, contributing to
reduce their costs and to improve the software development process.
Keywords: Geographic Application; Software Architecture; User
Interface Models for Geographic Applications

1 Introduction

Geographic Information Systems (GIS) are complex software systems whose main
goal is to deal with geo-referenced information, stored in a geographic database.
This kind of information has three main components: a geographic position; con-
ventional (descriptive) attributes; and the associated time validity frame. There
are countless applications for GIS, ranging from urban planning to environmen-
tal monitoring. A considerable part of the cost in developing GIS applications is
spent with user interface issues [MeHe93,Espr98].

Geo-referenced data are difficult to present and to manipulate, requiring a
combination of graphical and textual representations and complex transforma-
tions of data from the storage level of the GIS geographic database to the user
and vice-versa. Moreover, GIS’s users are, in general, experts on many technical
areas, but not in Computer Science. Therefore, besides being easy to use, the
interface must be customizable to the user’s needs.

Due to this complexity, inherent to the construction of user interfaces for
geographic applications, no appropriate architectural framework has been pro-
posed to give full support to this process. In fact, most systems use an ad hoc
approach, based only on generic user interface tools and empirical guidelines. We
claim that this approach is not adequate, and that to effectively reduce the costs
of these interfaces it is necessary to adopt a systematic development approach.

This paper describes such an approach, based on a domain specific software
architecture.

The term “architecture”, when applied in software engineering, is usually
considered in an oversimplified manner. For this reason, it often plays a secondary
role in the definition of applications and systems. In fact, a Software Architecture
is more than a diagram with a few connected function boxes; it is an abstraction
that help designers to deal with the inherent complexity of software, involving
not only the description of elements from which systems are built, but also the
interactions among those elements, the patterns that guide their composition,
the constraints on these patterns, and the complete specification of run-time
behavior [ShGa96,BCK98].

This paper describes a new software architecture, which provides a generic
framework for the development of user interfaces for geographic applications.
This is based on separating the core of the application (Semantic Component)
from its interface needs (Interactive Component). This architecture combines
two types of approach: interface specification and construction are based on work
developed by the interface software community, whereas modularity and module
interoperability within the interface are provided by using a database-centered
approach.

A key feature of this architecture is that it supports the development of the
user interface of the geographic application through all stages of its life cycle
(from requirements through analysis, design and implementation). To accom-
plish this, it establishes a trade-off between abstract specification, necessary for
the earlier stages, and detailed specification, necessary for implementation. This
allows distinct types of geographic applications to be developed using the same
interface facilities.

Experiences on using this framework to implement geographic applications
(JOCM95,0PM97,SPMO98]) have shown a significant improvement on the ap-
plication modularity, and a consequent reduction of the complexity and of the
inter-dependency between the interface code and the code of the geographic
application itself. Systems developed according to this approach are easier to
mantain and to evolve, and benefit from the reutilization of many user inter-
face components. A prototype of this framework has already been implemented
[SPMO98], and some of its features have been incorporated into a large geo-
graphic application [OCM95].

This paper is not concerned with implementation details, and concentrates
on presenting the main ideas behind the framework. Section 2 discusses the
limitations of current approaches and architectures for GIS user interface con-
struction. Section 3 defines the principles of our new architecture. Section 4
specifies constraints and guidelines to orient the software designer in the use of
the architecture. Section 5 presents conclusions and extensions.

2 Limitations of Current Approaches

A Geographic Application is an interactive program developed on top of a G1S and
that manipulates both geo-referenced and conventional data using the facilities
of the underlying GIs. Examples of such applications are, for instance, several
types of spatial decision support systems (e.g., [MMP98,Gunther98, Mann96])
which allow users to cartographically visualize and interact with different sce-
narios for facility placement, transportation, environmental control and so on.
Other such applications include Gis-based systems for urban planning or utility
management. As any interactive program, a geographic application can be log-
ically decomposed in two main parts: Semantic Component, which defines the
functionality and the semantics of the application, and Interactive Component,
responsible for the dialog with the user [Edmo92].

Two types of functions are available to the user of a geographic application.
The interface functions are processed by the Interactive Component of the ap-
plication. The semantic functions deal with complex semantic transformations
which depend on the Semantic Component of the application. For instance, a
geographic application dealing with transportation networks requires the com-
putation of several path functions (e.g., the minimal path between two points),
which can be displayed in distinct ways. The computation is performed by the
Semantic Component, whereas the display is the responsibility of the Interac-
tive Component. Ideally, the Interactive Component plays two roles: it provides
interface functions and it mediates the communication between the user and
the application’s Semantic Component. Figure 1 shows this high level view of a
geographic application.

Geogr aphic Application
Semantic I nter active
Component Component
Geogr aphic Support User I nterface Support
GIS User Interface Toolkit
Spatial DBMS Windowing System

I I
Operating System

Fig. 1. General context of a Geographic Application

The separation of the Interactive and Semantic components of an applica-
tion improves the specialization and the optimization of each component. It also
makes it easier to construct customized interfaces for the application, if the data

User

and functions are properly encapsulated. Most user interface software architec-
tures recognize these benefits and adopt this separation as a design principle.
However, most of these architectures define the Semantic and Interactive com-
ponents from a very abstract level, which, from a practical viewpoint, does not
help the design and the implementation of the application. Furthermore, this
separation is hardly ever found in applications, because of the shortcomings of
the underlying GIs.

Current architectures for user interface software can be classified as Modular
architectures (e.g, the Seeheim architecture [Gree85] and Slinky/Arch [BFL+92))
or as Agent Based architectures (e.g, MvC [KrPo88] and pAC [BaCo091]). Modular
architectures are imprecise on the definition of the communication protocols
between modules, while Agent Based architectures do not define rules for the
composition of each agent of the system. These architectures offer good guidelines
for generic user interface design, but are not concerned with and cannot deal with
the idiossyncrasies of geographic application user interfaces.

Besides the inherent difficulties for presenting and manipulating geo-referenced
data, geographic applications need to integrate heterogeneous supporting sys-
tems (GIS and user interface toolkits, for instance). Generic architectures are
not appropriate for this context because:

— they do not take into account the particularities of geographic applications.
For instance, generic architectures deal with multiple representation of ob-
jects only in the presentation level, but geo-referenced data have multiple
representations also in the data level [Riga95];

— They do not fulfill the organizational requirements of geographic software.
In particular, generic user interface architectures do not take into account
the integration of the application with heterogeneous underlying software.
These architectures cope only with user interface packages, but not with GIS.

— They do not guide the transition from the logical to the physical design of
the application. Their goal is to be generic, so they cannot take into account
the details of specific applications.

The limitations of generic user interface architectures were recognized by the
researchers in the GIS community. Some ad hoc solutions have been proposed to
build geographic user interfaces for specific GIs (e.g., [Esri92,AYA192]). Other
solutions were GIS independent, but they impose rigid functional constraints
either on the GIS or on the Interactive Component of the geographic application:

1. Constraints on the GIS: the architecture can only be used with Gis that offer
specific services, such as a particular type of manipulation of geo-referenced
data (e.g, the map legend dictionary of [Vois94]) or specific integration ap-
proaches (e.g, the interface as a layer of the GIS architecture itself [PMP93]).

2. Constraints on the Interactive Component: this type of solution is based on
limiting the set of functions available to the user in the application. The
idea is to minimize the interaction between the geographic application and
the GIs by reducing the set of functions available in this interaction. The

complexity is also simplified by eliminating functions with side effects in the
stored data. In general, only query functions are allowed in this approach
(e.g, [Riga95,01Me95)).

The remainder of this paper presents a new user interface software architec-
ture for geographic applications. This architecture solves the limitations we have
just discussed. Similar to the previous architectures, it separates the user inter-
face software in abstract and inter-related sets of components. However, it also
specifies how to support the design and implementation of the application, by in-
dicating how to refine the components up to the implementation level. Moreover,
this architecture focuses on the exclusive features of geographic applications.

Again, looking at Figure 1, we point out that it gives a high level view of
concepts which we use throughout the text, separating an application from the
support software (GIS, spatial DBMS, interface toolkits, etc). Our framework is
based in establishing appropriate communication protocols between application
and support layers, thereby helping the design and development of the Interactive
Component of a geographic application.

3 Architecture Overview

The main goal of our architecture is to guide the design and the implementation
of geographic user interfaces, that is, of the Interactive Component of geographic
applications. To reach this goal, the architecture has to define, among other
aspects:

design guidelines to aid the designer on the construction of a geographic

interface;

— an overall run-time behavior for the architecture, specifying the protocols
and the rules for interaction among its software components;

— a communication protocol between the Semantic and the Interactive compo-
nents of the geographic application, maximizing their mutual independence;

— additional modules to support the development of the interface, producing
services that can be reused by different geographic applications;

— additional modules to deal with the integration with the underlying GIS,

enhancing the portability of the geographic application.

Our key idea to support interoperability and modularization borrows from
database research. It is based on construction of an intermediate layer (the Data
Model Layer) between the application and the supporting software. Data used
by an application is not brought directly to the interface’s working memory.
Rather, it is “imported upon request” into a reserved data space constructed
according to the GMOD geographic data model [OPM97]. The aMOD data model
is what interface literature calls the interface intermediate model —i.e., a model
closer to the user and which can be at the same time manipulated by the in-
terface functions. Similarly, another reserved data space contains templates for
constructing interface objects. These templates are built according to the IMOD

geographic interface model. These templates correspond to what interface liter-
ature calls interface object models. A given data element defined using GMOD is
formatted according to a IMOD template in order to be presented to the user.

3.1 Main Components

The architecture has three main layers. Each layer is responsible for the man-
agement of a well defined set of tasks, providing services to the other layers. The
main tasks performed by this framework include:

— communication with the underlying software (geographic information system
and user interface tools) - Connection Layer, at the bottom;

— mapping geographic and interface data models - the intermediate Data Model
Layer; and

— supporting the implementation of the geographic application, separating in-
terface from semantic functions — the Application Layer.

Connection Layer The Connection Layer handles the communication with
the underlying supporting systems. Among these systems, two are fundamental
for a geographic application: the GIS and the user interface toolkit.

The Adaptor Modules of the Connection Layer are responsible for offering to
the upper layers a standard access to the supporting systems, regardless of the
specific features of these systems. An adaptor has three main objectives:

— To guarantee portability, playing the role of a ”device driver” for each un-
derlying system. This means that the geographic application should be able
to execute on any system that can be connected to the adaptor module.

— To improve software reuse: this happens in the global context of the archi-
tecture since all geographic applications built according to this framework
can share the same adaptors.

— To support maintainability and software evolution. Maintainability is a con-
sequence of the encapsulation of the supporting systems. In fact, any mod-
ification on the supporting software affects only the adaptor module (in
particular its mapping model) and has no side effect on the rest of the ar-
chitecture.

An adaptor module defines, basically, an abstract machine with an uniform
application programming interface. Therefore, the upper layers use the same
communication interface regardless of the underlying system is. There are specific
adaptors to the geographic and to the interface supporting systems.

GIS Adaptor The G1s adaptor is based on the interface integration mechanisms
presented in [O1An93]. The main idea is to establish a standard protocol between
the adaptor and the underlying GI1S, based on a set of primitive operations defined
on the intermediate data model.

It performs the translation of schemata, data and operations from the inter-
mediate model (GMOD) to the data model of the GIs, and vice-versa. Communi-
cation with the Gis can be performed via its application programming interface
(AP1), or directly with its data manager modules, if it does not define an API.
This poses the problem of strong integration (the interface code is mixed with
the GIs code) versus weak integration.

Our approach presents a trade-off solution to accomodate both types of in-
tegration: only one module of the interface code is dependent on the underlying
GI1S. The degree of dependency varies according with the GIs: with open GIS the
dependency is limited to its API, while in other cases part of the Gis code has to
be directly controled by the interface. The key point here is that the cis adap-
tor offers a standard API to the upper layers of the architecture (in the figure,
GAPI- Geographic Application Programming Interface). All the geographic ap-
plications use a single communication protocol, and the GIS adaptor translates
this protocol to the specific communication mechanism of the adopted GIs.

User Interface Toolkit Adaptor The User Interface Toolkit Adaptor Module al-
lows the definition of interface and interaction objects according to a generic user
interface object model (IMOD). This model contains definitions for most common
types of interaction objects provided by the main existing user interface toolkits.

The adaptor implements mapping rules from toolkit’s widgets to the interac-
tion objects in IMOD. These rules defines the correspondence between the specific
toolkit API and the standard API provided by the Toolkit Adaptor (TAPI - Toolkit
Application Programming Interface).

The main advantage of the standard API provided by the adaptor is the
independence from a specific user interface toolkit. The same idea has been
used in the generic user interface software architecture presented in [BFL*92],
and also in the implementation of multi-platform user interface toolkits, such as
[MMM*97].

Data Model Layer This is the core layer, responsible for maintaining two inde-
pendent data spaces, treated from a database perspective. The GMOD database
contains application-related data; the IMOD database contains interface objects
and primitives.

More specifically, the GMOD database is constructed to support the GMOD
geographic data model [OPM97], an object oriented data model which offers
primitives for designing geographic applications. It contains the data exchanged
between the Interactive and the Semantic components of the geographic appli-
cation. The tMOD database supports the geographic user interface, containing
the data exchanged between the user and the geographic application.

Each database has its own data model and is associated with a database
server that manages the access to the respective data. Although they are logically
presented in the Data Model Layer of the architecture, these database servers
can be implemented directly on the underlying geographic DBMS. In an existing
implementation of our framework, they are actually stored under a single DBMS
[SPMO9S].

Using GMOD The GMOD database contains the data requested by the applica-
tion’s Semantic component, and which are manipulated in the Interactive com-
ponent. Both the Semantic and the Interactive components can access the data
managed by the GMOD server through a Semantic-Interactive Adaptor Mod-
ule. This adaptor defines the main aspects of the interaction between the two
components of the geographic application, such as the abstraction level of the
transferred data, the mechanism for describing the exchanged data, and the
allowed access mode to the data.

The Semantic and Interactive components communicate with the adaptor
via two specific APIs: the ISPI - Interface Services Programming Interface; and
the ssp1 - Semantic Services Programming Interface.

Using IMOD The second data space managed by the Data Model Layer is
the interface objects model (IMOD), which provides facilities to create different
presentations for the data in the ¢GMOD database. The IMOD database contains
the definitions of the interface objects used in the Interactive Component of the
geographic application. This component requests these objects from the lower
lower layers using the ICPI - Interface object Constructor Programming - which
communicates with the Interface Object Constructor module.

This latter module manages the creation of complex interface objects by
repeatedly composing basic interaction widgets — e.g., buttons, windows — and
templates. Widgets and templates are retrieved from the IMOD database and
are used to create high level specifications of the interface. These specifications
are sent to the Toolkit Adaptor via the TAPI in order to build actual interface
objects using the underlying user interface toolkit. In [Oliv97] there is a complete
description of the IMOD data model and examples of using this model for building
dynamic geographic user interfaces.

Application Layer The two main modules of the Application Layer are the
Semantic and Interactive components of the geographic application.

Interactive Component This component is responsible for the dialog with the
end user and has two main modules: Dialog Control and Presentation Control.

The Presentation Control Module performs two fundamental tasks: (1) the
translation of user actions (ie, user events) into operations on the interface ob-
jects which are stored in the IMOD database; (2) the management of graphical
and textual presentations contained in this database.

The Dialog Control Module keeps track of the interaction between applica-
tion objects and interface objects. It is responsible for the dynamic behavior
of the user interface, including the management of the Presentation Control
Module. For instance, an interaction object can be associated to more than one
application object defined in the GMOD database.

The Interactive Component of the geographic application represents the part
of our software architecture that must take into account the complex problems
of presenting and manipulating geographic data. Due to space limitations, we do

not discuss here the details of this component. Our solutions for these problems
are described in depth in [Oliv97].

Semantic Component As we have already discussed, the semantic and interactive
components of the geographic application need to exchange data and events and,
therefore, it is necessary to take the semantic component into account in the
definition of the user interface architecture. Nevertheless, neither the semantic
component nor the GIS should be part of the user interface software. Thus, in an
ideal context, the user interface should impose no constraints on these modules.
In a real software context, however, this complete independence is not pos-
sible. Recognizing this, we tried to limit the mutual interference between the
user interface and the other components of the geographic software. In fact, the
only constraints we have imposed on the GIS and on the Semantic component of
the application are those that specify their communication with the user inter-
face (the Interactive component of the architecture). This autonomy of the user
interface with regard to the rest of the software is an important and desirable
feature, which is known in the literature as dialog independence [HaHi89).

4 Design Guidelines

The layered organization of our architecture establishes a client/server relation-
ship between one layer and the underlying layers. This structure forms the basis
for the development of new geographic interfaces according to specific guidelines
that determine (a) the components that need to be redefined in new projects, and
(b) the reusable components that are already available. These guidelines define
three main stages for the development of a geographic interface environment, as
we show in the following example.

1. Construction of the Connection Layer;
2. Construction of the Data Model Layer;
3. Construction of the Application Layer.

4.1 Example of Interaction

Before discussing the process of constructing each layer, we must have a clear
view of the run-time interactions among these layers. The example we show here
illustrates, in a schematic way, a typical interaction of a user with a geographic
application built according to our architecture. The objective of this example is
to show the exchanges of data and control and the interdependencies among the
componentes of the architecture.

Consider a geographic application that allows the user to query and update
geo-referenced information by selecting (e.g., with a mouse) relevant objects
in a map presented in a interface window. We emphasize that in order for an
object to be presented in the interface two steps must be followed: (1) first, it
must be retrieved into the GMOD database by an application request; and (2) a
presentation function must be applied to it, using IMOD templates.

10

Let us assume the user is working on a telecommunications cadastral problem,
and that the geographic objects manipulated are parcels, streets and utility
equipment (poles, cables, transformers). Data and control flow in the framework
are as follows.

— The user activates an operation by selecting some objects presented in the
interface window. The Presentation Control Module captures the user re-
quest and communicates to the Dialog Control Module the occurrence of a
user event. For instance, it can translate a double click event on a parcel into
a select operation over the graphical representation of the parcel.

— The Dialog Control Module manages the relationships between interface
objects (IMOD database) and application data objects (GMOD database).
This module also keeps track of the interaction context, i.e.,the state of
the interface, allowing the identification of the sequence of operations to
be performed in response to the user action. In this example, the Dialog
Control knows that the selection of a parcel in the current context activates
the following operations:

1. A request to the Semantic-Interface Adaptor (via the ssp1) for querying
the current state of the parcel.
The Adaptor can directly perform this operation, since the data are
already in the GMOD database (because the parcel was already presented
in the interface map window).
NB: If this had not been the case, the Adaptor would have had to for-
ward the query to the Semantic Component (via ISPI), and the latter
would have to ask the GIs Adaptor for the requested data (via GAPI).
This Adaptor would have to translate the query to the corresponding
command in the underlying Gi1s. The result of the query would, then, be
sent in the reverse path (c1s — a1s Adaptor — Semantic component —
Semantic-Interface Adaptor — GMoD database).

2. A request for presentation of the current state of the object to the In-
terface Constructor (via ICPI).
The Constructor receives from the Dialog Control a description of the
type of presentation (in this case, an edition window) and the data values
corresponding to the current state of the object. Using these informa-
tions, the Constructor searches the IMOD database to find an interface
object template corresponding to the requested type of window. Based
on this template, the Constructor builds a virtual composite window
which is sent to the Toolkit Adaptor (via TAPI).
The Toolkit Adaptor translates the definitions of the window to the
API of the underlying toolkit, creating the real widgets of the composite
window. These are next sent via the reverse path to the Dialog Control
and Presentation Control modules, which manage the interface windows.

3. An update of the state of the interface, indicating the presence of the
new window to be presented, and setting up possible actions over this
presentation.

11

The Dialog Control is responsible for maintaining the interface context.
In each state many different types of functions may be available, and
many different sets of interactive objects may be active. In the example,
it defines the necessary modifications to represent the state resulting
from creation of the new window.

— The user performs the desired modifications on this presentation of the par-
cel and confirms the operation. Again, the user event is translated by the
Presentation Control into a call to the Dialog Control, which is responsible
for transforming this operation into a update request in the GMOD database,
via Semantic-Interface Adaptor.

— The Adaptor performs semantic validation of the requested update, accord-
ing to the constraints expressed in the GMOD schema. It can also activate
the Semantic component for further semantic validation. If an error occurs,
the Dialog Control is warned; otherwise, the Adaptor processes the request
in the following way:

1. Updates the state of the parcel in the GMOD database;
2. Signals to the Semantic component the update has been performed.

— The Semantic component takes the action necessary to guarantee that the
modification be reflected in its internal structures as well as in the GIs (via
GAPI).

The design guidelines, indicated in sections 4.2 through 4.4, take into account
these control and data flows, in order to obtain software modules that are generic
enough to be reused and, at the same time, efficient in their tasks.

4.2 Building the Connection Layer

The Connection Layer is the only part of the architecture that depends on fea-
tures of the supporting softwares, i.e., the softwares that provide run-time ser-
vices for the geographic application. The two modules of the Connection Layer
are completely independent of each other. Each module needs to be defined once
for each underlying support system, specifying the conversion mechanisms from
the Adaptor’s generic API to the real API of the underlying system. All the upper
layers use this standard API provided by the Adaptor and should not be affected
by changes in the underlying support systems.

A different G1s Adaptor must be built for each GI1S, to provide a mapping
model between the GIS data model and the GMOD data model, due to the variety
of geographic models existing in current GIS.

The Toolkit Adaptor, on the other hand, works with different types of syn-
tax to express the same concepts (e.g, widgets, events, and callback functions).
However, the implementation of this Adaptor is also difficult, since it has to en-
sure, for instance, a standard look-and-feel for the geographic application with
different underlying toolkits.

It is expensive to design and implement the modules of the Connection Layer,
but it is worth the effort, since this layer can be shared by all the geographic ap-
plications that use the same underlying systems. This layer can be omitted from

12

the architecture, as a result from a design decision: for instance, if portability is
not a major requirement, or if there is no possibility of changing the underlying
systems, the Adaptor’s API's are replaced by those of the underlying softwares.

4.3 Building the Data Model Layer

The Data Model Layer provides modules to support both the design and the
runtime execution of the geographic interface. These modules are handled by
the designer in the development of new interfaces, and by the components of
an application, to perform its run-time functions. The layer is shared by all
geographic aplications in a given site.

The services offered by this layer allow the management of the two databases
which are fundamental for our architecture: the geographic database containing
data used by the application using the interface intermediate model (GMOD)
and the interface objects database (IMOD). The Data Model Layer is composed
by two orthogonal modules: the Semantic-Interface Adaptor, responsible for all
exchange of information between the two main components of the geographic
application, and the Interface Constructor, which manages the interface objects
used in the dialog with the user.

The communication between the Semantic and the Interactive components
of the geographic application is mediated by the Semantic-Interface Adaptor,
which uses data stored in the gMOD database. This Adaptor allows the two
components of the application to share these data.

The task of the Interface Constructor Module is to manage complex interface
templates, i.e, definitions of virtual complex widgets. To achieve this goal, the
Constructor must keep a library of specification of interface objects, organized
according to the IMOD interface data model; each application may use different
templates from this library.

4.4 Building the Application Layer

The Interactive component of a geographic application is implemented in the
Application Layer. The two main modules of this layer, Dialog Control and
Presentation Control, reflect the user mental model as it is perceived by the
application interface designer. The user mental model involves, for instance, the
definition of the reaction an interface must provide to a given user action.

It is necessary to define the Interactive component once for each different geo-
graphic application, since this component is completely dependent of the specific
goals of each application. It is worth noting, however, that more than one in-
stance of this component may be created for the same Semantic component. This
allows, for instance, to provide customized interfaces to heterogeneous groups of
users of a single application. For instance, the same application can be used
by technical and administrative users. Methods for customization and reuse of
interfaces can reduce the cost of development of these alternative interfaces for
the same application. In [OMC97] we show examples and applications of these
methods.

13

4.5 The Interface Development Process

The directives discussed guide the development process. Although the Data
Model and the Connection layers are complex, their costs are amortized by their
reuse in a potentially large number of geographic applications.

The Application Layer, in turn, is relatively easier to develop in term of
interface functions because it can count on the services of the two other (sup-
porting) layers. However, the development cost of the application layer cannot be
underestimated, because this layer deals with complex problems related to the
interactive manipulation of geo-referenced data. In [Oliv97] we present methods
and tools for reducing the effort necessary to build the application layer of the
geographic application.

Our experience in the development of geographic interfaces according to the
approach described in this paper has shown considerable improvement of the
development process. Besides promoting modularization and specialization of
the components, the architecture makes it possible to reuse all the components
that deal with the organization of data and interaction with the underlying
systems. This reusable framework is an important by-product of our architecture.
In traditional approaches, all these components have to be completely defined,
in an ad hoc way, to each and every geographic application.

5 Conclusions

The design and implementation of geographic applications is a complex task.
The user interface component of the geographic application contributes with a
major part of this complexity, since for the user the interface is the application.
This paper presented a software architecture aimed at reducing this problem.
The main goal of the architecture is to support the design, implementation and
execution of the Interactive component of the user interface of a geographic
application.

The existing frameworks to support user interface development and execution
can be classified in four categories [Myer95]: predefined application structures
(i.e, domain specific architectures); model based interface generation tools; in-
terface definition languages; and interactive interface editors. Our framework is
a variation of the first category, since it specifically focuses on interfaces for ge-
ographic applications. We also adopted ideas from the second category in our
mechanism for constructing complex interface objects from virtual (toolkit in-
dependent) models.

Each layer is responsible for managing a well defined set of tasks: communi-
cation with the underlying software (Connection Layer); data model operations
(Data Model Layer); and supporting the implementation of the geographic ap-
plication, i.e, of the semantic and interaction functions (Application Layer).

There are four main advantages to this framework in comparison with previ-
ous architectures presented in the literature. First, it supports the construction
of both static and dynamic user interfaces, i.e, interfaces which can be rede-
fined and modified at run-time. Second, it is generic, in the sense that it can be

14

applied to most of the existing supporting systems (both user interface develop-
ment tools and geographic information systems). Third, the framework supports
the complete life cycle of a geographic user interface, from design (including
model-based facilities for iteractive refinements) through implementation (based
on a complete architectural specification) and execution (supported by run-time
mechanisms defined on the framework). Finally, the software architecture sup-
ports geographic interface customization mechanisms.

We proposed a schema, for reusing supporting components, promoting more-
over the independence and the specialization of components. In particular, we
presented a well defined separation between the interactive component and the
semantic component of the geographic application, obtaining the so called dia-
log independence. Furthermore, following the ideas of [GHK'96], we adopted a
database solution to guarantee data independence for the geographic interface
with regard to the underlying geographic system. Thanks to this approach, our
architecture allows the development of generic geographic user interface software
(and not just for querying a geographic database).

The paper presented only a general overview of the architecture and its com-
munication protocols, mechanisms, components, and design guidelines. An in
depth discussion of all these aspects or of implementation details was not possi-
ble here, due to space limitations. All these details can be found in [Oliv97], while
examples of use of (parts of) our framework can be found in [OIMe95,0CM95],
[OMC97,0PM97,SPMO98].

Acknowledgements

This work was developed with financial help of CNPq, FAPESP and MCT /FINEP
PRONEX II program 76.97.1022.00 SAI (Advanced Information Systems), as
well as a joint CNPq/NSF project on GIS interoperability.

References

[AYAT92] D. Abel, S. Yap, R. Ackland, et al. Environmental Decision Support Sys-
tem Project: an Exploration of Alternative Architectures for Geographical
Information Systems. In International Journal of GIS, 3(6):195-204, 1992.

[BaCo91] L. Bass and J. Coutaz. Developing Software for the User Interface.
Addison-Wesley, 1991.

[BCK98] L. Bass, P. Clements and R. Kazman. Software Architecture in Practice.
Addison Wesley, USA, 1998.

[BFLT92] L. Bass, R. Faneuf, R. Little, et al. A Metamodel for the Runtime Archi-
tecture of an Interactive System. In SIGCHI Bulletin, 24(1):32-37, Jan.
1992.

[Edmo92] E. Edmonds. The Emergence of the Separable User Interface. In The
Separable User Interface, pages 5-18. Academic Press, 1992.

[Espr98] ESPRIT/ESSI Project n0.21580. Guidelines For Best Practice In User In-
terface For GIS. GISIG - Geographical Information Systems International
Group, Italy, 1998.

[Esri92]

15

Environmental Systems Research Institute. Arc-Info: GIS today and to-
morrow, 1992.

[Gunther98] O. Gunther. Environmental Information Systems. Springer Verlag, 1998
[GHK*96] N. Gopal, C. Hoch, R. Krishnamurthy, et al. Is GUI Programming a

[Gree85]

[HaHi89]

[KrPo8s]

[Mann96]

[MeHe93]

Database Research Problem? In Proc ACM SIGMOD, 517-528, 1996.

M. Green. Report on Dialogue Specification Tools. In User Interface
Management Systems, pages 9-20. Springer-Verlag, 1985.

H. Hartson and D. Hix. Human—-Computer Interface Development: Con-
cepts and Systems for its Management. In ACM Computing Surveys,
21(1):5-92, 1989.

G. Krasner and S. Pope. A Cookbook for Using the MVC User Inter-
face Paradigm in Smalltalk. In Journal of Object-Oriented Programming,
3(1):26-49, 1988.

S. Mann. Spatial Process Modelling for Regional Environmental Decision
Making. In Proc. 8th Annual Colloquium of Systems Information Research
Centre, 126-135, 1996.

D. Medyckyj-Scott and H. M. Hearnshaw, editors. Human Factors In Ge-
ographical Information System. Belhaven Press, 1993.

[MMM™*97] B. Myers, R. McDaniel, R. Miller et al. The Amulet Environment: New

[MMP9S]
[Myer95]

[OCMY5]

[O1An93]

[Oliv97]

[O1Me95]
[OMC97]
[OPM97]
[PMPY3]

[Riga95]

[ShGa96]

[SPMOYS]

[Vois94]

Models for Effective Interface Software Development. In Trans. on Software
Engineering, 23(6):347-365, 1997.

V. Maniezzo, I. Mendes and M. Paruccini. Decision Support for Siting
Problems. Decision Support Systems, 23:273-284, 1998

B. Myers. User Interface Software Tools. In ACM Trans. on Computer-
Human Interaction, 2(1):64-103, Mar. 1995.

J. L. Oliveira, C. Q. Cunha, and G. C. Magalhdes. An Object Model for
Dynamic Construction of Visual Interfaces. In Proc. IX Brazilian Sympo-
stum on Software Engineering, 143-158, 1995 (in portuguese).

J. L. Oliveira and R. Anido. Integrating a Browsing Interface to Differ-
ent Object-Oriented Database Systems. In Proc. 13th Brazilian Computer
Society Conference, pages 61-75, 1993 (in portuguese).

J. L. Oliveira. Design and Implementation of Interfaces for Geographic
Application Systems. PhD thesis, IC — Unicamp, Dez. 1997 (in portuguese).
J. L. Oliveira and C. B. Medeiros. A Direct Manipulation User Interface
for Querying Geographic Databases. In Int. ADB Conf., 249-258, 1995.
J. L. Oliveira, C. B. Medeiros, and M. A. Cilia. Active Customization of
GIS User Interfaces. In IEEE ICDE Conference, 487-496, 1997.

J. L. Oliveira, F. Pires, and C. B. Medeiros. An environment for modeling
and design of geographic applications. In GeoInformatica, 1(1):29-58, 1997.
N. Pissinou, K. Makki, and E. Park. Towards the Design and Development
of a New Architecture for GIS . In Int. CIKM Conference, 565-573, 1993.
P. Rigaux. Interfaces Graphiques pour Bases de Données Spatiales: Ap-
plication & la Représentation Multiple. PhD thesis, CEDRIC - CNAM,
1995.

M. Shaw and D. Garlan. Software Architecture - Perspectives On An
Emerging Discipline. Prentice Hall, USA, 1996.

M. A. Salles, F. Pires, C. B. Medeiros and J. L. Oliveira. Development
of a Computer Aided Geographic Database Design System. In Proc. 13th
Brazilian Symposium on Databases, 235-250, 1998.

A. Voisard. Designing and Integrating User Interfaces of Geographic
Database Applications. In ACM AVI Workshop, 133-142, 1994.

16

Geographic Application

GAPI

Connection Layer

GISAPI Toolkit API
Geographic Support Interface Support
GIS + Geographic Libraries + ... Toolkits + Windowing Systems + ...

[

[

Operating System

Fig. 2. Main aspects of the geographic user interface software architecture

1 | nter active Component User
Semantic Dialog Presentation
Component Control Control
ISP SSPI ICPI

Semantic- Interface W

Interface Objects

Adaptor Constructor
Toolkit
Adaptor TAPI

