
Managing Multiple Representations of Georeferenced ElementsC. Bauzer MedeirosDCC-IMECC-UNICAMPCP 606513081-970 Campinas, SP, Brazilcmbm@dcc.unicamp.br M.J. Bellosta, G. JomierLAMSADEUniversit�e Paris-Dauphine75775 Paris, Francename@lamsade.dauphine.frAbstractThis paper presents a framework for the manage-ment of multiple representations of georeferenced ele-ments in a GIS environment. This solution is presentedfrom a database perspective, and is based on extendingthe dbv version approach with view facilities. Given thisenvironment, users can build consistent views of theirmodelled world, creating and combining di�erent repre-sentation frameworks. The environment dissociates thelogical dimension from the physical dimension, liberatingusers from concerns about implementation details.Keywords: database, versions, views.1 IntroductionGeographic Information Systems (gis) are software thatmanipulate georeferenced data { data about geographicphenomena associated with their spatial relationshipsand location on the terrestrial surface. The term geo-referenced entity in this paper refers to any real worldelement which is georeferenced (whether a human arti-fact or a natural phenomenon).The de�nition of proper database support forgis covers a vast range of issues, from the user in-terface level down to the storage system level [10, 20].Some problems fall into the domain of database man-agement systems (dbms) { e.g., query optimization {whereas others are handled at the end-users' side { e.g.,application modelling. Some issues, however, present achallenge to be met at di�erent levels by both end-usersand database researchers. This paper is concerned withone such issue, namely, that of multiple representations.This corresponds to the need of maintaining, in the gis,di�erent descriptions of the same georeferenced entity.

As pointed out in [26], this issue occurs in everyapplication domain, since it results from the fact thatthe same problem can be modelled in di�erent ways(thereby producing distinct database schemas) and thesame entity can be stored according to distinct viewsand standards (thereby resulting in di�erent instanceson a database).In the case of gis, this problem is aggravated by thefact that geographic reality is multi-faceted and the wayit is perceived depends on the user needs. This corre-sponds, from the end-user side, to handling the issuesinvolved in modelling all facts in the world, discretizingand storing them into data �les. This often requires thatdi�erent representations be handled simultaneously in-curring thereby into problems such as establishing linksand consistency among representations of a given area.From a database point of view, handling multiplerepresentations of a given georeferenced entity must betreated at several levels: interface (presentation), logicalmodelling, schema speci�cation, query processing, stor-age structures. At all these levels, several open issuesarise, concerning the management of distinct represen-tations: data replication, consistency maintenance, en-tity identi�cation and multiplicity of behaviors of a givenentity.This paper presents a database-centered environ-ment to solve some of these problems. This approachis based on extending the speci�c version managementapproach [3, 4], called dbv, with views.We face the problem from a database perspectiveand we are not concerned with how the user has arrivedat the di�erent representations. Our main goal is toanalyze the problem of managing these representations,once they have been stored in a database.



The remainder of this paper is organized as follows.Section 2 brie
y discusses on some issues involved in themanagement of multiple representations, and commentson previous research in the area of database support forthem. Section 3 introduces an example that is going tobe used throughout the paper to illustrate our solution.Section ?? brie
y outlines the dbv approach, extend-ing it with views. Section 5 presents our solution fordatabase support for multiple representations, which isbased on the dbv approach with views. Finally, section6 presents conclusions and directions for future work.2 Multiple Representations - a BriefOverviewThe problem of multiple representations in geoprocess-ing is related to the fact that users must model andstore data about the world for di�erent types of ap-plication. This requires sampling and discretizing re-ality, and therefore implies several open issues, notablythose involving data quality [5, 8]. As remarked in [27],even though the state of a given entity may remain un-changed, its representation and relationships with otherentities may vary according to user perspectives.[27] de�nes diversity in representations as a resultfrom variations in users' requirements. Though thisis certainly true, we prefer to emphasize that di�er-ent dimensions exist through which representations mayevolve { e.g., resolution, time, model, user point of view,and others. We analyze brie
y some of these possibili-ties.Resolution refers to the level of abstraction withwhich the world is represented. For instance, a roadnetwork may be considered as an atomic entity (highlevel of abstraction) or as a set of sub-entities, contain-ing crossings and bifurcations (lower level of abstrac-tion). Resolution variation, as pointed out by [24], isoften considered as synonym to scale change. However,we prefer to see scale changes as an implementation formultiple resolutions.Varying representations along the time dimensioncorresponds to the temporal evolution of an entity {e.g., modifying the road network, adding and eliminat-ing road branches. Here, even when the resolution iskept constant, one entity (older representation) may bereplaced by di�erent entities (after update).The issue of representations in modelling of data isrelated to the nature of phenomenon being modelled.The canonical example is the discussion between �eldand object representations [6]. Topography data forbuilding the road, for instance, is commonly representedusing a �eld (continuous) model, whereas the road itselfobeys a network (object) spatial representation.

Multiple representations re
ecting users' points ofview occur when distinct users want to represent a givenentity according to their needs: the road is representeddi�erently for cartographic, engineering, and tra�c 
owoptimization purposes. These di�erent representationswill exist even if the nature of the phenomenon does notchange, the time is �xed and so is the level of resolution.We stress some commonalities among these repre-sentation variations. Some representations can be com-puted from existing data (e.g., in cartographic general-ization [15, 21]) while others require storage of distinctdata records (e.g., in temporal evolution). Materialized(as opposed to computed) representations correspond todata that have been actually stored in the database. Indatabase terms, computed representations can be com-pared to views, while materialized representations maybe treated as versions (of real world geographic ele-ments).Our solution combines both versions and views,thereby facilitating the joint management of both typesof representation. It extends the gis related work of [18,19], presenting and detailing a framework which allowsthe management of multiple representations throughversions and views. This solution is based on thedbv version approach [3],[9].Versions are a means of storing di�erent states ofa given entity, thereby allowing the control of alterna-tives and of temporal data evolution [14, 13, 12, 16]).Views in databases are usually de�ned as the result ofa query. Views may be stored (materialized), but ingeneral it is understood that versions correspond to sta-ble data, whereas views are generated from stable dataand are usually temporary. The issue of views in re-lational databases is understood, but in object-orienteddatabases is still a matter of research [1, 17, 25]).Existing view and version mechanisms, if taken inisolation, are not su�cient to allow satisfying gis usersrequirements for multiple representations. This is true,for instance, in the multiple representation case. So oursolution composes views and versions in order to satisfyrepresentation management.3 Illustrative ExampleThis section describes a short example, which will beused throughout the text to illustrate the proposed solu-tion, as well as the theoretical framework adopted in thepaper. We just provide enough detail to let the readerunderstand the mechanism presented and omit the com-plete database schema speci�cation, given paper spacelimitations.We adapt an example described in [24]. Considera region with a set of roads which needs to be repre-



sented di�erently according to two user group require-ments: cartographers and tra�c 
ow engineers. A car-tographer will need a detailed description that will re-spect distances, relative positions and spatial relation-ships among the roads and neighbor geographic acci-dents (e.g., hydrography, vegetation). Tra�c engineersrequire manipulating the road data using a directedgraph representation with weights, but without concernfor scale or material. Furthermore, they need detailsabout tra�c 
ow (e.g., speed limits).3.1 The data modelWe adopt a multi-level view of georeferenced data mod-elling, similar to [2]. The world is modelled as a set ofobject classes, called georeferenced classes. A georefer-enced object is an instance of a georeferenced class. Ithas a spatial and a non-spatial (descriptive) component.The spatial component describes the object's geomet-ric and topologic properties, varying according to therepresentation chosen. A georeferenced object may beassociated to di�erent representations according to ap-plication purposes. Each representation corresponds toa distinct database class. The advantages of dissociat-ing an entity's representations from the entity itself arediscussed in di�erent contexts [23, 27, 11, 24].Representations are built from a set of primitiveclasses to describe object's geometries. These primitiveclasses are rooted at a class called Geometry, which hassubclasses Point, Line, Polygon. These classes are thebasis for building complex representation descriptions.A georeferenced class is typically de�ned in a highlevel way asClass Geo-classtype tuple (non-spatial1: t1,non-spatial2: t2,non-spatialn: tn,geo-components: set(Geo-class),location: Geometrymethod public equal(Geo_class o1) : Boolean,public display(),public element( Geo_class o1): Boolean),...end The non-spatial components correspond to non-spatial attributes; geo-components are objects from othergeoreferenced classes that compose the Geo-class; Lo-cation contains the representation descriptions, whichmay vary in scale, time frame etc. The element methodchecks if a georeferenced object is composed of the o1geo-component.

3.2 Example database schemaIn our simpli�ed world, we assume that the only geo-referenced classes of interest are Road, Vegetation, Soil,City. The database must also contain a class called Net-work which is de�ned as a list of lines and over which arede�ned methods and constraints appropriate for spec-ifying networks and their topologic properties. ClassNetwork has two subclasses, Cart-representation andWeighted-graph. The �rst one is used for representingthe road network for cartographic purposes, and containsmethods such as change scale and change weight. Thesecond is used for the tra�c 
ow requirements, and con-tains methods such as compute 
ow and change weight.The change weight method is a method of Network classrede�ned on its two subclasses.Vegetation and Soil locations are described in termsof Polygon geometries. City is represented both as Poly-gon and Point, depending on the scale desired. Scalesare managed according to class Scale.The Road class, which is manipulated by both typesof users, would be de�ned as:Class Roadtype tuple (road_name: string,loc: list(tuple(s:Scale, rep:Network)))method public length (r:Road.loc): integer,public change_speedLimit(limit :Speed)endMethod length computes the lenght of a road and is com-puted based on a representation and scale. Polymor-phism allows di�erent representations to appear in thelist of locations loc. For instance, the change speedLimitmethod applied to an object of class Road will be imple-mented as a change weight invocation over its represen-tation which may be an instance of the Weighted-graphclass or the Cart-representation class.4 The DBV approachThe database version approach has beeen developed toprovide a way to implement e�ciently versions in gen-eral purpose DBMS. One of its main features, whichdistinguishes it from other approaches, is the distinctionbetween the logical level, seen by users, and the physicallevel, managed by the system and hidden from users.At the logical level, the multiversion database is seenas a set of DataBase Versions, or DBV, identi�ed by adatabase version identi�er and composed of versions ofobject and class. Each DBV represents a consistent de-scription, or version, of the modelled world, and may beassociated with one or several dimensions corresponding



to the versioning semantics of the application. As a ver-sion of object/class may have the same value in severaldatabase versions, the conventional concept of \versionof object/class" is split in two new concepts: a logicalversion of an object/class represents the version of thisobject/class as it is seen by users in a given databaseversion; a physical version of object/class is used by thesystem to store the value of all the logical versions of thisobject/class having the same value. A database versionis composed of one logical version of each object/class,identi�ed by a pair (object/class identi�er, database ver-sion identi�er). DBVs are created by logical copying,called derivation, and may evolve independently fromeach other. This means that a DBV may be updatedor deleted without side e�ect on other DBVs. Moreoveruser may work simultaneously on several DBVs : com-paring their content, copying logical versions from oneDBV to another one, etc.At the physical level, the version mechanism, de-scribed in [3], allows to manage e�ciently as manyDBVsas needed.Such a multiversion database enables the simulta-neous management of distinct alternative scenarios, aswell as handling georeferenced feature evolution throughtime. It can be used to handle some aspects of multiplerepresentations (notably through time - [19]).In the upper part of Figure 1, the multiversiondatabase is composed of four database versions : Dv2is derived from Dv1 by versioning the schema; Dv3 isderived from Dv2 by versioning the data.5 Support of multiple representationsin GISThe use of views to support multiple representations hasbeen recently proposed by [22], in the context of cad ap-plications, where many of the problems existing in giscan be found (e.g., issues of scale and point of view).The authors, however, ignore the possibility of perma-nently storing new database versions, and of combiningand manipulating sets of representations.We have shown in [18, 19] how the dbv mechanismcan be used to keep track of the temporal evolution ofgeoreferenced entities: each database version Dvi cor-responds to a distinct state of the world, which can bemanipulated by the user independently from the otherstates. This is one speci�c case of multiple represen-tation handling, where time is the varying factor. Thesame framework can also be extended to other multiplerepresentation situations, associating each Dvi with adistinct representation need. In the example of section3, this means that several sets of Dv's coexist in thedatabase: one set for managing the representation needs

of cartographers, and another for tra�c engineers. Eachset represents the variation of the phenomena over time.Though this allows handling di�erent representationdimensions, it does not provide the user with enough fa-cilities for managing them in a gis. In this section, weshow that by enhancing a multiversion database withviews, we can provide users with an environment wherethey can adequately manage an entity and its represen-tations, as well as work simultaneously with several rep-resentations.Nowadays, the problem of handling multiple repre-sentations is solved by the users through storing enti-ties in separate �les. In our model, this can be handledby storing the data in a multiversion database. Con-sider the example described in section 3 in a multiversiondatabase. Each Dvi corresponds to a speci�c represen-tation of the world, where all objects are described in thesame scale, projection and time frame. Consider teamsof engineers and of cartographers that want to manip-ulate data about the area where the road network lies.Given a Dv, it will contain a Road object representedeither using Cart-representation or Weighted-graph.5.1 Multiversion ViewHowever, gis users do not normally want to work withthe whole database. In particular, tra�c engineers justneed to consider Road and City classes, whereas cartog-raphers require Road, Vegetation and Soil. Again, atpresent this is handled by combining data in separate�les, from which users work. However, they cannot keepthe links between such �les and the underlying database.Our framework, on the other hand, considers thateach group of users may de�ne a view over the multi-version database, which allows them to select the classesof interest, while at the same time keeping their linkswith the underlying database. This view, unlike all otherviews studied in the literature, is a multiversion view: itis constructed from the underlying Dvi, each of whichappears in the view as a separate virtual database ver-sion. We use the term virtual database version to denotethat, in a multiversion view, each versioned databaseDvi corresponds to a view V Dvi. The middle part ofFigure 1 shows this situation. The multiversion view ap-pears to the user as a multiversion database, restrictedto the entities of interest. In the �gure, this view is com-posed of virtual database versions V Dv1 through V Dv3.We now show how this can be done using the syn-tax of the O2 dbms. In order to de�ne a view in O2,users �rst de�ne a virtual schema (class types and meth-ods) and then specify its extension by means of queries.Relationships between view objects and database persis-tent objects are established by declaring which database
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Figure 1: Modelling the user frameworkpersistence roots are used in the view.We extend this notion to multiversion views, main-taining the same construction steps. Consider a multi-version database MDBV composed of database versionsDv1; Dv2; : : :Dvj . A multiversion view MV (view cre-ation operation of type V a) is de�ned asvirtual schema multiversion view MVcomposed of (VDv1, ... VDVj)from multiversion schema MDBVimport class C1, C2;import name RC1, RC2, O1;Each virtual database versions V Dvk will have classesC1, C2 in its schema.In our example, a multiversion view for the tra�cengineers, called TE � V iew, can be de�ned asvirtual schema multiversion view TE-Viewcomposed of (Road, City)from multiversion schema ROAD;import class Point, Line, Polygon,Weighted_graph, Network, Road, City;/* persistence roots */import name R_Road, R_City;Engineers need only data about City, Road. Further-more, only the weighted graph representation of Roadwill be used in the view. The extension of TE � V iewcan be built using queries:virtual class VCity includes( select * from R_City);In view V City, all database cities appear in each virtualview component. Alternatively, engineers may only beinterested in Cities of a certain size:

virtual class VCity includes(select x from R-Citywhere x.population > 100,000);The virtual VRoad class extension can be built in a sim-ilar way, restricting the loc representation attribute val-ues to those that correspond to Weighted-graph repre-sentations.5.2 View over Multiversion viewEach group of users (cartographers, engineers) can buildits own multiversion view and work according to itsneeds. At this stage, users can start combining data,manipulating the entities of interest. This stage of thework can be modelled by stipulating that each groupwill build views on top of its multiversion view. If amultiversion view MV contains virtual database versionsV Dv1 : : :V Dvj , then basically two types of views can bebuilt on top of MV:� One view Vk de�ned over one single virtual databaseversion V Dvk:virtual schema DBV view Vkfrom VDv_k in MV;/*import from virtual schema of view VDv_k*/import class C1;import name R-C1;� One single view de�ned over several virtual databaseversions: fV Dvl : : : V Dvmg:virtual schema VDBV view Vkfrom (VDv_l ... VDv_m) in MV;import class C1;/*only the schema def. of VDv_1 is used*/import class C2 in VDv_l;



These views may be built on top of a single or multi-ple virtual database versions V Dvi. The �rst case hap-pens when, for instance, engineers select one V Dv stateon which they want to run simulations; in the second,the engineers want to analyze the evolution of the roadthrough time, for a given representation. This is por-trayed in the bottom level of the �gure. View V 1 is builton top of virtual database versions V Dv1; view V 2 com-bines data from virtual database versions V Dv2; V Dv3.We remark that these are the actual steps gis usersfollow in order to perform di�erent types of data anal-ysis, but without support of versions or views. Thisforces them to manage each single database version cre-ated, which adds to the complexity of application devel-opment. In our framework, the links among Dv's andamong virtual database versions are managed by the un-derlying version mechanism and its view complement.Thus, the steps for working in our environment thatsupport users' work habits are: creation of the multi-version database; construction of multiversion views forthe distinct user groups; and building views over themultiversion views.Returning to the road example, the �rst type of viewis similar to constructing a view over a non-versioneddatabase [25], and will not be expanded here.In the second type of view, creation speci�cation as-sume that two virtual database versions represent twodi�erent temporal states of the road at times T1 andT2. Suppose that the engineers want to combine bothrepresentations in order to compare length di�erences.In our framework, this requires creating a view that willsimultaneously contain two temporal representations ofthe road, for these times. Let these two representationsbe stored in virtual database versions named V DvT1 andV DvT2. Schema and extension are de�ned as:virtual schema DBV view Tfrom (VDv_t1, VDv_t2) in MV;/* Cities are not needed in this view */import class VRoad ;import class Point, Line Polygon, Network,Weighted-graph;import name R-Road;virtual class C includes(select tuple(x: a1.loc, y: a2.loc)from a1 in VRoad inDv VDv_t1,a2 in VRoad inDv VDv_t2where a1.scale = a2.scale )attribute dif_length: integer in class Chas valuesabs(self.x->length - self.y->length)

Class C does not correspond to any underlying databaseclass, and contains attributes x; y (taken from the loccomponent of the virtual class VRoad, for the represen-tations at T1 and T2). Furthermore, it contains an ad-ditional attribute dif-length, which shows the di�erencein the length of the two road representations. Length isa method de�ned for class Road in the schema of section3. Notice furthermore that this only makes sense if bothrepresentations refer to the same scale.6 Conclusions and Directions forFuture WorkThis paper discussed the problem of multiple representa-tion of georeferenced entities, and presented a database-centered environment for managing them. This envi-ronment is based on a multi-level data model, and takesadvantage of extending the dbv version mechanism withsome view operators. This extension is in itself a contri-bution, since versions and views have so far been treatedin isolated contexts by the database community.The three main advantages of the framework pro-posed here are. It distinguishes between the logical prob-lem of multiple representations from that of physicallystoring and managing them. It allows gis users to spec-ify their own representation framework, from which theycan select the data entities of interest, without having toworry about other existing representations of the sameelements. It provides a means for users to work simulta-neously with several representation frameworks, withoutlosing track of the original data layers.The next steps in this research will contemplate theformalization of the view operators, and consider imple-menting the extension of the dbv mechanism in order tosupport the multiple representation paradigm.In the dbv environment, the underlying dbms han-dles the consistency of data. In a gis framework, how-ever, the problem is much more complicated, since en-tities are related to each other according to spatio-temporal constraints, which may or not be relaxed bythe user, for a particular representation context. Themultiple representation paradigm presents, in fact, aninteresting challenge from this point of view. The issueof consistency among versions is part of an ongoing workat the LAMSADE and LAFORIA laboratories in France[7], and is not the main concern of this paper.AcknowledgementsThis work was partially supported by Brazilian grantsfrom CNPq and FAPESP. The �rst author thanks M.Lagrange and L. Raynal from IGN-France for insightsprovided into the multiple representation problem.
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