preprint.sty

Managing Alternatives and Data Evolution in GIS

Claudia Bauzer Medeiros
DCC - IMECC - UNICAMP
Campinas, Brazil
cmbm@dcc.unicamp.br

Abstract

This paper presents a solution for managing spatio-temporal
data in a G1s database. This solution allows efficiently stor-
ing and handling temporal data and alternatives using a
version mechanism. It can be used for different types of Gis-
based applications, such as urban planning, environmental
control and utility management.

1 Introduction

Geographic Information Systems (GIs) involve querying and
analyzing massive amounts of georeferenced data, which is
either organized in flat files or, more recently, managed by
underlying database systems (DBMs). GIS queries may be
roughly classified into four different families [Aro89]:

e presentation of the stored data;

e determination of spatial relationships between differ-
ent phenomena;

e simulation and comparison of alternative scenarios based
on combination of data layers; and

e prediction of the future.

Existing systems provide different facilities for handling the
first two types of questions. These facilities usually consist
of combining a query processor, a spatial data handler and
graphical display tools on top of a data management system.

The two other types of queries, however, involve handling
of spatio-temporal relations. The simulation of scenarios can
be performed in specific situations, in a limited scale, using
controlled parametrization of data values (see, for instance,
a description of how this can be done in [HQGW93]).

The management of simulation results is however awk-
ward, especially when the user wants to compare alterna-
tives. The same applies to temporal evolution. Users are
forced to manage time themselves, embedding appropriate
code into their applications. Examples of queries demanded
of G1s that fall into these categories are:

To appear in the ACM/ISCA Workshop on Advances in Ge-
ographic Information Systems, November 1993, Baltimore,

USA

Genevieve Jomier
Université Paris IX
Paris - France
jomier@etud.dauphine.fr

e Prevision of future based on recorded past: “ What
is the probability of flooding occurring in a certain
area, given information collected along previous years?
What are the possible damages — extent and inten-
sity?”

e Analysis of temporal data evolution: “What has been
the observed evolution of the stress in a vegetation
colony? How has it been progressing and at which
speed?”

o Comparative analysis of simulated scenarios: “What
are the alternative for installing and expanding sani-
tation facilities, given observed trends in urban expan-
sion?”

e Comparative analysis between actual data and simu-
lated scenarios: “Given the actual state of a given area,
how accurate were simulations performed to determine
soll erosion in this area?

The difficulties posed to answering these queries involve fac-
tors that cannot be handled adequately by present Gis. The
first issue is due to the nature of Gis data, which requires
special indexing and buffering techniques. This area is the
one that has merited the most attention from database re-
searchers (e.g., [AS91, Fra91]). Present systems still have
shortcomings in terms of performance and querying facili-
ties. The addition of time and alternatives introduces other
problems that are not satisfactorily supported in Gis.

This paper presents a solution to these problems. This
solution is based on the DBV version model of [CVJ91]. This
model, now being simulated on the O2 database system, al-
lows efficiently keeping track of data versions in a database.
It supports the creation of alternative scenarios, the iden-
tification of georeferenced features, and allows the manage-
ment of scenarios and features through time with consider-
able savings in space. This solution is going to be tested in
the poMUs! environmental planning project, using real-life

data layers from non-settled areas in the state of Sao Paulo,
Brazil.

2 Characterization of G1s application demands

The rapid growth in GiS has resulted in a large number
of systems, each of which with its own data storage and
handling characteristics. In fact, it is only recently that

1domus(the latin for home — the Earth) is a joint project of re-
searchers of the Computer Science Department and the Geosciences
Institute at Unicamp.

GIS started to be implemented using DBMS. Most GIS are
still based on a spatial data handler coupled to a sequential
file manager, without any database facility (such as logi-
cal independence, storage management or query language
support). Systems that use databases rely on combining
a relational DBMs with special handlers which manipulate
specific aspects of georeferenced data. The coupling of rela-
tional database systems to GIS data processing requirements
has been done according to two architectures:

e proprietary systems — a special-purpose relational data
base is tightly coupled with spatial data processing
modules. Users cannot access the database directly
and data cannot be migrated to standard relational
systems;

e relational systems — a standard DBMS is used as a basis
for spatial data access functions. Users can access the
database directly, and data can be ported into other
systems. Nevertheless, most special purpose features
(e.g., geometric and image processing modules) are im-
plemented by external packages.

The introduction of DBMS to support GIs has improved the
services provided to end-users. However, these users still
need more sophisticated data handling tools which are not
yet supported.

Recently, there have been some prototypes developed on
top of object-oriented systems, which aim to extend the
services provided by relational DBMS(e.g., [KT92, ZM92,
SV92]), but there is a lack of experimentation using real
data.

GIS use basically two types of data: vector and raster.
Data of different natures are stored in layers — also called
themes or chloropeth maps. These layers are combined in
different ways in order to process a query. One of the most
common functions is the map overlay, employed on raster
data.

The type of data used in an application depends on the
domain and user requirements. Utility management (e.g.,
telephone or electricity planning) uses primarily vector data.
Environmental control and natural resource planning use
mostly raster data. When applications require merging the
two kinds of data (e.g., outlining a road across a forest) this
is done in two ways:

e image superposition — the vector data is drawn on top
of the raster data, but there is no value processing.
Users see the resulting images but cannot access the
data directly.

e data conversion — vector data is converted to raster
(or vice-versa) using builtin functions. The user can
afterwards combine the different data sources to create
new regions.

G1S demand that DBMS keep track of large amounts of geo-
referenced data, of different natures, collected using hetero-
geneous devices, and at different time periods. The fun-
damental question is how to embed the spatial aspects in a
data model and support this by a DBMs such that acceptable
interfaces (query languages and pictorial interfaces) can be
developed, and temporal data and alternatives can be man-
aged.

Present Gis still lack facilities for providing the following
services:

e automatic representation and management of spatio-
temporal data evolution;

e handling of alternatives;

e identification of appropriate georeferenced features (data
elements) to be combined in space and time.

These are the same type of problems that are faced by
version mechanisms (even though the latter have not yet
considered georeferenced data). Given the complexity of
managing time and versions, GIS do not support these fac-
tors.

3 The DBV version mechanism

Versions are a means of storing different states of a given
entity, thereby allowing the control of alternatives and of
temporal data evolution. Versions are usually organized in
a directed acyclic graph, which accompanies the history of
data evolution across successive design trials.

The management of versions in databases has centered
on different ways for keeping files. Research has appeared
mostly in the context of software management (CASE sys-
tems) and CAD/CAM projects (e.g., [KSW86, Kat90, BBA9I,
TG92, KS92]). The subjects discussed cover the creation
and manipulation of entity versions, their identification, the
handling of time, status, authorization, and concurrency
mechanisms. In object-oriented systems, this is aggravated
by the intricate composition relationships between objects.
Versions are also commonly used as a solution to concur-
rency control, especially for long transactions.

An important issue is the maintenance of configurations.
A configuration is a set of versions of entities that represent
some identifiable unit in the universe modelled. In many sit-
uations, the configuration becomes the versioning unit (i.e.,
users are not allowed to create versions of isolated entities,
only of identifiable units). This is often the case of CAD
environments.

Existing approaches support versions by means of chains
of pointers, which keep track of connections among entity
versions. There is often confusion between version (pointer
and file) management and the underlying data model.

The DBV mechanism [CJ90, CVJ91] has a different ap-
proach. In this model, instead of keeping track of versions
of individual entities, the problem is treated from a point
of view where a unit of versioning, called database version
— Duv for short — is a state of the universe modelled by the
database (rather than just parts thereof).

The DBV approach does not use links between entity ver-
sions to determine to which consistent state they belong, as
in the standard approach. It is based instead on the princi-
ple that the creation of an entity version & entails the cre-
ation of a new consistent logical database version Dv which
will contain £. The DBV approach sees therefore an aug-
mented database that contains as many as necessary suc-
cessive and alternative identified states of the modelled uni-
verse, and not only one state, as in conventional databases.
The evolution of a DBV can be likened to the creation of new
states of the universe in time. Each state is mapped onto a
database version Duv, which is consistent and can evolve inde-
pendently. Creating a new version for an entity corresponds
to the appearance of another universe state. Temporal and
alternative data can also be managed by this model — the
database can be seen as a sequence of temporal states.

In the standard approach, when some entity version & is
created, several chains have to be established: some chains
link other versions of the same entity to its new version &;
other chains connect £ to other entity versions to form a new
configuration, maintaining configuration integrity. In the

DBV model, the connection of £ to a configuration is instead
achieved by an adhoc identification mechanism which uses
“version stamps”. Each Dv contains a logical version of each
entity in the modelled universe. Identical logical versions of
an entity are mapped on the same physical version of this
entity using these “version stamps”. Thus the creation of a
new database version Dv does not require physical duplica-
tion of versions of entities. Keeping up consistent configura-
tions is automatically performed by the version manager by
examining tables of version stamps. Implementation details
appear in [CJ90].

In the DBV model, time becomes an implicit feature by
allowing timestamps to be used as part of version stamps.
Thus, temporal queries do not require handling of special at-
tributes; rather, they are processed by the versioning mech-
anism, which puts together data that belongs to the same
Dv (temporal) state.

In order to properly associate an entity with its ver-
sions, the DBV mechanism relies on the notion of identity. In
object-oriented systems, this is easily solved by taking ad-
vantage of the object id (oid) concept. In relational systems,
internal surrogates can be used to the same purpose.

GIS naturally support the identity notion, which can be
associated to the coordinates of features. This can be done
using either raster or vector data, and thus the underly-
ing storage model does not affect DBV version management.
Thematic layers can furthermore be handled as version con-
figurations. Thus, georeferenced data are prime subjects for
DBV mechanism management.

4 Versions in GIS — other approaches

A good introduction to the problems of handling spatio-
temporal data in GIS are the set of papers in [FCF92]. Re-
search on versions has not dealt with GIs related problems.
The reverse is also true: there are very few reports of use of
version mechanisms in G1s(e.g., [Bat92, NTE92]). Their use
in handling alternatives is never mentioned. Their support
for temporal data is discussed from a file manager point of
view. Existing papers usually are based on stressing the ap-
plication needs, and database version management problems
are glossed over.

The GFIS [Bat92] system uses a standard relational DBMS
coupled to a geographic data manager. Version management
is left to the database system, and is geared towards control-
ling concurrent access. There is no possibility of selecting
versions for queries, or of handling sequences of past states.

[NTE92] discuss different data structures for implement-
ing versions on top of tables using an object-oriented lan-
guage. The paper provides a comparative analysis of these
structures, but does not apply them to real data.

5 Conclusions

This paper presented a solution for the management of spatio-
temporal data in GIs which consists in using the DBV version

mechanism. The mechanism is orthogonal to the data model

and the concurrency control issues, which are complicating

factors in other version models. It solves the problem of
handling of alternatives and of data evolution by associat-

ing identifiers to each data feature, and using timestamps in

the creation of version identifiers.

Furthermore, this mechanism can be used to process
other GIS functions, such as map overlay queries (where iden-
tifiers are used to match features in different layers), or map
customization (combining alternative versions for a region).

We intend testing this solution against spatio-temporal
data available in the DOMUS project, as part of an environ-
mental planning project. Tests will use georeferenced data
about the Cantareira region in the Sdo Paulo state (roughly,

2.000 km2) [PMB93].

Acknowledgements

The research described in this paper was partially financed
by grants FAPESP 91/2117-1, CNPq 453176/91, and CNPq
452357/93-4.

References

[Aro89] S. Aronoff. Geographic Information Systems.

WDL Publications, Canada, 1989.

W. Aref and H. Samet. Extending a DBMS
with Spatial Operations. In Proc. 2nd Sympo-
stum Spatial Database Systems, pages 299-317.
Springer Verlag Lecture Notes in Computer Sci-
ence 525, 1991.

[AS91]

[Bat92] P. Batty. Exploiting relational database tech-
nology in a GIS. Computers and Geosciences:

An international journal, 18(4):453-462, 1992.
M. Borhani, J-P Barthées, and P. Anota. Ver-

sions in Object-Oriented Databases. Technical
Report UTC/GI/DI/N 83, Universite de Tech-
nologie de Compiegne, 1991.

[BBA91]

[CJ90] W. Cellary and G. Jomier. Consistency of Ver-

sions in Object-Oriented Databases. In Proc.
16th VLDB, pages 432-441, 1990.

W. Cellary, G. Vossen, and G. Jomier.
Multiversion Object Constellations for CAD
Databases. Technical Report 9105, Justus-
Liebig Universitat Giessen, 1991.

[CVI91]

[FCF92] A. Frank, I. Campari, and U. Formentini,
editors. Theories and Methods of Spatio-
Temporal Reasoning in Geographic Space. Lec-
ture Notes in Computer Science 639. Springer-

Verlag, 1992.

[Fradi] A. Frank. Properties of Geographic Data: Re-
quirements for Spatial Access Methods . In
Proc. 2nd Symposium Spatial Database Sys-
tems, pages 225-234. Springer Verlag Lecture

Notes in Computer Science 525, 1991.

[HQGW93] N. Hachem, K. Qiu, M. Gennert, and M. Ward.
Managing Derived Data in the GAEA Scientific
DBMS. In Proc 19th VLDB, pages 1-12, 1993.

R. H. Katz. Toward a Unified Framework for
Version Modelling in Engineering Databases.
ACM Computing Surveys, 22(4):375-408, 1990.

[Kat90]

[KS92] W. Kafer and H. Schoning. Mapping a Version
Model to a Complex-Object Data Model . In
Proc IEEFE Data Fngineering Conference, pages

348-357, 1992.
P. Klahold, G. Schlageter, and W. Wilkes.

A General Model for Version Management in
Databases. In Proc XII VLDB, pages 319-327,
1986.

[KSW86]

[KT92]

[NTE92]

[PMB93]

[SV92]

Z. Kemp and R. Thearle. Modelling Relation-
ships in Spatial Databases . In Proc 5th Inter-
national Symposium on Spatial Data Handling,
pages 313-322, 1992. Volume 1.

R. Newell, D. Theriault, and M. Easterfieldy.
Temporal GIS - modeling the evolution of spa-
tial data in time. Computers and Geosciences:
An international journal, 18(4):427-434, 1992.

F. Pires, C. B. Medeiros, and A. Barros. Mod-
elling Geographic Information Systems using an
Object Oriented Framework. In Proc XIII In-
ternational Conference of the Chilean Computer
Science Society, pages 217-232; 1993.

M. Scholl and A. Voisard. Building and Object-
ortented System — the Story of 02, chapter Ge-
ographic Applications — an Experience with O2.
Morgan Kaufmann, California, 1992.

V. Tsotras and B. Gopinath. Optimal Version-
ing of Objects . In Proc IEFE Data Fngineering
Conference, pages 358-365, 1992.

F. Zhan and D. Mark. Object-Oriented Spa-
tial Knowledge Representation and Processing:
Formalization of Core Classes and their Rela-
tionships. In Proc 5th International Symposium
on Spatial Data Handling, pages 662—671, 1992.
Volume 2.

