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Abstract

This paper presents a framework for the manage-
ment of multiple representations of georeferenced ele-
ments in a GIS environment. This solution is presented
from a database perspective, and is based on extending
the DBV version approach with view faciities. Given this
environment, users can build consistent views of their
modelled world, creating and combining different repre-
sentation frameworks. The environment dissociates the
logical dimenston from the physical dimension, liberating
users from concerns about implementation details.
Keywords: database, versions, views.

1 Introduction

Geographic Information Systems (G1s) are software that
manipulate georeferenced data — data about geographic
phenomena associated with their spatial relationships
and location on the terrestrial surface. The term geo-
referenced entity in this paper refers to any real world
element which is georeferenced (whether a human arti-
fact or a natural phenomenon).

The definition of proper database support for
GIS covers a vast range of issues, from the user in-
terface level down to the storage system level [10, 20].
Some problems fall into the domain of database man-
agement systems (DBMS) — e.g., query optimization —
whereas others are handled at the end-users’ side — e.g.,
application modelling. Some issues, however, present a
challenge to be met at different levels by both end-users
and database researchers. This paper is concerned with
one such issue, namely, that of multiple representations.
This corresponds to the need of maintaining, in the G1s,
different descriptions of the same georeferenced entity.
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As pointed out in [26], this issue occurs in every
application domain, since it results from the fact that
the same problem can be modelled in different ways
(thereby producing distinct database schemas) and the
same entity can be stored according to distinct views
and standards (thereby resulting in different instances
on a database).

In the case of GIs, this problem is aggravated by the
fact that geographic reality is multi-faceted and the way
it 1s perceived depends on the user needs. This corre-
sponds, from the end-user side, to handling the issues
involved in modelling all facts in the world, discretizing
and storing them into data files. This often requires that
different representations be handled simultaneously in-
curring thereby into problems such as establishing links
and consistency among representations of a given area.

From a database point of view, handling multiple
representations of a given georeferenced entity must be
treated at several levels: interface (presentation), logical
modelling, schema specification, query processing, stor-
age structures. At all these levels, several open issues
arise, concerning the management of distinct represen-
tations: data replication, consistency maintenance, en-
tity identification and multiplicity of behaviors of a given
entity.

This paper presents a database-centered environ-
ment to solve some of these problems. This approach
is based on extending the specific version management
approach [3, 4], called DBV, with views.

We face the problem from a database perspective
and we are not concerned with how the user has arrived
at the different representations.
analyze the problem of managing these representations,
once they have been stored in a database.

Our main goal is to



The remainder of this paper is organized as follows.
Section 2 briefly discusses on some issues involved in the
management of multiple representations, and comments
on previous research in the area of database support for
them. Section 3 introduces an example that is going to
be used throughout the paper to illustrate our solution.
Section 7?7 briefly outlines the DBV approach, extend-
ing it with views. Section 5 presents our solution for
database support for multiple representations, which is
based on the DBV approach with views. Finally, section
6 presents conclusions and directions for future work.

2 Multiple Representations - a Brief
Overview

The problem of multiple representations in geoprocess-
ing is related to the fact that users must model and
store data about the world for different types of ap-
plication. This requires sampling and discretizing re-
ality, and therefore implies several open issues, notably
those involving data quality [5, 8]. As remarked in [27],
even though the state of a given entity may remain un-
changed, 1ts representation and relationships with other
entities may vary according to user perspectives.

[27] defines diversity in representations as a result
from variations in users’ requirements. Though this
is certainly true, we prefer to emphasize that differ-
ent dimensions exist through which representations may
evolve — e.g., resolution, time, model, user point of view,
and others. We analyze briefly some of these possibili-
ties.

Resolution refers to the level of abstraction with
which the world is represented. For instance, a road
network may be considered as an atomic entity (high
level of abstraction) or as a set of sub-entities, contain-
ing crossings and bifurcations (lower level of abstrac-
tion). Resolution variation, as pointed out by [24], is
often considered as synonym to scale change. However,
we prefer to see scale changes as an implementation for
multiple resolutions.

Varying representations along the fime dimension
corresponds to the temporal evolution of an entity —
e.g., modifying the road network, adding and eliminat-
ing road branches. Here, even when the resolution is
kept constant, one entity (older representation) may be
replaced by different entities (after update).

The issue of representations in modelling of data is
related to the nature of phenomenon being modelled.
The canonical example is the discussion between field
and object representations [6]. Topography data for
building the road, for instance, is commonly represented
using a field (continuous) model, whereas the road itself
obeys a network (object) spatial representation.

Multiple representations reflecting users’ points of
view occur when distinct users want to represent a given
entity according to their needs: the road is represented
differently for cartographic, engineering, and traffic flow
optimization purposes. These different representations
will exist even if the nature of the phenomenon does not
change, the time is fixed and so is the level of resolution.

We stress some commonalities among these repre-
sentation variations. Some representations can be com-
puted from existing data (e.g., in cartographic general-
ization [15, 21]) while others require storage of distinct
data records (e.g., in temporal evolution). Materialized
(as opposed to computed) representations correspond to
data that have been actually stored in the database. In
database terms, computed representations can be com-
pared to views, while materialized representations may
be treated as versions (of real world geographic ele-
ments).

Our solution combines both versions and views,
thereby facilitating the joint management of both types
of representation. It extends the a1s related work of [18,
19], presenting and detailing a framework which allows
the management of multiple representations through
versions and views. This solution is based on the
DBV version approach [3],[9].

Versions are a means of storing different states of
a given entity, thereby allowing the control of alterna-
tives and of temporal data evolution [14, 13, 12, 16]).
Views in databases are usually defined as the result of
a query. Views may be stored (materialized), but in
general it is understood that versions correspond to sta-
ble data, whereas views are generated from stable data
and are usually temporary. The issue of views in re-
lational databases is understood, but in object-oriented
databases is still a matter of research [1, 17, 25]).

Existing view and version mechanisms, if taken in
isolation, are not sufficient to allow satisfying GIs users
requirements for multiple representations. This is true,
for instance, in the multiple representation case. So our
solution composes views and versions in order to satisfy
representation management.

3 Illustrative Example

This section describes a short example, which will be
used throughout the text to illustrate the proposed solu-
tion, as well as the theoretical framework adopted in the
paper. We just provide enough detail to let the reader
understand the mechanism presented and omit the com-
plete database schema specification, given paper space
limitations.

We adapt an example described in [24]. Consider
a region with a set of roads which needs to be repre-



sented differently according to two user group require-
ments: cartographers and traffic flow engineers. A car-
tographer will need a detailed description that will re-
spect distances, relative positions and spatial relation-
ships among the roads and neighbor geographic acci-
dents (e.g., hydrography, vegetation). Traffic engineers
require manipulating the road data using a directed
graph representation with weights, but without concern
for scale or material. Furthermore, they need details
about traffic flow (e.g., speed limits).

3.1 The data model

We adopt a multi-level view of georeferenced data mod-
elling, similar to [2]. The world is modelled as a set of
object classes, called georeferenced classes. A georefer-
enced object is an instance of a georeferenced class. It
has a spatial and a non-spatial (descriptive) component.
The spatial component describes the object’s geomet-
ric and topologic properties, varying according to the
representation chosen. A georeferenced object may be
associated to different representations according to ap-
plication purposes. Each representation corresponds to
a distinct database class. The advantages of dissociat-
ing an entity’s representations from the entity itself are
discussed in different contexts [23, 27, 11, 24].

Representations are built from a set of primitive
classes to describe object’s geometries. These primitive
classes are rooted at a class called Geometry, which has
subclasses Pownt, Line, Polygon. These classes are the
basis for building complex representation descriptions.

A georeferenced class is typically defined in a high
level way as

Class Geo-class
type tuple (non-spatiall: t1,
non-spatial2: t2,
non-spatialn: tn,
geo-components: set(Geo-class),
location: Geometry
method public equal(Geo_class ol)
public display(),
public element( Geo_class ol): Boolean),

: Boolean,

end

The non-spatial components correspond to non-
spatial attributes; geo-components are objects from other
georeferenced classes that compose the Geo-class; Lo-
cation contains the representation descriptions, which
may vary in scale, time frame etc. The element method
checks if a georeferenced object is composed of the of
geo-component.

3.2 Example database schema

In our simplified world, we assume that the only geo-
referenced classes of interest are Road, Vegetation, Soil,
City. The database must also contain a class called Net-
work which is defined as a list of lines and over which are
defined methods and constraints appropriate for spec-
ifying networks and their topologic properties. Class
Network has two subclasses, Cart-representation and
Weighted-graph. The first one 1s used for representing
the road network for cartographic purposes, and contains
methods such as change_scale and change_weight. The
second 1s used for the traffic flow requirements, and con-
tains methods such as compute_flow and change_weight.
The change_weight method 1s a method of Network class
redefined on its two subclasses.

Vegetation and Soil locations are described in terms
of Polygon geometries. City is represented both as Poly-
gon and Point, depending on the scale desired. Scales
are managed according to class Scale.

The Road class, which is manipulated by both types
of users, would be defined as:

Class Road
type tuple (road_name: string,
loc: list(tuple(s:Scale, rep:Network)))
method public length (r:Road.loc): integer,
public change_speedLimit(limit :Speed)
end

Method length computes the lenght of a road and is com-
Polymor-
phism allows different representations to appear in the
list of locations loc. For instance, the change_speedLimit
method applied to an object of class Road will be imple-
mented as a change_weight invocation over its represen-
tation which may be an instance of the Weighted-graph
class or the Cart-representation class.

puted based on a representation and scale.

4 The DBV approach

The database version approach has beeen developed to
provide a way to implement efficiently versions in gen-
eral purpose DBMS. One of its main features, which
distinguishes it from other approaches, is the distinction
between the logical level, seen by users, and the physical
level, managed by the system and hidden from users.
At the logical level, the multiversion database is seen
as a set of DataBase Versions, or DBV identified by a
database version identifier and composed of versions of
object and class. Each DBV represents a consistent de-
scription, or version, of the modelled world, and may be
associated with one or several dimensions corresponding



to the versioning semantics of the application. As a ver-
sion of object/class may have the same value in several
database versions, the conventional concept of “version
of object/class” is split in two new concepts: a logical
version of an object/class represents the version of this
object/class as it is seen by users in a given database
version; a physical version of object/class is used by the
system to store the value of all the logical versions of this
object/class having the same value. A database version
is composed of one logical version of each object/class,
identified by a pair (object/class identifier, database ver-
sion identifier). DBVs are created by logical copying,
called derivation, and may evolve independently from
each other. This means that a DBV may be updated
or deleted without side effect on other DBVs. Moreover
user may work simultaneously on several DBVs :
paring their content, copying logical versions from one
DBYV to another one, etc.

At the physical level, the version mechanism, de-
scribed in [3], allows to manage efficiently as many DBVs
as needed.

Such a multiversion database enables the simulta-
neous management of distinct alternative scenarios, as
well as handling georeferenced feature evolution through
time. It can be used to handle some aspects of multiple
representations (notably through time - [19]).

In the upper part of Figure 1, the multiversion
database is composed of four database versions : Duvs
is derived from Dw; by versioning the schema; Duvs is
derived from Dvy by versioning the data.

com-

5 Support of multiple representations
in GIS

The use of views to support multiple representations has
been recently proposed by [22], in the context of cAD ap-
plications, where many of the problems existing in GIS
can be found (e.g., issues of scale and point of view).
The authors, however, ignore the possibility of perma-
nently storing new database versions, and of combining
and manipulating sets of representations.

We have shown in [18, 19] how the DBV mechanism
can be used to keep track of the temporal evolution of
georeferenced entities: each database version Dw; cor-
responds to a distinct state of the world, which can be
manipulated by the user independently from the other
states. This is one specific case of multiple represen-
tation handling, where time is the varying factor. The
same framework can also be extended to other multiple
representation situations, associating each Dwv; with a
distinct representation need. In the example of section
3, this means that several sets of Duv’s coexist in the
database: one set for managing the representation needs

of cartographers, and another for traffic engineers. Each
set represents the variation of the phenomena over time.

Though this allows handling different representation
dimensions, it does not provide the user with enough fa-
cilities for managing them in a GI1s. In this section, we
show that by enhancing a multiversion database with
views, we can provide users with an environment where
they can adequately manage an entity and its represen-
tations, as well as work simultaneously with several rep-
resentations.

Nowadays, the problem of handling multiple repre-
sentations is solved by the users through storing enti-
ties in separate files. In our model, this can be handled
by storing the data in a multiversion database. Con-
sider the example described in section 3 in a multiversion
database. Each Dwv; corresponds to a specific represen-
tation of the world, where all objects are described in the
same scale, projection and time frame. Consider teams
of engineers and of cartographers that want to manip-
ulate data about the area where the road network lies.
Given a Duv, it will contain a Road object represented
either using Cart-representation or Weighted-graph.

5.1 Multiversion View

However, G1s users do not normally want to work with
the whole database. In particular, traffic engineers just
need to consider Road and City classes, whereas cartog-
raphers require Road, Vegetation and Soil. Again, at
present this is handled by combining data in separate
files, from which users work. However, they cannot keep
the links between such files and the underlying database.

Our framework, on the other hand, considers that
each group of users may define a view over the multi-
version database, which allows them to select the classes
of interest, while at the same time keeping their links
with the underlying database. This view, unlike all other
views studied in the literature, is a multiversion view: it
is constructed from the underlying Dw;, each of which
appears in the view as a separate wvirtual database ver-
ston. We use the term wvirtual database version to denote
that, in a multiversion view, each versioned database
Du; corresponds to a view V Dwv;. The middle part of
Figure 1 shows this situation. The multiversion view ap-
pears to the user as a multiversion database, restricted
to the entities of interest. In the figure, this view is com-
posed of virtual database versions V Dv; through V Dus.

We now show how this can be done using the syn-
tax of the O2 DBMS. In order to define a view in O2,
users first define a virtual schema (class types and meth-
ods) and then specify its extension by means of queries.
Relationships between view objects and database persis-
tent objects are established by declaring which database
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Figure 1: Modelling the user framework

persistence roots are used in the view.

We extend this notion to multiversion views, main-
taining the same construction steps. Consider a multi-
version database MDBYV composed of database versions
Duy, Dus, ... Dvj. A multiversion view MV (view cre-
ation operation of type Va) is defined as

virtual schema multiversion view MV
composed of (VDvi, . VDVj)
from multiversion schema MDBV

import class C1, C2;

import name RC1, RC2, 01;

Each virtual database versions V Duv, will have classes
C1, C2in its schema.

In our example, a multiversion view for the traffic
engineers, called TE — View, can be defined as

virtual schema multiversion view TE-View
composed of (Road, City)
from multiversion schema ROAD;
import class Point, Line, Polygon,
Weighted_graph, Network, Road, City;
/* persistence roots */
import name R_Road, R_City;

Engineers need only data about City, Road. Further-
more, only the weighted graph representation of Road
will be used in the view. The extension of TE — View
can be built using queries:

virtual class VCity includes
( select * from R_City);

In view VC'ity, all database cities appear in each virtual
view component. Alternatively, engineers may only be
interested in Cities of a certain size:

virtual class VCity includes
(select x from R-City

where x.population > 100,000);

The virtual VRoad class extension can be built in a sim-
ilar way, restricting the loc representation attribute val-
ues to those that correspond to Weighted-graph repre-
sentations.

5.2 View over Multiversion view

Each group of users (cartographers, engineers) can build
its own multiversion view and work according to its
needs. At this stage, users can start combining data,
manipulating the entities of interest. This stage of the
work can be modelled by stipulating that each group
If a
multiversion view MV contains virtual database versions
V Dvy ...V Dy;, then basically two types of views can be

built on top of MV:

will build views on top of its multiversion view.

e One view Vj; defined over one single virtual database
version V Duy:

virtual schema DBV view Vk
from VDv_k in MV;
/*import from virtual schema of view VDv_k#*/
import class Ci;
import name R-C1;

e One single view defined over several virtual database
versions: {VDu ...V Dup}:

virtual schema VDBV view Vk

from (VDv_1l ... VDv_m) in MV;
import class C1;
/*only the schema def. of VDv_1 is used#/
import class C2 in VDv_1;



These views may be built on top of a single or multi-
ple virtual database versions V Dv;. The first case hap-
pens when, for instance, engineers select one V Dv state
on which they want to run simulations; in the second,
the engineers want to analyze the evolution of the road
through time, for a given representation. This is por-
trayed in the bottom level of the figure. View V1 is built
on top of virtual database versions V Duvy; view V2 com-
bines data from virtual database versions V Dvs, V Dus.

We remark that these are the actual steps GIs users
follow in order to perform different types of data anal-
ysis, but without support of versions or views. This
forces them to manage each single database version cre-
ated, which adds to the complexity of application devel-
opment. In our framework, the links among Dv’s and
among virtual database versions are managed by the un-
derlying version mechanism and its view complement.
Thus, the steps for working in our environment that
support users’ work habits are: creation of the multi-
version database; construction of multiversion views for
the distinct user groups; and building views over the
multiversion views.

Returning to the road example, the first type of view
is similar to constructing a view over a non-versioned
database [25], and will not be expanded here.

In the second type of view, creation specification as-
sume that two virtual database versions represent two
different temporal states of the road at times T1 and
T2. Suppose that the engineers want to combine both
representations in order to compare length differences.
In our framework, this requires creating a view that will
simultaneously contain two temporal representations of
the road, for these times. Let these two representations
be stored in virtual database versions named V Dvpq and
V Dvps. Schema and extension are defined as:

virtual schema DBV view T

from (VDv_t1, VDv_t2) in MV;
/* Cities are not needed in this view */
import class VRoad ;
import class Point, Line Polygon, Network,
Weighted-graph;
import name R-Road;

virtual class C includes
(select tuple(x: al.loc, y: a2.loc)
from al in VRoad inDv VDv_t1,
a2 in VRoad inDv VDv_t2
where al.scale = a2.scale )
attribute dif_length: integer in class C
has values
abs(self.x->length - self.y->length)

Class C does not correspond to any underlying database
class, and contains attributes z,y (taken from the loc
component of the virtual class VRoad, for the represen-
tations at T'1 and 7'2). Furthermore, it contains an ad-
ditional attribute dif-length, which shows the difference
in the length of the two road representations. Length is
a method defined for class Road in the schema of section
3. Notice furthermore that this only makes sense if both
representations refer to the same scale.

6 Conclusions and Directions for
Future Work

This paper discussed the problem of multiple representa-
tion of georeferenced entities, and presented a database-
centered environment for managing them. This envi-
ronment is based on a multi-level data model, and takes
advantage of extending the DBV version mechanism with
some view operators. This extension is in itself a contri-
bution, since versions and views have so far been treated
in isolated contexts by the database community.

The three main advantages of the framework pro-
posed here are. It distinguishes between the logical prob-
lem of multiple representations from that of physically
storing and managing them. It allows GIs users to spec-
ify their own representation framework, from which they
can select the data entities of interest, without having to
worry about other existing representations of the same
elements. It provides a means for users to work simulta-
neously with several representation frameworks, without
losing track of the original data layers.

The next steps in this research will contemplate the
formalization of the view operators, and consider imple-
menting the extension of the DBV mechanism in order to
support the multiple representation paradigm.

In the DBV environment, the underlying DBMS han-
dles the consistency of data. In a Gis framework, how-
ever, the problem is much more complicated, since en-
tities are related to each other according to spatio-
temporal constraints, which may or not be relaxed by
the user, for a particular representation context. The
multiple representation paradigm presents, in fact, an
interesting challenge from this point of view. The issue
of consistency among versions is part of an ongoing work
at the LAMSADE and LAFORIA laboratories in France

[7], and is not the main concern of this paper.
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