INSTITUTO DE COMPUTACAO
UNIVERSIDADE ESTADUAL DE CAMPINAS

A framework based on semantic Web services
and AI planning for the management of
bioinformatics scientific workflows

L.A. Digiampietri J.J. Pérez—Alcdzar
C.B. Medeiros J.C. Setubal

Technical Report - 1C-06-004 - Relatério Técnico

February - 2006 - Fevereiro

The contents of this report are the sole responsibility of the authors.
O contetido do presente relatério é de Gnica responsabilidade dos autores.

A framework based on semantic Web services and Al planning
for the management of bioinformatics scientific workflows

Luciano Antonio Digiampietri*
José de Jésus Pérez Alcizar fand Claudia Bauzer Medeiros *

Joao Carlos Setubal $

Abstract

Bioinformatics activities are growing all over the world, with proliferation of data
and tools. This brings new challenges, such as how to understand and organize these
resources, how to exchange and reuse successful experimental procedures, tools and
data, and how to provide interoperability among data and tools across different sites,
and for distinct user profiles. This paper describes an effort towards these directions.
It is based on combining research on databases, Al and scientific workflows, on the
Semantic Web, to design, reuse, annotate and document bioinformatics experiments or
parts thereof. The resulting framework allows the integration of heterogeneous data
and tools, and the design of experiments as scientific workflows, which are stored in
databases. Moreover, it takes advantage of the notion of planning in AI to support
automatic or interactive composition of tasks. These ideas are being implemented in a
prototype and validated on real bioinformatics data.

1 Introduction

Scientific workflows are being increasingly adopted as a means to specify and coordinate
the execution of experiments that involve participants in distinct sites. Such workflows
allow the representation and support of complex tasks that use heterogeneous data and
applications [3].

Scientific workflows are being utilized in in silico experiments at the Laboratory for
Bioinformatics (LBI) [25] at the University of Campinas, Brazil. LBI was the first Brazil-
ian bioinformatics laboratory, being responsible for the coordination of the assembly and
annotation of the Xylella fastidiosa genome [10]. The effort that led to the assembly and

*Institute of Computing, University of Campinas, CP 6176, 13084-971, Campinas, SP, Brazil, e-mail:
luciano@ic.unicamp.br

TEACH, University of Sdo Paulo, 03828-000, Sao Paulo, SP, Brazil, e-mail: jperez@usp.br

Hnstitute of Computing, University of Campinas, CP 6176, 13084-971, Campinas, SP, Brazil, e-mail:
cmbm@ic.unicamp.br

$Virginia Bioinformatics Institute, Virginia Tech, Bioinformatics 1, Box 0477, Blacksburg, VA, 24060,
USA, e-mail: setubal@vbi.vt.edu

2 L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

annotation of this genome involved the participation of over 30 laboratories in Brazil, each
of which performed part of the tasks, while the integration and validation of all tasks was
centered at LBI. Subsequently, the laboratory played the same role in other analogous ef-
forts, devising efficient bioinformatics procedures involving agricultural genomes (e.g. sugar
cane). This experience has naturally led to efforts in the specification and implementation
of a computational framework for the management of bioinformatics scientific workflows [9].

Scientific workflows differ from business workflows in several points. In particular, in
bioinformatics they are characterized by:

e high degree of human intervention: despite the existence of tools that support the
execution of tasks, the majority of activities need a human curator to cheek the task
flow and to validate the results;

e fluidity: because bioinformatics is still a new area, there is not a well-defined consensus
about how the tasks must be executed and how the results must be annotated;

e opinion diversity: bioinformatics researchers need to be involved in the service se-
lection process to make sure that their specialist opinions have been reflected in the
obtained results.

In bioinformatics, furthermore, additional factors must be taken into consideration [28]. The
workflows are usually designed manually, and activities can be defined using script languages
or invoking Web services. The full acceptance of Web services technology depends greatly
on the willingness of the biological research community to pursue standardization, including
building ontologies, developing biology-specific registries, and defining the service interfaces
for well-known functions [14].

Manual composition is a hard work and susceptible to errors, regardless of the use of
Web services. Furthermore, in bioinformatics, due to the constant evolution of the area
and the combinatorial explosion of alternatives, there are just too many alternatives for
workflow construction. Thus, there is a pressing need for means to help scientists to design
appropriate workflows.

The main idea behind our proposal is that the problem of automatic or semi-automatic
composition of workflow tasks can be seen as an Artificial Intelligence planning problem.
This approach has become interesting due to the maturity that the planning area has
achieved in AI [27]. The paper attacks the problem of constructing scientific workflows,
under the assumption that they are the basis for specifying and executing tasks in a dis-
tributed laboratory environment. The execution of each activity within such a workflow can
be executed either by invocation of a Web service or of another (sub)workflow. Thus we use
the terms “service composition” and “workflow composition/construction” interchangeably.

Our main contributions are:

e proposing a solution to the problem of composition of services combining results from
AT and database systems, thereby helping design scientific workflows, while at the
same time documenting design alternatives;

e validating the proposal by means of a prototype for genome assembly and annotation.

A framework for the management of bioinformatics scientific workflows 3

Our solution is based on a generic architecture whose core covers two issues: workflow
construction and knowledge management. The first functionality is provided by a set of
modules that produce alternatives for composing services using Al planning algorithms.
Knowledge management is based on a set of repositories that store domain and services
information, annotated workflows, and pieces thereof. The planning algorithms use the
semantic information provided by the repositories to construct alternative workflows to
perform a given task. Our architecture is specified in a generic way, and thus can be
utilized to solve any problem that involves the storage, coordinated execution and automatic
composition of scientific processes.

Our implementation takes advantage of WOODSS (WOrkflOw-based spatial Decision
Support System) [32], a scientific workflow infrastructure developed at University of Camp-
inas, Brazil. Originally conceived for decision support in environmental planning, it has
evolved to an extensible database-centered environment that supports specification, reuse
and annotation of scientific workflows and their components.

The rest of this paper is organized as follows. Section 2 describes related work and
concepts. Section 3 describes Al planning solutions that can be exploited in supporting
workflow composition. Section 4 presents the proposed architecture. Section 5 describes
our prototype. Section 6 contains conclusions and ongoing work.

2 Related work and concepts

2.1 Genome assembly and annotation

The genome assembly problem consists in joining and matching together pieces of DNA
sequences to create a cogent sequence, much in the way crossword puzzles are put together.
Constituent sequences are created inside a laboratory by procedures that extract pieces from
a species’ DNA and then produce long strings of so-called base pairs (ACGT). Challenges in
this process include the adequate generation and annotation of sequences, as well as finding
the appropriate means of assembling them together into an accepted genome.

Genome assembly is a technological problem. Using
present technology, a genome has to be broken up in small pieces in order to be sequenced.
For example, a bacterial genome has typically a few millions of base pairs, while the biggest
piece of DNA that can be sequenced in a laboratory has about one thousand base pairs.
Genome assembly is however just the beginning.

Genome annotation, that is, the assignment of functions to each gene, is not a technolog-
ical problem. For each new sequenced genome, there will probably be new genes (unknown
until the moment) and genes already known for which it is necessary to assign a func-
tion. The empiric verification of gene functions is a time- and money-consuming activity.
Considering that a bacterial genome has a few thousand genes, this verification becomes
impracticable. Thus, most functions are assigned based in similarity between the DNA
sequence of the target gene and the sequences of already annotated genes. Gene annotation
can therefore be partially automated, but manual data verification is always recommended.

Genome assembly and annotation are composed by several activities [9]. These activities
are typically complex, involving interactions among several basic tasks, human intervention

4 L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

and access to heterogeneous data sources. It is common, in bioinformatics laboratories, to
find pipelines that execute a subset of activities that compose the assembly and annotation
process. Another common procedure in these laboratories is the creation of scripts to
execute specific workflows involved in these activities. Each experiment is a workflow and
each scientist or team of scientists develop their own workflows or pipelines to help their
daily activities. However, this practice has little flexibility, hampering the edition and reuse
of these pipelines or workflows.

Another problem is to find tools on the Web that execute some desired activity. This
search is typically based on keyword queries that can return several unwanted results and
may not find the desired tools. Even when found, the integration of a tool with the user’s
system is not easy. Thus laboratories rebuild tools, replicating work and decreasing tool
sharing and reuse.

An important issue is tool /task composition. A common means to do this is via scientific
workflows, where activities imply the execution of tools or other workflows. We highlight
three kinds of composition: manual, iterative and automatic. In a manual composition,
the scientist chooses each activity and specifies the links between activities involved in the
workflow. The workflow reflects the user’s knowledge, in particular, the knowledge of each
tool to be used, but this system is susceptible to errors because the scientist can link tools
with incompatible interfaces or try to execute tools without satisfying pre-requisites. Iter-
ative composition follows abstraction levels. The scientist specifies the workflow abstractly
and, in each iteration, will refine the specification until achieving an executable workflow.
In an automatic composition, the scientist expresses a request (of goals or tasks to be ex-
ecuted) and the system, automatically, designs a workflow from the available components.
Even automatic composition may require user interaction for additional information in the
composition and execution of activities.

2.2 Workflows and Web services in bioinformatics

A workflow denotes the controlled execution of multiple tasks in an environment of dis-
tributed processing elements. Workflows represent a set of activities to be executed, their
interdependencies, inputs and outputs[43]. Scientific workflows differ from usual workflows
because they have additional characteristics like high degree of flexibility, uncertainty and
presence of exceptions. Moreover, a scientific workflow is often not completely defined be-
fore it starts. The scientist performs some tasks and decides on further steps only after
evaluating the previous ones[49].

Scientific workflows are being increasingly used in conjunction with the specification and
execution of various tasks on the Web, with wide acceptance in bioinformatics [3, 20, 32].
To support interoperability among sites, many activities invoked by such workflows are
encapsulated into Web services.

An important characteristic required for such Web service based applications is the
ability to select and integrate, in runtime and efficiently, heterogeneous services. This has
led to the development of Web service composition languages such as WSBPEL and WSCI.
The problem with these proposals is that the definition of new processes, which interact
with already existing ones, must be done manually.

A framework for the management of bioinformatics scientific workflows 5

The Semantic Web has been proposed to solve such problems. However, this will require
extending the languages to add semantics to service description and discovery - e.g., using
ontologies. To achieve the goals of interoperability between heterogeneous systems, the
development of Semantic Web services must address the following challenges:

e Automatic Discovery of Web Services: location, by software agents, of Web services
offering a given service.

e Automatic Web Services Invocation: execution of a Web service previously identified
by another program or agent.

e Automatic Composition of Web Services: selection, composition and operation of Web
services, to accomplish a task, given a high level description of some goal.

e Automatic Monitoring of Web Services: follow up of the execution of the Web service,
in order to know its status, and if any unexpected problems occurred.

Our work is concerned with scientific workflow design, and thus the composition of Web
services.

2.3 Planning and Composition of Web services

Automatic composition of Web services is a recent trend to meet some of the challenges
and problems mentioned in the previous section; it includes the automatic selection and
inter-operation of Web services. Automatic composition has an important role in enabling
the Semantic Web [1, 31]. Users should be able to specify “what” they desire from the
composition (high level goals and actions), and the system supplies the “how” - the Web
services to be used, how to interact with those services, etc. The process of composing the
services must be transparent to the users, and the detailed descriptions of the composed
services must be generated automatically by the system from the users’ specifications.

Among the proposed solutions for the automatic composition problem we can mention
those based on planning, exploited by us, and those based on workflows. Workflow based
composition methods can be divided into static and dynamic workflow generation [40]. In
the first case, the workflow is specified manually and only the selection and binding of
atomic Web services with the workflow is done automatically. On the other hand, dynamic
composition automatically creates the workflow and selects atomic services. As examples
of dynamic workflow generation we can mention [8, 13].

The task of presenting a sequence of actions to achieve an objective is called in Artificial
Intelligence plan synthesis, or planning [16, 42]. Planning is a mature area in Al, with well-
studied algorithms. This research has been motivated, among others, by studies of search in
space states, theorem proving and control theory, to satisfy the needs of robotics, scheduling
and other domains. Such techniques are currently used in mobile robots, manufacturing
processes, satellite control, emergency management, among others [34, 36].

Recent research efforts have investigated the use of planning to solve the problem of
automatic composition of Web services [19]. Usually, a planning problem can be conceived
as follows. Given a description of the world, an initial state S,, a goal description Sy, and a

6 L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

set of actions A which can alter the state of the world, we must find an action composition
which transforms the initial state S, into a final state S, that satisfies the goal. Transposing
this to the Web service realm, S, and S, are the initial state and goal specified by the user
who requests the service; and A is the set of services available, that must be composed to
meet the user’s requirements.

According to [45], in order to use planning in the automatic composition of Web services,
AT planning concepts must be extended to consider the following characteristics:

e Plans need complex control structures with loops, non-determinism and conditionals.
Furthermore, unlike most Al planning approaches, the explicit definition of pre- and
post-conditions is not always possible.

e The objects managed by Web services must be typed (with complex structure and
description).

e Web services produce new objects at execution time that can be used by other Web
services. In planning, on the other hand, it is assumed that all kinds of domain objects
are known in the initial state.

We highlight other important characteristics, not usually found in AT planning, such as:

e Ranking: when there are several plans with similar functionalities, the use of non
functional attributes, like cost or quality, can facilitate the choice of the plan most
adequate to the user’s needs.

e Abstractions in plans: plans need to support semantic constructions such as hierar-
chies, as well as compatibility with the different Semantic Web service description
standards, like OWL-S (www.daml.org/services) and WSMO (www.wsmo.org).

e Definition of extended goals: besides stating the final state, goals can involve com-
plex conditions on process behavior, and thus their evaluation may require additional
mechanisms, e.g., do not reserve hotel until flight has been reserved.

Still other characteristics needed in service composition but not found in planning in-
clude concurrency in service access, use of Web standards and scalability.

3 Al Planning applied to services

This section discusses classes of planning systems and proposals that can be considered
to compose Web services. We compare these proposals to justify our scientific workflow
construction strategy. This is not an exhaustive list, there being a great number of recent
proposals [19, 21, 44, 47].

3.1 Proposals using Golog

Golog [26] is a language based in situation calculus[41] and supports the specification and
execution of complex actions in dynamic systems. Mcllraith and Son [30] adopted and

A framework for the management of bioinformatics scientific workflows 7

extended Golog to allow the automatic building of Web services. The authors treat the
Web service composition problem through generic procedures (predefined plan templates)
and restrictions customized by the user.

The general idea is that software agents can reason using Web services to discover,
execute, compose and interoperate automatically with Web services. The request is a
generic procedure, and user restrictions can be expressed through extended Golog. The
authors represent Web services as primitive or complex actions. Primitive actions can
change the state of world or provide information that changes the knowledge state of the
agent. Procedural constructs (if-then-else, while, etc) are used to create the complex actions
(complex services). The knowledge base provides a codification, in Golog, of the pre-
conditions and effects. The agents use a mix of procedural language constructions and
concepts of first order logic (primitive services and restrictions).

3.2 PDDL based proposals

The great interest of the Al Planning community in Web service composition can be ex-
plained by the similarity between the notations used in OWL-S and PDDL (Planning Do-
main Definition Language). PDDL is a widely used formal language created by McDer-
mott [15] to describe different kinds of planning problems (e.g., [29, 38]). OWL-S descrip-
tions can be transformed into PDDL.

McDermott [29] uses PDDL to specify plans, but he extends the language to introduce a
new kind of knowledge, called value of the action, that represents the passage of information
among the steps of the plan. This facilitates to distinguish information transformation and
from state change. The planner used is a regression based, and allows the generation of
conditional plans with ramifications. It is necessary when using Web services in a non-
deterministic environment.

3.3 Rule based planning

Rule based planning methods, as their name indicates, use rules to represent actions and
to specify plan generation.

Medjahed et al [33] propose to compose services starting from a high level declarative
description, using composition rules to determine if two services can interact (composable).
The composition process consists of four stages: specification, matchmaking, selection and
generation. The specification stage consists of a high level description of the desired compo-
sitions using a XML based language. The matchmaking stage uses the compositions rules
to generate the possible composition plans that represent the specification of the service
required by the user. Selection selects the best plans in agreement with the user’s sugges-
tions. The final stage, generation, automatically generates the detailed description of the
composite service and shows it to the user. The main contribution of this method is the
use of composition rules that can be used as guides to other methods based in planning.

SWORD [39] is another rule based method. Services, modeled through pre- and post-
conditions, are specified in a model of the world that consists of entities and relationships
among the entities. A Web service is represented in the form of a Horn rule that describes

8 L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

the post-conditions that are reached if the pre-conditions are true. To create a composite
service, the user needs to specify only the initial and final states of the desired service. Plan
generation can then be done by a rule-based system.

3.4 Hierarchical planning

Hierarchical planning is an Al planning methodology that creates plans by task decomposi-
tion. One well-known hierarchical planner is SHOP2 (Simple Hierarchical Ordered Planner
2) [35] which is based on Hierarchical Task Network (HTN) [42]. SHOP2 won the prize of
one of the four best planners in the 2002 International Planning Competition [27]. Sirin
et al [44] use SHOP2 for the automatic composition of Web services. The inputs to their
planner are specified in OWL-S. The authors claim that automatic task decomposition us-
ing HTN planning is very similar to the concept of complex process decomposition used in
OWL-S ontology. One of the problems of this proposal is the fact that it does not allow the
generation of plans with concurrent control structures (i.e. Split and Split+Join). These
kinds of structure are useful in the composition of Web services and are part of the structure
of OWL-S composite processes.

SHOP?2 uses the concept of methods to decompose a task in sub-tasks. These methods
can contain explicit actions for monitoring that allow the planner to obtain the neces-
sary data to treat problems of incomplete information. SHOP2 can implement a kind of
extended goal through the specification of composite tasks (methods) that describe the
changes required by the users. SHOP2 has demonstrated good results when using a great
amount of methods and operators (simple tasks). It was, recently, extended to deal with
non-determinism (ND-SHOP2) [22].

3.5 Symbolic Model Checking (SMC) based planning

Model Checking is a formal method often used in verification of complex hardware and soft-
ware systems [6]. Symbolic Model Checking (SMC) is a particular form of Model Checking
that allows to analyze large finite-state systems by means of symbolic representation tech-
niques [2]. More recently, this technique has been applied to planning with remarkable
success. The planning as model checking approach [18]formulates a planning problem in
a logical context, while the symbolic representation techniques allow for handling complex
domains.

The work of Traverso and Pistore [47], shows a technique for the automatic composition
of Web services described in OWL-S that allows the automatic generation of executable
processes (in WSBPEL). The goals that specify the services to be automatically generated
are represented in the Eagle language [24]. This language has a clear semantic that can
express complex requirements.

The authors use a planning approach based in a symbolic model checking technique [5],
called MBP (Model Based Planner). This technique has presented good practical results for
the problem of planning with non-deterministic actions, partial observations (the environ-
ment is not fully known), complex goals and domains (very large space of states). One of
its problems is that it does not explore the hierarchical and taxonomical aspects of OWL-S.

A framework for the management of bioinformatics scientific workflows 9

3.6 Comparison of proposals

Table 1 summarizes the comparison of the proposals. The first column contains the re-
quirements for planning using Web services that we pointed out in Section 2.3. The other
columns cover the main classes of planning systems reviewed.

Golog | PDDL | SWORD M‘;‘P:}f‘*d SHOP2 | MBP

Use of standard Y Y N Y Y Y
Complex objects N Y Y Y N N
Abstraction / Hierarchy N N N N Y N
Non-determinism / Partial Y Y N Not clear. Y Y
obs. of the world

Generation of non-linear Y Y; N Not clear. Y Y
plans partially

Automation level SA A A A A A
Plan selection N N N Y N N
Concurrency Y N N Y N Y
Scalability NM NM W NM G G
Extended goals Y N N N Y Y

N = No: Y =2 Yes, SA = Semi-automatic; A = Automatic
NM => Not mentioned; W = Weak; G = Good.

Table 1: Comparison among planner proposals

Except for SWORD, all analyzed proposals use standards like WSDL or OWL-S. The
proposal based in Golog implements support for non-deterministic and partial observations
through predefined generic procedures. These procedures guarantee a certain level of non-
determinism that is solved at the moment of plan generation. McDermott’s planning based
in PDDL gives this guarantee through sensing operations and conditions. However, the best
solution is the proposal using SMC because it is more general. Other proposals, such as
those of Medjahed and SHOP2 do not mention non-determinism. None of these proposals
mentions dynamic object creation.

We also observe in Table 1 that none of the reviewed solutions covers all issues stated in
column 1. Moreover, planning using Web services is a recent research area (2002) and the
majority of these projects are at an experimental stage. The works on SHOP2 and SMC
(MBP) seem to be the best alternatives. We decided to use, SHOP2 in our implementation,
because it provides the following benefits: (a) it enables embedding domain knowledge
to control the search space and improve efficiency; (b) it has been successfully used in a
variety of real-world planning-based applications; (c) it allows inclusion of different types
of precondition constraints for service operators as well as calls to external systems; (d)
it enables modeling process abstractions in terms of method/operator hierarchies; (e) it
enables reuse by facilitating selection of appropriate methods from domain-related operator
libraries.

10 L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

4 An architecture for automatic composition via planning

This section outlines our general architecture for composition of workflows and Web services.
From the comparison of the previous section we note that none of the analyzed proposals
treat complex objects or objects created dynamically, two very important characteristics
within Web services. However, planning algorithms can be expanded to work with expressive
representation of knowledge, e.g. ontologies [17]. Our proposal integrates all these concepts.
The present implementation uses the SHOP2 algorithm.

4.1 Generic Composition Architecture

Figure 1 summarizes our composition architecture that extends the framework defined by
Rao and Su [40]. Domain and service ontologies respectively store information on applica-
tion domain and services available. The core of the architecture consists of the planner and
the ontologies.

Composition process

External Specificatjos Internal Specification
4% Transl Query to the user i
i

Response, | Responses Planner

User

Result Alternative
Plans

Domain Service
ontology Ontology|

Figure 1: Architecture for automatic composition and execution of services

Selected Plan|

E
Engine

l

Evaluator

.l.

Re-planning

The Web service composition and execution process starts when the user of the services
(human or software agent) makes a request for a service, which is translated to the planner’s
internal specification language. In the present implementation (see Section 5) this language
is the one used by SHOP2, an extension of Lisp. The request for a service can be the
description of a goal or task; starting from it, the planner generates alternative execution
plans to meet the request. In this process, the planner accesses the domain and service
ontologies to obtain the necessary information for the planning process. The planner can,
during the composition process, query the user or available services, to solve problems
of incomplete information and non-deterministic domain behavior. Once the plans are
generated, they are passed on to the evaluator, which chooses the best plan to meet the
user needs. The executor is responsible for the execution of the chosen plan, forwarding the
results to the user.

Domain and service ontologies, stored in ontology bases, are key to this process. In
more detail, the translator module uses these bases to transform a user’s request into a
plan specification language, in our case, an extension of Lisp.

The planner module solves these requests, composing the services published by the
service providers. It accesses the ontological bases to obtain the functionalities of the
services and generates a process model (in our case, scientific workflows) that describes

A framework for the management of bioinformatics scientific workflows 11

the composite service. The planner uses the domain ontology to improve the efficiency
in the planning process and to facilitate the modeling and the management of complex
objects. The planner’s output contains several workflows (the plans) with equivalent or
similar functionalities.

The evaluator module uses non-functional service attributes (execution time, quality,
trust, etc) and the knowledge about the user to select the best alternative among the plans
generated by the planner. The user can specify weights to each non-functional attribute and
the best composite service is the one that is ranked on top. The executor is responsible for
the execution of the chosen plan. Due to the non-determinism and the partial observation
of the world, the executor can interact with the planner in the case of failures.

The next section describes how this composition and execution architecture is integrated
into our general refined architecture.

4.2 Refined Architecture

Our plans are specifications of scientific workflows. Thus, in this section, we will use in-
distinctly both terms. We start from the planning framework defined in Section 4.1, and
specify a more complex architecture, able to deal with automatic composition of workflows
based in Web services. Figure 2 shows this refined architecture, highlighting the main mod-
ules and their interactions. It extends the WOODSS scientific workflow framework [32].
Whereas WOODSS is based on manual composition, our architecture supports automatic
and semi-automatic composition via planning. Section 5 presents our implementation of
part of this architecture.

(Interface J
A A t T

Design

Automatic Composer

Service Service/Workflow Workflow
Register Discovery Editor Engine
A

A A

Evaluator

050

v v

v Repositories Service request
[— S—

Service Workflow Ontology A

Catalog Repositor Repositor;

T 4

Figure 2: System Architecture

The architecture is based on the use of three repositories. The Ontology repository con-
tains the domain and service ontologies of Figure 1 — in our case study, information about

12 L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

genome assembly and annotation. The Service Catalog plays the role of a UDDI (Universal
Description Discovery & Integration) registry, storing the profiles of services and work-
flows. The Workflow Repository, adopted from WOODSS, stores annotated (sub)workflows
deemed important by the user (e.g., those used frequently).

The Interface Layer has a user-friendly graphical workflow specification and editing tool.
It also allows the user to register services and workflows, request the execution of a workflow
and interact with this execution.

The Service/Workflow Discovery module is responsible for the search of services and
workflows that meet user requests. Our infrastructure allows search based on functionality,
context and syntax. Search for functionality and context is based in the semantic data
assigned to the services (metadata that associate the services with the ontologies). The
search for syntactic compatibility is based on the parameters of the service interfaces. When
no stored service or workflow meets the requests, this module will ask the Design module
to create new workflows.

The architecture of Section 4.1 is represented in our general architecture through Au-
tomatic Composer and Workflow Engine. The Automatic Composer module encapsulates
Translator, Planner and Evaluator. It receives a plan request and generates workflows auto-
matically or semi-automatically. To generate these workflows, the Translator needs first to
convert the request to the specific planner language. Next, the Planner interacts with the
Service Catalog, Workflow Repository and the Ontology Repository to obtain information
for plan generation. With these data, the Planner is able to generate workflows automat-
ically answering the request from Workflow Discovery. The Evaluator chooses among the
workflows (plans) generated, the workflow that best suits the request. This selection can
be guided by the user. At execution time, the Workflow Engine module interacts with the
Automatic Composer module. Whenever a fault is detected, the Workflow Engine module
can ask the Automatic Composer module for the generation of an alternative plan that
replaces the faulty service by an equivalent service or by a new workflow.

The Editor module has two main roles: workflow design and domain and service on-
tologies update. For workflow design, we used WOODSS graphical interface (see Figure 6)
that access the workflow repository and lets the user manually compose, reuse and annotate
workflows. Annotations include free text and references to the ontology repository. Ontol-
ogy editing uses basically Protégé
(http://protege.stanford.edu) which is being coupled with an implementation of hyperbolic
trees to facilitate dynamic visualization [12, 48].

The user interacts with the Service Register module in order to define new services.
These services are described in WSDL and OWL-S, thereby linked to the Ontology Repos-
itory.

The Workflow Engine module follows the specification of [7]. It is responsible for the
execution control of all workflow activities via orchestration. These activities can be a sim-
ple Web service or a complex workflow. It corresponds to the Execution Engine of Figure 1.
The operations provided by the Workflow Engine are: interpretation of the complex process
definitions; creation and management of the process instances; and supervisor and manage-
ment functions [7]. The module sends the requests (and parameters) for service invocation
to Service Request.

A framework for the management of bioinformatics scientific workflows 13

The Service Request module is responsible for the management of each Web service
request, communicating with the Web server provider, sending input data and receiving
the results. This module also detects service faults like service unavailability or connection
timeout.

This architecture supports the three kinds of composition presented in Section 2.1. In
the manual composition, the system verifies the consistence between the inputs and outputs
of the workflow’s activities. In iterative composition, for each iteration, the system suggests
to the user activities or sub-workflows that have been previously stored in the repositories
and that can be used for an already defined task. In the automatic composition, it designs
a set of workflows (solutions) that satisfy the conditions provided by the user.

This architecture can be used to solve any kind of problem of automatic composition of
Web services. It can be specialized to work on different needs by populating the repositories
with the data corresponding to a given domain. The next section discusses one particular
implementation, for bioinformatics.

5 Case study: genome assembly and annotation

We implemented a prototype of the architecture presented in Section 4.2 to solve the prob-
lems of genome assembly and annotation discussed in Section 2.1.

Our system allows re-planning, supporting communication between the Planner and
the Executor when there is a fault in the plan execution that cannot be solved through
interaction with the user.

In order to implement the architecture we had to construct the appropriate ontologies.
In particular, we have developed a detailed ontology, specific to genome assembly and an-
notation, that extends a generic bioinformatics ontology [46]. Through our ontology we
annotated bioinformatics data and tools/services in order to allow semantic search and au-
tomatic composition of services. Figure 3 shows a portion of our ontology and its annotation
of services. To simplify the figure, we omitted several relationships. Domain and Service
portions of the ontology are separated, thus helping establish distinct relationships among
the concepts.

As shown in Section 4, the Service Catalog contains the profiles of the services. These
profiles are instances of services of the Service Ontology. The parameters (input and output)
of the services are complex or simple concepts of the Domain Ontology. We highlight only
the relationships involved with nucleotide alignment. The blastn service in the Service
Catalog implements a nucleotide alignment, which is an alignment tool description. The
nucleotide alignment has as input an identified sequence and as output an alignment, both
concepts of the application domain. The dotted line between nucleotide alignment and
nucleotide sequence indicates a restriction of the input data: the sequence of the identified
sequence must be a nucleotide sequence.

In our ontology domain, all concepts are atomic data types (integer, strings, etc) or,
recursively, an aggregation and/or a generalization (or specialization) of concepts. We can
observe in Figure 3 that nucleotide alignment is a specialization of alignment tool and
identified sequence is an aggregation of sequence and identifier. Our implementation uses

14 L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

ORFFinder
service

chromato | | identified
gram sequence
tool
sequence | | identifier
AN nucleotide |_ |amino acid
alignment (£ | alignment
amino acid | | nucleotide
sequence | | sequence

blastn
service

Domain Ontology Service Ontology Service Catalog

alignment

]

filter
service

phred
service

viwil

Figure 3: Small example of the relationships among our repositories

SHOP2 [35] - see section 3 for justification of this choice.

A SHOP?2 specification is composed by three sections: domain definition (defdomain, see
Figure 4); problem definition, defining the problems that the planner must solve (defproblem,
see Figure 5A); and requests to find the plans that solve a given problem (find-plans).

SHOP2 domain definition is composed by operators that are the basic activities that
change the state of world, and methods which explain how to decompose a compound task
into a set of subtasks [35]. Figure 4 shows a small piece of our bioinformatics ontology,
described as a SHOP2 domain definition. For each service in our Service Catalog we needed
to create a SHOP2 operator whose pre-conditions are the service’s input data and whose
post-conditions are the output data and the changes on the state of the world. For example,
lines 2, 3, 6 and 7 of Figure 4 show, respectively, the services ORFFinder, blastn, filter and
phred (in the catalog of Figure 3). For instance, blastn is a nucleotide alignment tool/service
(see annotation in Figure 3). It is described in SHOP2 (line 3, Figure 4) as an operator
whose pre-condition is the existence of a sequence (input) and post-condition the production
of a nucleotide alignment. The indication of 50.0 in the figure, for this line, denotes the
execution time of this operator, a factor to be used by the evaluator when ordering plans.

Analogously, for each kind of service in the Service Ontology, we create a SHOP2 method
that describes which operator (or a set of operators) can execute this method. For example,
lines 21, 26 and 36 of Figure 4 show, respectively, the headers of the methods alignment,
nucleotide alignment and aminoacid alignment.

SHOP2 does not support general semantic constructs - e.g., the aggregations and spe-
cializations of our ontology. Thus, we had to extend this planner. To allow complex objects,
we created operations that denote relationships among the concepts. These operations are
used only to represent ontological relationships in SHOP2. They do not appear in the work-
flows that are a result of planning strategies. For each aggregation, we created an operation
in SHOP2 called Compose with cost zero. Its input specifies the aggregation components,
its output the aggregated concept (e.g. line 5 of Figure 4, an identified sequence aggregates
a sequence and its identifier). Similarly, we created the converse Decompose (e.g. line 4
of Figure 4). To represent specializations/generalizations, for each concept that is a spe-
cialization, we create an operation called IsSpecializationOf with cost zero that, given the
specialized concept, returns the corresponding general concept.

A framework for the management of bioinformatics scientific workflows 15

The SHOP2 problem definition section (see Figure 5A) is composed by a problem name
(e.g. probleml), the label of the definition domain (e.g. bioinformatics-ontology), the state
of the world (a set of conditions that are true in a given instant) and the set of methods that
must be utilized by the planner (e.g. nucleotide_alignment chl). The SHOP2 request to
find a plan identifies the problem that we want to solve and some requisites for the solution
plan (like maximum cost).

As mentioned in Section 3.4, SHOP2 uses a task list as a goal. In bioinformatics,
many times, the user’s goals are to obtain a certain concept without knowing what tasks
produce this concept - for example, starting from a chromatogram, he/she wants to obtain
an alignment. To allow the user to request goals and tasks in the same way, we created a
method for each kind of task that produces a concept in the domain ontology and added
it to the domain definition section. When the user requests a plan to produce a concept,
the system sends to the planner a request for the method that achieves the desired concept.
SHOP2 will return plans that, starting from input concepts, use these methods to produce
the desired concept.

Let us clarify this using an example, where the user requests a plan that transforms
a chromatogram (input concept) into a nucleotide alignment (desired concept). In part A
of Figure 5, we show the input of SHOP2 (translated to the SHOP2 specific language),
corresponding to a request for a nucleotide alignment using chromatogram chl. In part B
of this figure, we show the four possible plans (workflows) generated to answer the request.
It shows, for instance (plans 3 and 4) the need for ontological concept manipulation. These
plans chose the ORFFinder service, which needs the sequence concept as input. However,
the problem’s input is chl, and identified sequence - an aggregated concept. Thus, in order
to feed it to ORFFinder, the planner had to specify the Decompose_identified_sequence and
Compose_identified_sequence operators to, respectively, disaggregate chl and re-aggregate
the output from ORFFinder.

Plans are ordered in processing cost. These plans are next passed on to the Evaluator.
Besides cost, our plan evaluator considers other non-functional characteristics to select the
most appropriate plan. All characteristics (processing cost, trust, quality, etc) are stored
in the Service Catalog, together with service description. The Evaluator chose the fourth
plan (depicted as a workflow in part C) because the use of the filter service increases the
quality of the plan results and, if the user is looking for genes, the use of the ORFFinder
service will improve the result.

Part C of Figure 5 shows a graphical version of the workflow that corresponds to the
selected plan. Our workflows use the workflow model proposed by Pastorello et al [37].
Some advantages of this model are: it allows the representation of all kind of structure
necessary to a scientific workflow (like loops, conditionals, etc) and there is a simple algo-
rithm to convert its workflows to languages for service composition (like WSBPEL). We
extended the WOODSS scientific workflow framework [32] to allow a detailed visualization
and management of our workflows.

Figure 6 shows a screenshot of the WOODSS graphical interface used by us. In its
graphical representation of workflows, activities are rectangles, transitions are arrows and
data repositories are represented as cylinders. Through this interface, the user can create,
edit, annotate and execute workflows. To insert a new activity in a workflow, the user must

16 L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

select one activity from the list of available activities from Service Catalog. For example,
ORFFinder, that has as input a nucleotide sequence and minimum ORF size; its output
is an ORF, that is a specialization of a sequence. The system checks the consistence of all
transitions (that link outputs of one activity to the inputs of another activity). Inputs can
have default values (e.g. the minimum ORF size of the ORFFinder activity has as “60” as
default value). To insert new data, the user must select the data type in the list of available
concepts of the Domain Ontology. Other operations allowed by the graphical interface are:
insert a (sub-)workflow inside a workflow, save, load, export and import workflows.

Following WOODSS philosophy, scientists can designate which (annotated) workflows
can be stored in the repository, to be used in subsequent experiments or shared with other
scientists.

6 Conclusions and ongoing work

We specified an architecture based on Web services that allows the integration of hetero-
geneous data and applications, and supports automatic or interactive service composition
through the use of AI planning. We have built a prototype to verify and validate our pro-
posal, for bioinformatics problems, specifically for genome assembly and annotation. The
choice of this specific area was made due to our experience with these tasks and the great
need of this kind of system in bioinformatics [11].

Our main contributions lie in proposing and prototyping a solution for specifying scien-
tific workflows in the Web by taking advantage of Al planning techniques, combined with
ontologies and Semantic Web standards. An associated contribution is the extension of the
algorithm proposed by Sirin et al [44] to allow complex data types in the SHOP2 planner.

Our architecture is generic, and can be instantiated for several domains. It helps the user
in the three kinds of composition: manual, iterative and automatic. Manual composition is
very useful when the user knows exactly what activities he/she desires to compose. Iterative
composition is advisable when the user has a general knowledge of the process that he wants
execute, but does not know what tools/services execute this process. In this case, the system
suggests the activities. Automatic composition is advisable when the user knows pre- and
post-conditions, but does not know (or is not interested in) how to design a workflow that
satisfies these conditions.

As future work we intend to explore other promising ways for plan synthesis as alter-
natives to SHOP2. For example, Kuter et al [23] propose an algorithm that combines the
power of the strategy of search control of hierarchical planning (SHOP2) with planning
techniques of symbolic model checking (MBP). We also intend to study the use of sym-
bolic model checking and the possibility to combine this technique with HTN. Another
important step in plan synthesis is the use of plan repair techniques to decrease the need
for re-planning [4]. In bioinformatics there are several tools with similar functionality, and
thus, the use of plan repair may be a good strategy. Finally, we have in mind to extend
our bioinformatics ontology to reach a wider context in bioinformatics, such as comparative
genomics and metabolic pathways.

A framework for the management of bioinformatics scientific workflows 17

7

Acknowledgments

The work described in this paper was partially financed by CAPES, the MCT-PRONEX SAI
project and CNPq WebMaps and AgroFlow projects. JCS and CBM were funded by CNPq
fellowships. JJPA was partially financed by the Autonomous University of Bucaramanga.

References

1]

2]

[11]

[12]

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):28-37, 2001.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. Information and Computation, 98(2):142—
170, 1992.

M. C. Cavalcanti, R. Targino, F. B. ao, S. C. Rossle, P. M. Bisch, P. F. Pires, M. L. M.
Campos, and M. Mattoso. Managing structural genomic workflows using Web services.
Data € Knowledge Engineering, 53(1):45-74, 2005.

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. Using iterative
repair to improve the responsiveness of planning and scheduling. In AIPS2000, pages
300-307, 2000.

A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic
planning via symbolic model checking. Artif. Intell., 147(1-2):35-84, 2003.

E. M. Clarke and J. M. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys, 28(4):626-643, 1996.

T. W. M. Coalition. Workflow management coalition terminology & glossary (issue
3.0) 1999. http://www.wifmc.org/standards/docs (as of 2005-09-20).

L. A. G. da Costa, P. F. Pires, and M. Mattoso. Automatic Composition of Web
Services with Contingency Plans. In IEEE ICWS 2004, pages 454—461. IEEE Computer
Society, 2004.

L. A. Digiampietri, C. B. Medeiros, and J. C. Setubal. A framework based in Web
services orchestration bioinformatics workflow management. Genetics and Molecular
Research, 4(3), 2005.

A. J. G.S. et al. The genome sequence of the plant pathogen Xylella fastidiosa. Nature,
406(1):151-157, 2000.

L. A. D. et al. Fact and Task Oriented System for genome assembly and annotation.
LNBI, 2594:238-241, 2005.

R. Fileto. The POESIA Approach for Services and Data Integration On the Semantic
Web. PhD thesis, IC-UNICAMP, Campinas—SP, 2003.

18

[13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]

[21]

[22]

[23]

L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

K. Fujii and T. Suda. Dynamic Service Composition Using Semantic Information. In
ICSOC 2004), pages 39-48. ACM Press, 2004.

H. T. Gao, J. H. Hayes, and H. Cai. Integrating Biological Research through Web
Services. IEEE Computer, 38(3):26-31, 2005.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL the planning domain definition language. In Proc. of AIPS-98
Planning Committee, 1998.

M. Ghallab, D. Nau, and P. Traverso. Automated Planning, Theory and Practice.
Elsevier, 2004.

Y. Gil. Description Logics and Planning. Al Magazine, 2005.

F. Giunchiglia and P. Traverso. Planning as Model Checking. Lecture Notes In Com-
puter Science, 1809:1-10, 1999.

Workshop on Planning and Scheduling for Web and Grid Services, June 2004.

R. B. J. Yu. A taxonomy of scientific workflow systems for grid computing. ACM
SIGMOD Record, 34(3):44-49, 2005.

J. Kim and Y. Gil. Towards Interactive Composition of Semantic Web Services. In
AAAI 2004, march 2004.

U. Kuter and D. Nau. Forward-Chaining Planning in Nondeterministic Domains. In
AAAT 2004, pages 513-518, 2004.

U. Kuter, D. Nau, M. Pistore, and P. Traverso. A Hierarchical Task-Network Planner
based on Symbolic Model Checking. In (ICAPS 2005), pages 300-310. AAAT Press,
2005.

U. D. Lago, M. Pistore, and P. Traverso. Planning with a Language for Extended
Goals. In AAAT 2002, pages 447-454. AAAT Press, 2002.

Laboratory for Bioinformatics, Institute of Computing, University of Campinas.
http://www.lbi.ic.unicamp.br (as of 2005-09-15).

H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. Golog: A logic
programming language for dynamic domains. Journal of Logic Programming, 31(1—
3):59-84, 1997.

D. Long and M. Fox. The 3rd International Planning Competition: Results and Anal-
ysis. Journal of Artificial Intelligence Research, 20:1-59, 2003.

P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C. Goble,
and L. Stein. Applying semantic web services to bioinformatics: Experiences gained,
lessons learnt. In Proc. of the the 3rd International Semantic Web Conference, pages
350-364, november 2004.

A framework for the management of bioinformatics scientific workflows 19

[29]

[30]

[31]

32]

[33]

[34]

[39]

[40]

[41]

D. McDermott. Estimated-Regression Planning for Interactions with Web Services. In
AIPS 2001, 2002.

S. A. Mecllraith and T. C. Son. Adapting Golog for Composition of Semantic Web
Services. In KR2002, pages 482-493, 2002.

S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic Web Services. IFEFE Intelligent
Systems, 16(2):46-53, 2001.

C. B. Medeiros, J. Perez-Alcazar, L. Digiampietri, G. Pastorello, A. Santanche, R. Tor-
res, E. Madeira, and E. Bacarin. WOODSS and the Web: Annotating and Reusing
Scientific Workflow. ACM SIGMOD Record, 34(3):18-23, 2005.

B. Medjahed, A. Bouguettaya, and A. Elmagarmid. Composing web services on the
semantic web. VLDB Journal, 12:333-351, 2003.

H. Munoz-Avila, D. W. Aha, D. Nau, R. Weber, L. Breslow, and F. Yaman. SiN:
Integrating case-based reasoning with task decomposition. In IJCAI 2001, pages 999—
1004. Morgan Kaufmann, 2001.

D. Nau, T. C. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F. Yaman. SHOP2:
An HTN Planning System. Journal of Artificial Intelligence Research, 20:379-404,
2003.

D. Nau, S. Gupta, and W. Regli. Artificial Intelligence Planning versus manufacturing-
operation planning: a case study. In IJCAI 1995, pages 1670-1676. Morgan Kaufmann,
1995.

G. Z. Pastorello Jr. Publication and Integration of Scientific Workflows on the Web.
Master’s thesis, UNICAMP, 2005. In Portuguese.

J. Peer. A PDDL Based Tool for Automatic Web Service Composition. Lecture Notes
in Computer Science, 3208:149-163, 2004.

S. R. Ponnekanti. Sword: A developer toolkit for web service composition. In Proc. of
9th International World Wide Web Conference, 2002.

J. Rao and X. Su. A Survey of Automated Web Service Composition Methods. In
SWSWPC 2004, volume 3387, pages 43-54, 2004.

R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT press, 2001.

S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
2003.

L. Seffino, C. B. Medeiros, J. Rocha, and B. Yi. WOODSS - A Spatial Decision Support
System based on Workflows. Decision Support Systems, 27(1-2):105-123, 1999.

20

[44]

[45]

[46]

[47]

[48]

L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

E. Sirin, B. Parsia, D. Wu, J. A. Hendler, and D. S. Nau. HTN planning for Web
Service composition using SHOP2. Journal of Web Semantics, 1(4):377-396, 2004.

B. Srivastava and J. Koehler. Web Service Composition - Current Solutions and Open
Problems. In ICAPS 2003, pages 28-35, June 2003.

R. Stevens, P. Baker, S. Bechhofer, G. Ng, A. Jacoby, N. W. Paton, C. A. Goble,
and A. Brass. TAMBIS: Transparent Access to Multiple Bioinformatics Information
Sources. Bioinformatics, 16(2):184-186, 2000.

P. Traverso and M. Pistore. Automated Composition of Semantic Web Services into
Executable Processes. Lecture Notes in Computer Science, 3298:380-394, 2004.

L. R. Venancio, R. Fileto, C. B. Medeiros, and E. Assad. Applying Geographic Ob-
ject Ontologies to help Navigation in GIS (in Portuguese). In Proc. of VI Brazilian
Symposium on Geolnformatics, November 2003.

J. Wainer, M. Weske, G. Vossen, and C. B. Medeiros. Scientific Workflow Systems.
In Proc. of the NSF Workshop on Workflow and Process Automation Information
Systems, 1996.

A framework for the management of bioinformatics scientific workflows

1 (defdomain bicoinformatics-ontology |

Z (:operator (!orfFinder 7a) (sedquence ?a) () ((ORF3 Z7a)) Z5.0)

3 {roperator (!blastn ?a) (({secuence ?a)) (] ((nucleotide alicmment 2a)) 50.0)
[:operator (!Decowpose identified sequence ?a) ((identified secquence ?a)) () ((sequence ?a)

4| [identification 2a)) 0.0
[ioperator (!Compose_identified secquence ?a) ((secquence ?a) (identification ?a)) ()

5| ({identified sequence ?a)) 0.0)

[} (:operator (!'filter ?a) [(sequence 7a) (not(filtered ?all) (] ((filtered ?a)) 0.0}

7 (:roperator (!phred ?a) ((chromatogram ?a&)) () ((identified secuence ?a)) 10.0)

=]

9 {twethod (TO identified sequence x|

10 | (chromatocrae ?x))

11 [[!phred x]]

12 [(sequence Za) (identification ?a))

13 ([!compose identified sequence 2a))

14

15

18 [imechod (find orfs 2x)

17 [(Sequence 7x))

13 { (lorfFinder 2x))

19

20

21 (:rethod (TO alignment 2x)

22 4]

23 [[TO nucleotide aligrwent ?x)

24

25

25 {rwethod (TO nucleotide alignment 2x)

27 [[sequence X))

258 ({'blastn ?x)1)

z9 [(not(sequence ?x)))

30 [(TO =zecuence 2x) (!blastn 2x))

31

3z

33 [imechod (TO nucleotice alignment 2x)

34 [(ORFS 2x1)

35 { [1ORF3_IsfpecializationOf secuence ?x) [lhlastn 2x))

36 { not (ORFS 2x))

37 [(:ordered((TO orfs ?x) (!ORF3_IsSpecializationOf sequence ?x) (!'blastn ?x)))1))

33 1

38

Figure 4: Part of the SHOP2 definition domain for bioinformatics ontology

21

L.A. Digiampietri, J.J. Pérez—Alcazar, C.B. Medeiros, J.C. Setubal

A. SHOP2 input problem

(defproblem problem1 bioinformatics-ontology
((chromatogram ch1))
((nucleotide_alignment ch1)))

B. SHOP2 output

Problem PROBLEM1 with :WHICH = :ALL, :VERBOSE = :PLANS, OPTIMIZE-COST = 200
Totals: Plans Mincost Maxcost Expansions Inferences CPU time Real time
3 60.0 850 29 70 0.017 0.042

Plans:

(

(('"PHRED CH1) ('BLASTN CH1))

(('"PHRED CH1) (FILTER CH1) ('BLASTN CH1))

((IPHRED CH1) (IDECOMPOSE_IDENTIFIED_SEQUENCE CH1) ({ORFFINDER CH1)
(ICOMPOSE_IDENTIFIED_SEQUENCE CH1) ('BLASTN CH1))

(('PHRED CH?1) (IFILTER CH1) (IDECOMPOSE_IDENTIFIED_SEQUENCE CH1)

(IORFFINDER CH1) (ICOMPOSE_IDENTIFIED_SEQUENCE CH1) (IBLASTN CH1))
)

C. Workflow — graphical representation of the chosen plan

chrorréal:;)gram phred [filter ™ ORFFinder —™ blastn

Figure 5: Plan synthesis and selection

£ W00DSS

ol
File Edit Register Database WorkFlow Format Help
elalale(a]s|[c]of«[a]x] [»/al+a[s] &=

5 worknowe #1 =
workitow 1 | | =5

Warkowsiz| | | 5 Worktiow 2
TTTIR E]L\Iurkﬂuw #3 e B

Workflow #4 O workdow #4

default filter

database
chromatogram

chromatogram

nucleotide Jsequence nucleotide sequence

min ORF size
(default §0)

default blast
database (nt)

Workflow #4

Figure 6: Workflow Graphical Representation in WOODSS

