Database Support for Cooperative Work

Documentation
Agnes Voisard Claudia Bauzer Medeiros
voisard@inf.fu-berlin.de cmbm@dcc.unicamp.br
Computer Science Institute IC - UNICAMP - CP 6176
Free University, Berlin, Germany 13081-970 Campinas SP Brazil

Genevieve Jomier
jomier@lamsade.dauphine.fr
LAMSADE - Université Paris IX
75775 Paris CEDEX France

Abstract. Technological changes impose a constant evolution on all
kinds of artifacts, and require new solutions for their efficient mainte-
nance. Appropriate documentation is considered fundamental for main-
tenance and evolution. This situation is even more crucial when one
considers today’s cooperative environments for designing and developing
artifacts. Most of the time, documentation is static and describes WHAT
an artifact is, and sometimes HOW it was designed and constructed.
Moreover, in collaborative work, documentation serves as one of the
communication means among all involved in creating an artifact. How-
ever, several other types of documentation needs have been identified
in many domains — e.g., medicine, engineering, biology or astronomy —
such as flexible versioning for keeping track of an artifact’s entire evo-
lution, as well as documentation for the reasoning (the WHY) behind
its construction. Unfortunately, no comprehensive system exists to han-
dle all these documentation requirements: each kind of document is
managed by a separate system, and furthermore studied in a different
Computer Science field. WHAT documentation may fall within database
or software engineering research, whereas HOW is often restricted to hy-
permedia systems and CSCW, and WHY is handled in the context of
Artificial Intelligence and cognitive science.

This paper presents a unified framework to manage all these kinds
of documents within a single database, for engineering artifacts. This
allows integrating and coordinating the (cooperative) work of different
types of users of these artifacts: designers, customers, salespeople, con-
structors. This eliminates the break in continuity found in normal envi-
ronments, where each kind of documentation is handled separately and
uses distinct implementation paradigms. Our framework is exemplified
in the context of software module configuration.

1 Introduction

An artifact is “something created by humans for a practical purpose” (Webster’s Dictio-
nary). Engineering artifacts are those which are built “using a combination of different
sciences and mathematics applied to distinct materials and sources of energy”. Canoni-
cal examples of these artifacts are buildings, cars or telecommunication networks. Other
less commonly cited engineering artifacts include new vegetable seeds (in genetic engi-
neering), maps (in geography/geology) and software (software engineering).

The construction of complex artifacts frequently involves several groups of experts,
working in teams, often geographically distributed. These teams or individuals must
cooperate during different work stages in order to design and construct the artifact
(building, map, seed, software). The more complex an artifact and the technology
involved, the greater will be the amount of people participating in its production and
the higher the costs for its maintenance and upgrade.

Normally, artifacts will evolve through time (either through improvements in design
or construction techniques, or following changes in requirements/specifications, or even
through use and decay). The process of creating one artifact may never end, configuring
a situation in which several artifact versions may co-exist. Traditionally, two kinds of
versioning are considered: versioning resulting from evolution in time (so-called linear
or historic versioning); and versioning due to design/implementation alternatives (so-
called arborescent or parallel versioning).

The maintainability and evolution of an artifact are highly dependent on the as-
sociated documentation. The more complex an artifact, the greater the number of
people and technologies involved in its construction and therefore the bigger the need
for documentation. The term “documentation” covers a broad spectrum. In the engi-
neering context, documents are associated with data generated during the design and
construction of an artifact. In particular, these documents keep track of three different
issues:

1. Data describing the artifact (e.g., manuals, metadata, text usually organized in
hypertext structures) — here called WHAT documents

2. Data describing the process used to arrive at the end-product (e.g., mathematical
models, procedures, workflows) — here called HOW documents

3. Data describing the rationale behind the design of the artifact — here called WHY
documents. This is a new research area, called design rationale [?]. A novel aspect
of our work is that we consider rationale as applied to all stages of an artifact life
cycle.

Solutions have been proposed to all these issues, but so far they have been handled
separately with each kind of document managed by a different system. It is up to the
teams involved in the design and construction of an artifact to manage the relationships
among artifact versions, and those connecting artifacts and documents.

This paper presents WHOW — a database-centered framework to solve this problem.
The DBMS stores artifacts and WHAT, WHY, HOW documents. The framework relies on
a general versioning mechanism — the DBV mechanism [?], which handles uniformly all
kinds of versioning (schema, extensions, constraints, configurations), thereby allowing
users to propose alternatives to a product by trying out distinct reasonings and to
keep track of links among artifacts, configurations and the associated documentation.
This unification simplifies the issues of documentation, cooperative work and evolution
support. Users working in a cooperative environment will manage their documentation
through this framework, which will integrate them in a coherent manner, decreasing
the problems encountered in distributed design and development environments.

The rest of this paper is organized as follows. Section ?? presents related work on
documentation. Section ?? presents why-graphs, which is the formalism proposed to
express and store the rationale for an artifact’s life cycle (not just its design stage). The
architecture of the WHOW framework, together with the the specific needs it answers,

is presented in Section ??7. Section 77 shows how this framework can be applied in a
specific domain — management of software module configurations. Section 7?7 presents
conclusions and ongoing work.

2 Related work

Related work concerns discussion on the three kinds of documentation needed for ar-
tifacts. So far, to the best of our knowledge, no work in the literature combines these
document types. We center on artifact documentation issues, regardless of the nature
of work involved — whether used in a cooperative environment or not, these types of
documents are considered as necessary at some point in an artifact’s life cycle.

The term ”document”, when associated to an engineering artifact, in a Computer
Science context, refers most of the time to static documents (i.e., blueprints, specifi-
cation requirements, or manuals). Considered from a database point of view, artifact
documents are stored as

o Metadata — special kinds of records that describe the artifacts from a more ab-
stract point of view. Their goal is to help organize, identify and retrieve specific
artifacts. Metadata are also found in collaborative work contexts, as a means to
“index” useful data across user workspaces.

o Textual data, organized in hypertext/hypermedia graphs — these documents de-
scribe specific characteristics of the artifacts (e.g., requirements, manuals, spec-
ification diagrams). Their goal is to ensure maintainability and usability of the
artifact.

o Workflows — a more recent type of (dynamic) document associated to artifacts,
workflows register the process used to build the artifact. This new form of doc-
umentation is usually employed business activities where several agents may be
involved. It is also found in scientific environments, when artifacts are the result
of scientific experiments, and the workflows (the so-called scientific workflows) de-
scribe the steps and algorithms which were used to construct the artifact. Their
goal is to ensure maintainability (by describing the process) and repeatability in
reproducing the artifact.

The use of textual data and hypermedia facilities for documentation purposes is
already well established, and needs not be extended here, since we do not propose any
novelty in this sense.

Metadata usually describe the genealogy of an artifact (who created it, and sources
of its creation), validity information and quality indicators. Geographical metadata are
concerned with ”where” issues, whereas biological metadata worry about taxonomic
problems. Metadata for engineering artifacts, from a higher level perspective, concerns
authoring, schedules and temporal validity, and sometimes the procedures used to create
an artifact. For discussions on different types of metadata standards, the reader is
directed to [?, ?].

A workflow denotes the controlled execution of multiple tasks in an environment
of distributed processing elements [?]. It can be defined a set of tasks involved in
a procedure along with their interdependencies, inputs and outputs. Workflows are
gaining increasing acceptance as a means of documenting and organizing procedures,
as well as helping the coordination of groups. The term scientific workflow [?] was

coined to denote a specific kind of workflow which can be used to control the execution
of scientific experiments and procedures. Workflows for documentation purposes - and,
more specifically, scientific workflows - are discussed, for instance, in [?, 7, 7, ?].

A new type of documentation which is still object of research in Al and the cog-
nitive sciences is the so-called design rationale, which is being used experimentally in
the contexts of software engineering and human-computer interfaces. Design rationale
represents the reasons and reasoning process behind the design and specification of
artifacts [?]. It allows keeping track of assumptions made during the design process,
and the discussions conducted within a design team — and sometimes across teams — to
arrive at a given solution.

A novel aspect of our framework is the way in which we integrate this type of
documentation to the other kinds of documents. Thus, this related work section is
mostly devoted to rationale. Rationale is a WHY kind of document, as opposed to
WHAT (metadata and texts) and HOw (workflows). As pointed out in [?], documenting
rationale is important because an artifact needs to be understood by a wide variety of
people who have to deal with it - from designers and users to instructors, salespeople
and maintainers. To these users, it is not only the artifact that is important, but also
other issues - how to change it, how to market it, and so on, since there are many ways
of working with the artifact.

Among the several flavors of design rationale defined in [?], we are especially in-
terested in two: (i) an expression of the relationships between a designed artifact, its
purpose, the designer’s conceptualization and the contextual constraints on realizing
the purpose; and (ii) documentation of the reasons for the design of an artifact, the
stages or steps of the design process, and the history of the design and its context.

Formal methods for documenting rationale are usually based on directed graphs,
where edges and nodes acquire specific semantic meaning. Since these graph structures
become unmanageable as nodes and links grow, hypertext tools are often used in con-
junction with these representations. Examples are the Design Space Analysis proposal
of [?] and the IBIS/gIBIS system of [?]. Both use directed graphs as semi-formal meth-
ods to describe discussions and dialogues in collaborative design deliberations (gIBIS)
and questions, options and criteria considered during the design activity (Design Space
Analysis).

IBIS (Issue-Based Information System) seeks to capture the issues that arise in the
course of design deliberation, along with the various positions (or alternatives) that
are raised in response to issues, and the arguments for and against the positions. Its
graphical hypertext tool — gIBIS [?] — represents this argumentation as a tree, rooted
at the issue where the conversation among designers start. This tree is based on three
main concepts: Issues, which are presented for discussion (the root is the main Issue);
Positions, which respond to the issue with one or more tentative solutions; and Argu-
ments, which support or object to these positions. The tree grows asb secondary issues
(and positions and arguments for them) appear to question or expand the discussion
on the root issue.

Design Space Analysis [?] is a methodology to construct the documentation of the
design rationale for an artifact. It is based on three elements — Questions, Options and
Criteria. Its main constituents are Questions which are posed on design rules, Options,
which are alternative answers to these questions, and Criteria for assessing options.
Q, O, C are linked in graphs. Criteria organize the reasoning, giving priority to some
options over others.

Related research concerns means of extracting the rationale from designers and

documenting it in an appropriate way. Finally, further research on rationale covers
cognitive and psychological aspects. All these issues are outside the scope of this paper.

The next section describes the structure adopted to document the rationale behind
the design and construction of an artifact — why-graph. We assume that some type of
methodology has been applied to extract the relevant information from designers, and
store it into this structure.

3 Supporting rationale documentation in why-graphs

This section presents why-graphs (WG), which is a semi-formal method for represent-
ing rationale. Unlike other rationale formalisms, why-graphs are stored in a database.
This means not only that they can be managed together with the artifacts they explain,
but also that arguments for a given artifact can be reused to construct other artifacts.
They constitute one of the contributions of this paper, since they extend the concept of
rationale (at present restricted to design) to encompass the entire life cycle of an arti-
fact — design, implementation, construction, testing and maintenance. Indeed, whereas
existing rationale formalisms are restricted to why a given object was designed in a
certain way, why-graphs also document why it was constructed, maintained and tested,
i.e., why it us the way it is.

Definition 3.1. A why-explanation graph, or why-graph (WG) for short, is a pair
(E, W), where

e F. the set of nodes, are explanations. An explanation is any kind of entity or
argument which a user sees fit to use as part of a rationale construction. Examples
of explanations are a text, a formula, a theory, a theorem, a photo. Explanations
may be simple or complex.

e IV is a set of edges. There is an edge e from a node n; to a node n;;; if n;;; is an
explanation of n;. The semantics of an edge e between n; and n;,; is “n; 1 s an
explanation of n;”.

Definition 3.2 An explanation chain EC is a pair (A4, P) where A is a (documented)
artifact and P a path (P C WG, where WG is a why-explanation graph).

An example of an explanation chain in a why-graph is “Theory ¢ is used to construct
justification argument j”. ¢ and j are nodes (j is a complex explanation), linked by the
edge “used-to-construct”. Justification j explains WHY a given artifact was constructed
a certain way.

Note that an explanation is not a simple textual expression. It is itself a complex
object based on other explanations, which materializes the thinking process. Under this
perspective, the graphs used in the literature to formalize design rationale (e.g., IBIS
graphs [?]) can be considered as a special case of why-graphs — for instance, justification
argument j above may be typically a design deliberation session documented in IBIS.
Moreover, since a design rationale document ezplains a given stage (design phase) of
artifact construction, an entire IBIS graph can be treated as a complex explanation E
and thus a node of a why-graph.

An artifact A is associated with one or several explanation chains that explain the
WHY behind it. If several explanation chains exist for an artifact, this indicates that
distinct acceptable reasonings can be applied to it.

These reasonings can represent WHY-alternatives to an artifact or may be comple-
mentary reasonings provided by different groups that participated/collaborated in the
construction of the artifact. For instance, given a piece of software, some of its char-
acteristics may be due to performance requirements (technical reasons) whereas others
may correspond to customer cultural needs (marketing, social reasons). Section ?? gives
an example of an artifact with multiple explanation chains in the context of software
module configuration.

Definition 3.3 An interpretation I, of an artifact A is a set of explanation chains.

Intuitively, a given interpretation of an artifact chooses how to explain it in case
several rationale are associated with the artifact. Multiple interpretations can be defined
by extracting paths in the why-graph.

Thus, an artifact can be associated with various interpretations.

Operations on why-graphs are traditional graph operations. One can therefore docu-
ment and construct complex rationale by combining parts of why-graphs; alternatively,
one can prune these graphs, eliminating some non-verified explanation or explanation
chain. An additional operation is the one that changes the content of a node — e.g.,
changes an explanation.

4 Documentation integration in WHOW

This section describes the wHOW framework as a platform for integrating the various
kinds of WHAT, WHY and HOW documentation. We start with illustration examples
borrowed from a wide variety of applications, and then focus on the WHOW type of
documentation.

4.1 Illustration: Reference queries

Our framework stores artifacts and all kinds of related documents in a database. Thus,
queries may concern an artifact, but also the associated WHAT, HOW and WHY docu-
ments. We now give examples of queries on (a) sets of documented artifacts and (b)
the documentation itself. Queries on non-documented artifacts can also be posed, but
are not, considered relevant to this paper.

4.1.1 Queries tnvolving documented artifacts

According to our goal of integrating three types of documentation within a collaborative
framework, three kinds of queries can be identified as far as artifacts are concerned:
WHAT, HOW and WHY queries.

While the first type of query (WHAT queries) concerns finding out about the com-
position of artifacts, the second one (HOW queries) deals with the description of the
production process that led to a certain artifact. Finally, WHY queries are concerned
with the rationale behind an artifact, as described in Section 3. In the following exam-
ples, the queries are characterized according to the type of documentation involved —
WHAT, HOW and WHY.

We point out that in many situations, the distinction among types of documentation
is fuzzy, and depends on the users’ vision of the world. Thus, for some people, an
algorithm is a WHAT - metadata document, whereas for others it is typically HOwW. By

the same token, specification requirements may be considered WHAT but also constitute
a complex explanation which is a node in a why-graph. Metadata are particularly useful
to process time-oriented (when) queries. The queries that follow exemplify common
needs of different types of groups which participate in an artifact’s life cycle.

1. WHAT queries:

(a) How does this gadget work? (i.e., retrieve its manual)

(b) What are all algorithms from computational geometry used in this particular
3D-visualization software?

2. How queries:

(a) How was this product built?
(b) How was this GUI assembled?

3. WHY queries:

(a) What was the chain of arguments that led to a certain product?
(b) Why was module M1 chosen to configure this software?

(c) What is the comparative quality of products P1 and P2 given the explanation
chain behind their development?

4.1.2 Queries on documents themselves

Whereas the previous queries concerned documentation for a specific set of artifacts,
interesting queries can also be posed on the stored documents themselves. This allows
correlating all types of documents, e.g., to analyze market trends. This is only possible
because they are all managed within a single database. Examples are:

1. When did a given production procedure stop being used?

2. When was Theory ¢ made invalid and through which arguments?
3. Which are all documents that use diagrams of Type d?

4. What are all documentations written in English?

5. Retrieve all explanation chains that use explanation E'1

6. How often is Theory ¢ applied in the explanation for the construction of an artifact
that is assembled using workflow w1?

4.2 Documented artifact (DA)

Intuitively, we define an artifact as composed of parts, which may themselves be ar-
tifacts. An artifact is hence built as any complex object, using the set constructor.
However, semantics have to be associated with the use of this constructor in order to
document the process of creating such an object. A documented artifact is any artifact
which is associated with some kind of document (one or many in the WHAT, HOW, WHY
collection). Documented artifacts may be composed of other (documented) artifacts.
A stored artifact is an artifact that has been stored in a database. It has an associated
reference.

We are now ready to describe the elements of the database: artifacts, documents
and documented artifacts. Those are described using a syntax that is meant to be
intuitive (symbols [] and { } represent respectively the tuple and set constructors, and
symbols /* and */ encompass comments).

Non-documented artifacts

simple-artifact = [AttributeList] /* basic parts of an artifact */

artifact = simple-artifact /* atomic artifact */
| {artifact} /* complex artifact */
Documentation

documented-artifact = [artifact, {document}]
document []
/* documents are defined more precisely through what-, how-,
why- types of documentation, as described thereafter */

What documentation. WHAT documentation is static. It is created by recursively
traversing the objects (artifacts) that constitute an artifact until atomic artifacts are
reached and by getting all documentation associated with it.

simple-what-document =[AttributelList]
what-document = simple-what-document
| complex-what-document
/* A complex-what-document is built by applying constructors
on simple (atomic) document constructors: set, list, tuple
Its value is computed by going recursively into its
substructures */

How documentation.

We consider HOW documentation to be defined by means of workflows. Thus, a HOW
document is dynamic (in the sense that it can be executable by a workflow management
system). A workflow is in fact a directed graph where nodes are activities and edges
indicate execution dependencies among activities. There are some proposals to store
and manage workflows within DBMS (e.g., [?]). They basically rely on three types of
stored entities: Activity (describes a task); agent (those may execute tasks); roles (the
role in which agent executes task).

How-atom = [activity, agent, role] | {[activity, agent, rolel}
| REL (How-atom,How-atom)
REL = AND | OR | XOR
Agent = person | system
Activity = manual activity | automated activity
How-document = {input} || Dependency-link(How-node) || {output}
How-node = How-atom | How-document
Dependency-link (How-node) = How-node SUCCEEDS How-node
| How-node BEFORE How-node
| SOMETIMES (How-node)
| ALWAYS (How-node)
input = artifact | documented-artifact | document | file | event
output = artifact | documented-artifact | document | file

/* REL indicates relationships among workflow task and Dependency links
denote dependencies among tasks, where

tasks may be atomic (how-atom) or encapsulate

complex workflows (how-document). The || symbol denotes concatenation.

*/

Why-documentation. The why-documentation is a set of why-graphs. It associates
rationale with an artifact (atomic or complex), which leads to a why-documented arti-
fact.

Figure 7?7 gives an example of a why-graph and the artifacts documented by this
graph. As we can see from the figure, artifact A is composed of simple artifacts {al,
..., an}. Participating artifact al can be explained either by E1 or by E2. In turn, E2
is explained by E3, which may be justified either by a complex explanation containing
both E4 and E5 or by E6 . The symbol || denotes drains of the graphs (“terminal
nodes”).

We point out that each of these artifacts may have been conceived and developed by
a different team in a collaborative environment. However, this becomes transparent in
our framework, as all artifacts and their parts and documentation are integrated within
the database.

Definition 4.1. A whow-documented artifact is a 4-tuple (a, WH, HO,WQG) where a
is a whow-documented artifact, and WH, HO and WG are sets of respectively WHAT,
HOW and WHY documents.

4.8 Verstoned artifact

Versioning in databases arises from the necessity of representing the real world. Versions
are a means of storing different states of a given entity, thereby allowing the control
of alternatives and of temporal data evolution. Versions are very common to any kind
of cooperative environment, e.g., in the context of CASE systems and CAD/CAM
projects, often for object-oriented databases (e.g., [?, ?, ?]). Versions are also often
considered in the context of concurrency control (e.g., [?]) or as an explicit means to
support cooperative work (e.g., [?]). Two versions are called alternative (or variant)
if they are generated from the same original object. The support to alternative (or

10

a2 - }

/N IN
\/]
/\E?

|1
(E4,E5)
[

Figure 1: A why-documented artifact

parallel) versions allows, among others, testing different ideas, contrasting scenarios or
meeting distinct design or user requirements.

Like any real world entity, artifacts are versioned. Intuitively, versioned artifacts
are artifacts which have several versions. These versions are all connected to each other
by some sort of link (physical or logical), which allows retrieving sets of versions of an
artifact that obey a certain constraint (e.g., “Which are the compiler versions that were
installed after a certain date?”). Since artifacts may be complex, their parts may also
be versioned, and again ”linked” to each other. This means that in the end the version
database is organized in a very complex manner, where versions of artifacts and their
components are all interlinked.

Figure 7?7 shows examples of complex artifact versions. An arrow represents a tem-
poral evolution. On the top of the figure, x; represents a version of x. x5 is derived
from x; (temporal evolution). xj, x3 and x4 are alternatives (parallel evolution). The
figure in the middle depicts an artifact x as composed of artifacts b and c¢. The graph
at the bottom shows different versions for artifacts as well as for artifact parts. b; is
part of both x; and z4.

In order to solve this issue, we have chosen a particularly flexible versioning mech-
anism — the database version mechanism of [?], hereafter called DBV for short. It
handles all complex links among versions as logical links in a way which is transparent
to the user. This allows managing versions of artifacts (and documents), and connecting
them all together into complex WHOW documented artifacts.

A conventional monoversion database (i.e., a database where versions are not con-
sidered) represents one state of a modeled part of the world. In the database version
approach, a multiversion database simultaneously represents several states of the mod-
eled part of the world. Whenever users want to handle one given version of an object,
they actually just want to manage one of the states of the multiversion database. Intu-
itively, this is similar to the concept of database view, in which only relevant information
is offered to the user. This state of the world within a multiversion database is therefore
a logical view of the entire database, and is called a database version. Each database
version in a multiversion database has an identifier v (i.e., each view can be uniquely

11

X1
v
x2
x5 X3 x4 alternatives
v
xX6
-c
E] - X composed of artifacts b and c
X
AN bl
x1], v
\ I b2
. A2
(B2, | i
x2 ! T ba
\ RS
/ \“ \:\
\ ~ T~ ~
S N
e e
x5 x3 x4

Figure 2: Arborescent artifact versions

identified). An object with several versions is called a multiversion object.

For the purpose of this paper, all we need to know is that the DBV mechanism
relies on separating the logical database (a consistent state of the world) from the phys-
ical database issues, which are transparent to the user. Furthermore, the number of
different actors collaborating in creating and managing an artifact version is irrelevant
to this versioning discussion, since each group that participates in the development of
a version can immediately have access to it, ignoring all others. Moreover, the DBV
keeps track of derivation operations, thereby allowing the user to identify evolution
trends, alternatives and other links across versions of an object. Updates of complex
objects are handled in the same way as those of atomic objects. For more details on
this mechanism and underlying model, the reader is referred to [?, ?].

We recall that a stored artifact is stored in a database and has in particular an
associated reference (e.g., object identifier in an object-oriented database). The DBV
mechanism relies on identification of objects within each database version. Any mul-
tiversion object o; has each of its versions identified by (v;, 0;), denoting the state of
multiversion object o; as seen in the logical database version v;.

Definition 4.2. A versioned artifact is identified by a tuple (v, a), where a is a multi-
version artifact and v is the identifier of a database version.

Definition 4.3. A wersioned document is identified by a tuple (v,d), where v is the
identifier of a database version and d is the identifier of a document.

Definition 4.4. A wversioned whow-documented artifact is identified by the tuple
(v, wda), where v is a database version and wda a whow-documented artifact.

12

N
| |
| |
| |
: ADB wbs HDB RTDB :
it S o > oW D why) 2|

Y !
I
| |
I I
| Documented artifact library l
l l
| documented artifacts l
l T
l l
l l
1 dai (v1..vn) — l DBV

Validation module
consistency checker
Documented artifact factory

A4

help mod_ule Reasoning modul
model finder | —= | (;gqtjonale builder)

comparator

consultation

‘Workflow builder ’7

module

Figure 3: Architecture of WHOW

4.4 Architecture of WHOW

Figure 7?7 shows the architecture of wHOW. It consists of two levels: A database level,
and a documented artifact construction and querying level.

The database level is managed by a DBMS which has the DBV mechanism. This
DBMS manages four databases: An artifact database (ADB) containing stored artifacts,
and three documentation bases— WDB, HDB and RTDB, containing respectively WHAT,
HOW and WHY (rationale) documents. Objects of these four databases are integrated
by means of an integrator module.

The construction and querying level allows the user to access the database and
manage (versioned) artifacts, documents and documented artifacts. We refer to this
large database of documented artifacts as Documented artifact library. The user
may interact with this database in a querying mode through the browser, to pose queries
such as the ones presented before.

Alternatively, the user can construct new documents, and attach documents to
artifacts (creating WHOW documented artifacts) by combining objects stored in the four
databases, or inserting new objects. This is achieved via the Documented artifact
factory, a toolbox for interacting with the DBMS. In particular, the factory has tools
for construction of why-graphs (Rationale builder) and workflows (Workflow builder).
The interaction with the factory is assisted by the help module and validated by the

13

validation module.
Description of our work in implementing some of these modules, and on the DBV
mechanism, is outside the scope of this paper and can be found elsewhere [?, 7, ?].

5 Example of using the framework

We now give an example of how an artifact is stored within WHOW. Let us consider
a complex documented artifact SW — a piece of software, which is being designed
and built by several teams. SW is assembled by putting together three modules (also
documented artifacts) M1, M2, M3 — a text editor, a compiler and a graphical interface.
Figure 7?7 shows two logical database versions of SW, Svl and Sv2, indicating the
different documentation links among its modules, and how they would be maintained
within our framework. SW is assembled by integrating the text editor, compiler and
interface through a set of steps documented in a HOw workflow document HOW1. In
this figure, database elements are identified by pairs (version identifier, object identifier)
—e.g., (Svl, M1) is the version of the text editor used in the Sv1 version of SW. In order
not to burden the figure, we did not indicate the full identifiers in all cases, but the
reader can assume that all node labels are pairs (Svi, Dj) where Svi is the identifier of
the database version and Dj indicates the document — e.g., (Svl, HOW1) in the figure.

Thanks to the DBV mechanism, each software version can be managed by different
users or user teams independently without considering its relationships with the other
versions. Thus, for all effects, a given team may work with Svl or with Sv2, or even
with both alternately, but does not need to worry about versioning. Module M1 is
documented by a WHAT document WH1 (a manual) and one why-graph where just just
one explanation path (E2, E3, E6) is chosen both in Svl and Sv2. Module M2 has a
WHAT document WH2 (compiler installation instructions) — again we recall this may be
versioned or not! M2 has again one single why-graph, but distinct explanation chains
have been chosen for it according to where it is managed, Svl or Sv2, respectively (E7,
E6) and (E3, E4, E5). Finally, M3 has one WHAT document WH3 (interface specifi-
cation), but now it has one explanation chain in Svl (E9, E10) and two explanation
chains in Sv2 (E9, E11), and (E14, E15).

We point out a few interesting issues which occur in real life and can be supported in
our framework. First, different artifacts and artifact versions may share documentation.
Second, why-graphs may share explanations (a novel aspect in rationale management)
since explanations are database objects (e.g., modules M1 and M2 share explanations
E3 and E6 in their why-graphs). Third, we can easily manage configurations of ver-
sioned artifacts and the associated documentations, thanks to the orthogonality between
the DBV version manager and the entities being versioned (since this manager treats
all kinds of database objects as versionable entities). Fourth, the existence of teams
cooperating to create the artifact is managed by the framework by integrating doc-
umentation facilities with the versioning mechanism, presenting a unified view to all
actors involved. At the same time, different teams may work with distinct parts or
versions of the artifact, thanks to the concurrency control functions provided by the
underlying database management system.

Finally, one single artifact version (M3) can have more than one explanation chain
associated.

This last comment merits a longer discussion, since it is counter-intuitive to allow
alternative WHY documents to one single artifact. In real life, this situation is found in
at least two cases. The first case occurs when the explanation is constructed by teams

14

(VM) (SV2M2) (V1M = (sv1HOW1)

L o e e —— -

TR INAN

WH1 | E2} WH2 WH3 | E9 E14

- (s2m) (5\/2 M2) (2 3) —> (Sv2,HOW1)

WHL WH2 WH3 (B9 | El4

E10

Figure 4: Versioning complex whow-artifacts

that did not participate in the construction of the artifact (e.g., reverse engineering).
Thus, they may have distinct acceptable justifications of why a given artifact is/behaves
in a certain way (see [?] for an example in interface design rationale). The second case
occurs when only certain aspects of an artifact are emphasized in order to explain
its creation — e.g., functionality issues versus performance issues — and correspond to
multiple artifact interpretations.

6 Conclusions

This paper presented a database-centered framework for managing documentation gen-
erated in cooperative work, that unifies all kinds of artifact documentation, thereby
allowing smooth transition between different stages of an artifact’s life cycle, and more
efficient maintenance, and communication among | participants of cooperative work.
The main idea is to manage all types of documentation (WHAT, HOW and WHY) within
a single database, supported by a database version mechanism. The architecture sep-
arates the artifact itself from the issues of reasoning and discussion to arrive at an

15

artifact (WHY), the procedures to produce the artifact (HOW), and the artifact descrip-
tion (WHAT). This permits independent evolution of documentation base and artifact
base.

Data (the documents) are managed by the DBV version mechanism, which ensures
proper handling of configurations and alternatives, which are managed orthogonally
to the database stored data. Reasoning is supported by why-graphs, and workflows
document HOW to assemble an artifact. Documents may evolve independently from
the artifacts themselves. This allows the versioning mechanism to keep track of the
validity of theories used to construct a product. The framework presented here is mod-
ular in the sense that it allows all types of combinations of documentation associations.
While some applications require intensive use of WHAT- and WHY-documentation si-
multaneously (e.g., geologic map creation), other are just concerned with WHAT- and
HOW-documentation.

Several extensions are being considered, both in terms of implementation and in
terms of theoretical issues. A preliminary experience in why-graph implementation is
the work of [?] on geological hypermaps. The use of workflows as HOW documents
managed within DBMS was tested within a system constructed for the domain of en-
vironmental applications [?]. We intend to couple these prototypes to the DBV imple-
mentation and associate other kinds of documents.

One strong assumption in WHOW is that stored why-graphs have been constructed
by the people who participated in creating and designing the artifacts. However, it
is an open issue of how rationale can be efficiently captured. Indeed, documentation
of a rationale is very labor-intensive. It is our belief that our proposal for a rationale
database RTDB will help users organize their WHY documentation, thus allowing the
incremental construction of a rationale knowledge base. Other open issues along the
same line include a discussion on various types of rationale (e.g., not only objective
criteria, but also social or cultural issues may have to be taken into account) and the
fact that rationale is domain-specific.

Acknowledgements

This work was developed with Brazilian grants from CNPq, FAPESP and the Pronex/Finep
program SAI (Advanced Information Systems). The authors thank Jacques Wainer for
pointing out the connection of this research with that on design rationale as well as the
Berlin-Brandenburg Graduate School on Distributed Information Systems for its travel
support.

References

1] G. Alonso and C. Hagen. Geo-Opera: Workflow Concepts for Spatial Processes.
In Advances in Spatial Databases (Proc. of SSD’97), pages 238-257, LNCS No.
1262, M. Scholl and A. Voisard (Eds.), Springer-Verlag, Berlin/Heidelberg/New
York, 1997.

2] A. Ailamaki, Y. Toannidis, and M. Livny. Scientific Workflow Management by
Database Management. In Proc. 10th IEEE International Conference on Scien-
tific and Statistical Database Management, pages 190-201, 1998.

(3] J. Conklin and M. Begeman. gIBIS: A Hypertext Tool for Exploratory Policy
Discussion. ACM Transactions on Office Information Systems, 6(4):303-331,
1988.

[4] W. Cellary and G. Jomier. Consistency of Versions in Object-Oriented

Databases. In Proc. 16th VLDB, pages 432-441, 1990.

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

A. Dattolo and V. Loia. Collaborative Version Control in a Agent-based Hyper-
text Environment . Information Systems, 21(2):127-145, 1996.

S. Gancarski and G. Jomier. Managing Entity Versions within their Contexts: a
Formal Approach. In 5th International Conference, Database and Expert Systems
Applications DEXA9/, pages 400-409, 1994.

O. Giinther and A. Voisard. Metadata in Geographic and Environmental Data
Management. In W. Klas and A. Shet, editors, Managing Multimedia Data:
Using Metadata to Integrate and Apply Digital Data. Mc-Graw Hill, 1998.

R. H. Katz. Toward a Unified Framework for Version Modelling in Engineering
Databases. ACM Computing Surveys, 22(4):375-408, 1990.

F. Llirbat, E. Simon, and D. Tombroff. Using Versions in Update Transactions:
applications in Integrity Checking. In Proceedings VLDB 1998, pages 96-105,
1998.

M. Manouvrier. Versions d’Objets de Grande Taille: Répresentation, Compara-
ison et Mises-a-Jour. PhD Thesis Internal Report, University Paris-Dauphine,
Feb 1999.

W. Michener, J. Brunt, J. Helly, T.Kirchner, and S. Stafford. Nongeospatial
Metadata for the Ecological Sciences. FEcological Applications, 7(1):330-342,
1997.

T. P. Moran and J. M. Carroll, editors. Design Rationale: Concepts, Techniques
and Use. Laurence Erlbaum Associates, 1996.

T. P. Moran and J. M. Carroll. Qverview of Design Rationale, Chapter 1, pages
1-20. In [?], 1996.

C. B. Medeiros, G. Vossen, and M. Weske. GEO-WASA - Combining GIS
Technology and Workflow Management. In Proc. of the 7th Israeli Conference
on Computer-Based Systems and Software Engineering, pages 122-139, 1996.

J. Meidanis, G. Vossen, and M. Weske. Using Workflow Management in DNA
Sequencing. In Proc. First IFCIS Conference on Cooperative Information Sys-
tems, 1996.

A. MacLean, R. Young, V. Bellotti, and T. Moran. Questions, Options and
Criteria: Elements of Design Space Analysis, chapter 3, pages 53-107. In Moran
and Carroll [?], 1996.

M. Rusinkiewicz and A. Sheth. Specification and Execution of Transactional
Workflows. In W. Kim, editor, Modern Database Systems. The Object Model,
Interoperability and Beyond, pages 592-620. ACM Press, 1995.

L. Seffino, WOODSS - Workflow based Spatial Decision Support System, Mas-
ters’ thesis, UNICAMP, 1998 (In Portuguese)

G. Talens and C. Oussalah. Version d’objets pour 'ingénierie. Technique et
Science Informatiques, 15(2):145-178, 1996.

A. Voisard. Abduction and Deduction in Geologic Hypermaps. Advances in
Spatial Databases, Proceedings of the 6th International Symposium on Spatial
Databases (SSD’99), Lecture Notes in Computer Science No. 1651, R. H. Giiting,
D. Papadias and F. Lochovski (Eds.), Springer-Verlag, Berlin/Heidelberg/New
York, 1999.

W. Wieczerzycki and J. Rykowski. Version Support for CAD/CASE Databases.
In Proceedings East/West Database Workshop, Workshops in Computing, pages
249-260. Springer Verlag, Berlin/Heidelberg/New York, 1994.

J. Wainer, M. Weske, G. Vossen, and C. B. Medeiros. Scientific Workflow Sys-
tems. In Proc. of the NSF Workshop on Workflow and Process Automation
Information Systems, 1996.

