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ABSTRACT

In Content-based Image Retrieval (CBIR), accurately rank-
ing the returned images is of paramount importance, since
users consider mostly the topmost results. The typical rank-
ing strategy used by many CBIR systems is to employ image
content descriptors, so that returned images that are most
similar to the query image are placed higher in the rank.
While this strategy is well accepted and widely used, im-
proved results may be obtained by combining multiple image
descriptors. In this paper we explore this idea, and introduce
algorithms that learn to combine information coming from
different descriptors. The proposed learning to rank algo-
rithms are based on three diverse learning techniques: Sup-
port Vector Machines (CBIR-SVM), Genetic Programming
(CBIR-GP), and Association Rules (CBIR-AR). Eighteen
image content descriptors (color, texture, and shape infor-
mation) are used as input and provided as training to the
learning algorithms. We performed a systematic evaluation
involving two complex and heterogeneous image databases
(Corel e Caltech) and two evaluation measures (Precision
and MAP). The empirical results show that all learning al-
gorithms provide significant gains when compared to the
typical ranking strategy in which descriptors are used in
isolation. We concluded that, in general, CBIR-AR and
CBIR-GP outperforms CBIR-SVM. A fine-grained analysis
revealed the lack of correlation between the results provided
by CBIR-AR and the results provided by the other two algo-
rithms, which indicates the opportunity of an advantageous
hybrid approach.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process
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1. INTRODUCTION

Traditional image retrieval approaches, based on keywords
and textual metadata, face serious challenges. Describing
the image content with textual features is intrinsically very
difficult, and the task has not been made easier by the
growth and diversification of image databases. Many ap-
plications, especially those dealing with large general im-
age databases face obstacles to obtain textual descriptors,
where manual annotation is prohibitively expensive, contex-
tual text is scarce or unreliable, and user needs are impos-
sible to anticipate.

On those contexts, Content-Based Image Retrieval
(CBIR, [34]), can be very helpful, since it forsakes the need
of keywords or other textual metadata. Often, it consists of
retrieving the most similar images to a given query image,
a form of query-by-example that makes concrete the intu-
ition of the famous proverb: “a picture is worth a thousand
words”. However, satisfying the user needs involves answer-
ing the conceptual query which is represented by the sample
image — an open research issue.

A critical aspect of the system is the final ordering — the
ranking — of the images. CBIR systems will rank the images
in the result set according to their similarity to the query
image. Because the result set is often large, the users will
only inspect the topmost results, so their perception of the
system quality depends critically on the relevance of those
results.

Similarity is computed using image content descriptors,
which combine a feature vector and a similarity measure to
express a specific perceptual quality of the image [6]. The
feature vectors encode visual features associated with the
images, such as color, texture, and shape [12,36-38]. The
similarity measures (which range from simple metrics, like
the one based on the Euclidean distance, to very elaborate
algorithms, like the Earth Mover’s Distance [25]) determine



how the feature vectors are distributed in the description
space — affecting critically how the vectors correspond to
perceptual qualities.

Obviously, different descriptors produce different rank-
ings. Also, the best descriptor to employ is data-dependent,
and impossible to know before query time. Further, it is
intuitive that different descriptors may provide different but
complementary information about images, so that the com-
bination of multiple descriptors may improve ranking per-
formance. Combining multiple descriptors is clearly a better
strategy than relying on a single one, but the optimal com-
bination of descriptors is, again, data-dependent and impos-
sible to obtain in advance.

In this paper we propose an alternative approach for
content-based image retrieval, which applies learning algo-
rithms to effectively combine multiple descriptors in order
to improve ranking performance. We provide as input to the
learning algorithms a set of query images. Associated with
each query image, we also provide a set of sample images
which are represented by the corresponding similarities to
the query image. The similarities are computed usind mul-
tiple descriptors. The relevance of an image to the query
image is also informed as input (e.g., an image is relevant
if it is trully similar to the query image, otherwise it is ir-
relevant). This information is used as training, so that the
learning algorithms produce a ranking function that maps
similarities to the level of relevance of images to query im-
ages. When a new query image is given, the relevance of the
returned images is estimated according to the learned func-
tion (i.e., this function gives a score to an image indicating
its relevance to the query image).

The main contributions of this paper are: the application
of the learning to rank approach to CBIR, and the introduc-
tion of a new rank learning scheme, based on Association
Rules. Also, to the best of our knowledge, this is the first
attempt at comparing algorithms of learning to rank, in the
context of CBIR.

Three algorithms have been evaluated, representing very
different learning strategies: (i) CBIR-SVM, which is based
on Support Vector Machines [3, 21, 44], (ii) CBIR-GP, which
is based on Genetic Programming (7,8, 23], and (iii) CBIR-
AR, which is based on Association Rules [1,42]. We have
performed a systematic set of experiments using two image
databases (Corel and Caltech).

Our results indicate that algorithms that learn to rank
achieve superior ranking performance when compared to tra-
ditional approaches that simply employ isolated descriptors.
We also found out that CBIR-AR and CBIR-GP outper-
form CBIR-SVM in terms of overall ranking quality and
that the strengths of CBIR-AR are complementary to those
of CBIR-GP and CBIR-SVM, indicating that synergy could
be obtained by combining the former with one of the latter.

The remaining of the paper is organized as follows. Next
section discusses related work on the application of learning
algorithms for CBIR. A formal definition of the problem,
as well as a description of the algorithms analyzed, are pre-
sented in Section 3. In Section 4, we evaluate empirically the
effectiveness of those algorithms. In Section 5, we present
our conclusions.

2. RELATED WORK

Several machine learning techniques have been used for
learning to rank different kinds of objects (e.g., text docu-

ments, images) and have provided good results. For text
documents, some approaches [2,8] use Genetic Program-
ming (GP) to optimize ranking functions and obtain the
better performance in search for documents. Zobel and Mo-
fat present no less than one million possibilities to compute
such ranking functions [47]. Other approaches based on Sup-
port Vector Machine (SVM) have been proposed [4, 15, 20]
to discover the best search function. Furthermore, Veloso
et al. [41] find patterns (or rules) associating document fea-
tures using Association Rules. Later those rules are used to
rank documents.

In the CBIR domain, the use of machine learning tech-
niques to rank images tries to alleviate the so-called semantic
gap problem: translation of high-level user concepts into low-
level feature vectors, provided by descriptors. One common
approach is to use learning methods to combine different
descriptors. In [11,35], those approaches rely on assigning
weights to indicate the importance of a descriptor. Basi-
cally, the higher the weight the more important a descriptor
is assumed to be. Frome et al. [11] apply a maximal-margin
formulation for learning linear combination of elementary
distances defined by triplets of images. Shao et al. [35] use
Genetic Algorithms to determine the best weights for avail-
able descriptors. Kernels and SVM have also been used for
CBIR. Examples include [13,46]. Torres et al. [7], in turn,
exploit GP for combining image descriptors and finding the
best weight for each descriptor. Those algorithms optimize
image retrieval and try to minimize the semantic gap.

In order to include the user in the CBIR process, rele-
vance feedback techniques have been proposed to improve
the effectiveness of retrieval systems. In [10,16,29], learn-
ing techniques are used to meet user needs. In these tech-
niques, the user indicates to the system which images are
relevant and the system learns from these indications trying
to return more relevant images at next iterations. Those rel-
evance feedback algorithms try to characterize specific user
perceptions/needs.

There are very few works in the literature concerned with
learning to rank specifically for CBIR. In [17], it is proposed
the use of multiple-instance ranking based on the max mar-
gin framework (method that is adapted from the RankSVM
algorithm [15]), where local information is extracted from
images. This approach considers that is more flexible to use
the relative ranking (an image is more relevant than another
one) for image retrieval than to use the traditional relevance
feedback methods, where images are grouped into relevant
and irrelevant sets.

3. LEARNING TO RANK IMAGES

In this section we introduce the concept of CBIR, and
give a formal definition of the problem of learning to rank
images. Then, we present three algorithms, based on differ-
ent learning techniques.

3.1 Content-Based Image Retrieval (CBIR)

CBIR systems are designed to retrieve images similar to a
user-defined specification or pattern (e.g., shape sketch, im-
age example). Their goal is to support image retrieval based
on content properties (e.g., shape, color, texture), encoded
into feature vectors.

CBIR is strongly based upon the concept of descriptor. A
descriptor is a mathematical object which tries to express
some perceptual quality of the images, and is composed by:



(1) a feature extraction algorithm that encodes image prop-
erties, such as color, shape, and texture into a feature vec-
tor; and (2) a similarity measure (distance function) that
computes the similarity between two images as a function of
the distance between their corresponding feature vectors [6].
Both the feature vector and the distance function affect how
the descriptor encodes the perceptual qualities.

Images are usually coded in a way that is both extensive
(images are large) and semantically poor (there is very few
semantic content in the pixels themselves). Thus, descrip-
tors play a fundamental role in CBIR systems, since they
provide a more compact and semantically richer representa-
tion for images.

The CBIR system will usually pre-process the images
stored in its database, by extracting and indexing the fea-
ture vectors. This process is usually performed off-line, once
per image.

Once the database is ready, the CBIR system allows the
user to specify the queries by means of a query pattern
(which can be a sample image). The query is also processed
by the feature vector extractor, and the similarity function
is used to evaluate its similarity to the database images.
Then, the database images will be ranked in decreasing or-
der of similarity to the query, and shown to the user in that
order.

There is a huge array of descriptors available in the lit-
erature, with their corresponding strengths and weaknesses.
The choice of the descriptors affects critically the overall
effectiveness of the CBIR system.

Table 1 lists the set of descriptors considered in our study.

Descriptor Content Type
GCH [38] Color
BIC [36] Color
COLORBITMAP [28] Color
ACC [19 Color
CCV [33 Color
CGCH [37] Color
CSD [31] Color
JAC [43] Color
LCH [38] Color
CCOM [22] Texture
LAS [39] Texture
LBP [32] Texture
QCCH [18] Texture
SASI [5 Texture
SID [45] Texture
UNSER [40] Texture
EOAC [30] Shape
SPYTEC [24] Shape

Table 1: The eighteen image descriptors used in our
experiments.

3.2 Problem Definition

Different descriptors provide different but complementary
information about the similarity between images. This is be-
cause descriptors may employ different content types (i.e.,
color, texture or shape), or may do it in different ways. Cer-
tain descriptors may be more effective for some images, and
less effective for others. There is no perfect descriptor, and

no descriptor is consistently superior than all others in all
possible cases.

Our approach is to use learning algorithms, which are able
to combine different information provided by multiple de-
scriptors (eighteen in our experiments) in order to improve
efficiently ranking performance.

We present the problem in a classical learning setting. The
learning algorithm is presented with a set of annotated ex-
amples composed by query images and their corresponding
ground-truth (i.e., the degree of relevance of the images in
the database for that query). The degree of relevance is cho-
sen among a few discrete possibilities (e.g., 0 for irrelevant
images, 1 for relevant ones).

The learning algorithms have, at their disposal, a pre-
computed matrix of the distances between the queries and
all images in the database, for each descriptor considered in
the study.

The idea is that the algorithm should take into account
both the training set (with the ground-truth annotations)
and the available distances (which provide the similarity be-
tween the query and the database images) to learn the op-
timal way to combine the evidence from the descriptors in
order to answer the queries. The algorithms produce a rank-
ing model, learned from the training set, which is used to
estimate the relevance of arbitary images.

3.3 Machine Learning Techniques

The three algorithms studied are based on three very dif-
ferent machine learning techniques, which are employed to
learn to rank images from a training set of rankings and a set
of descriptors. We have called the algorithms CBIR-SVM,
CBIR-GP, and CBIR-AR, accordingly to the underlying ma-
chine learning scheme used on each one of them.

331 CBIR-SVYM: Learning using Support Vector
Machines

The Support Vector Machines (SVM), introduced by [3], is
a supervised learning method for solving classification prob-
lems. The main idea of SVM is to construct a separating
hyperplane in an n-dimensional space (where n is the num-
ber of attributes of the entity being classified, i.e., its dimen-
sionality), that maximizes the margin between two classes.
Intuitively, the margin can be interpreted as a measure of
separation between two classes and can be interpreted as a
measure of the quality of the classification. Figure 1 illus-
trates this idea.

More recently [15,20], SVM was applied for learning rank-
ing functions in the context of information retrieval. It has
also been employed specifically for CBIR [14,17]

The learning process using SVM for ranking images works
as follow:

Given an input space X € R", where n is number
of features and an output space of ranks represented by
labels Y ={r1,r2,...,7q}, where ¢ denotes the number
of ranking positions. In these ranks there exist an or-
der, ry>rq—1>...>r1, where > represents a preference re-
lation [4].

Each instance Z; € X denotes a query-image pair («,3),
where « denotes an image of the database and 3 the query
image, and it is labeled with one rank. It is represented by
a feature vector in which each feature is an image descriptor
defined as a function of the query and a database image. A
preference relation between instances exists, &; is preferable
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Figure 1: The SVM classifier finds the hyperplane
which separates the two classes (here exemplified by
squares and circles) with the widest possible margin.

to &; is denoted by Z;>Z;.

A ranking function f € F can be used to give a score value
for each instance Z; € X. Thus, it is possible to determine
preference relations between instances from a set of ranking
functions F', such that:

B3 o (@) > (@) (1)

The ranking problem can be interpreted as a learning
problem for classification on pairs of instances (#;,%;) as
being either well or badly ranked. The preference relation
Z;>Z; is represented by a new vector Z; — &; such that

(:z: — 0= {“ W’f) (2)
=1y

Next, to classify each pair of images (Z;,Z;), two classes
are considered: correctly ranked (41) and incorrectly ranked
pairs (-1), the former being those where Z; should be ahead
of Z;, and the latter being those where the converse is true.

From all original instances Z; € X, it is created a new
training data set S’ containing new labeled vectors accord-
ing to Equation 2. We take S’ as classification data and
construct a SVM model that will assign either positive label
(z=41) or negative label (z2=-1) to all vectors Z; — Z;.

Thus, the task is to select the best function f* € F' that
minimizes a given loss function, given ranked instances, re-
sulting the ranking model of Ranking SVM.

For a more detailed description of learning ranking func-
tions using SVMs, the reader is referred to [4,17,21].

3.3.2 CBIR-GP: Learning using Genetic Program-
ming

Genetic Programming (GP) is an inductive learning
method introduced by Koza [23] as an extension to Ge-
netic Algorithms (GAs). It is a problem-solving system de-
signed following the principles of inheritance and evolution,
inspired by the idea of Natural Selection. The space of all
possible solutions to the problem is investigated using a set
of optimization techniques that imitate the theory of evolu-
tion.

In order to apply GP to solve a given problem, several key

components of a GP framework need to be defined. In our
application, we have modeled the “population” in evolution
as arithmetic combination functions (uniquely represented
as expression trees), whose non-leaf nodes are numerical op-
erators and the leaf node set is composed of the similarity
values obtained from different descriptors [7].

The essential GP components are mapped as follows:

e Terminals: Leaf nodes in the tree structure. Terminals
are the similarity functions of each descriptor.

e Functions: Non-leaf nodes used to combine the leaf
nodes. The following functions were used in our im-
plementation: +, X, /, —,log, exp. This function set is
widely used in common GP experiments and is suitable
to validate our ideas.

e Initial Population Generation: The initial set of
trees randomly generated by the ramped half-and-half
method [23].

e Fitness Function: The objective function GP aims to
optimize. A fitness function measures how effective
a combination function represented by an individual
tree is for ranking images. In our study, we use mean
average precision (MAP) as fitness function.

e Crossover: A genetic operator that exchanges subtrees
from two parents to form two new children. Its aim is
to improve the diversity as well as the genetic fitness of
the population. This process is shown in Figure 2(b).

e Reproduction: A genetic operator that copies the in-
dividuals with the best fitness values directly into
the population for the next generation without going
through the crossover operation.

e Mutation: A genetic operator that replaces a selected
individual’s subtree, whose root is a picked mutation
point, with a randomly generated subtree.

The GP evolution process starts with an initial popula-
tion of individuals, composed by terminals and functions.
Usually, the initial population is generated randomly. Each
individual denotes a solution to the examined problem and
is represented by a tree, as shown in Figure 2(a). To each
one of these individuals is associated a fitness value. This
value is determined by fitness function that calculates how
good the individual is. The individuals will evolve genera-
tion by generation through genetic operations such as repro-
duction, crossover, and mutation. Thus, for each generation,
after the genetic operations are applied, a new population
replaces the current one.

The process is repeated over many generations until the
termination criterion has been satisfied. This criterion can
be, for example, a maximum number of generations, or some
level of fitness to be reached.

The GP framework is an iterative process with a train-
ing and a validation phase, both needing a set of annotated
queries. In the training phase, the annotated set is used
to discover candidate individuals. The best ones are then
evaluated on the validation set, to select the individual that
presents the best performance in both sets. This validation
phase is used to avoid overfitting.
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Figure 2: CBIR-GP individuals (a) are similar-
ity functions (from potentially different descriptors)
combined by arithmetic operators; the Genetic Pro-
gramming scheme combines “material” from differ-
ent individuals in the population from one genera-
tion to another using, for example, a crossover op-
erations (b).

Please, refer to [2,7,8] for a more detailed description of
learning ranking functions and descriptor combining strate-
gies for content-based image retrieval using Genetic Pro-
gramming.

3.3.3 CBIR-AR: Learning using Association Rules

Association rules are patterns describing implications of
the form X — ), where we call X the antecedent of the
rule, and ) the consequent. The rule does not express a
classical logical implication where X necessarily entails ).
Instead it denotes the tendency of observing )} when X is
observed. Association rules have been originally conceived
for data mining [1] and have also been used for textual in-
formation retrieval [41].

In the context of leaning to rank images, we are inter-
ested in using the training set, to associate descriptor sim-
ilarity values calculated to relevance levels. The similar-
ity values are first discretized using the procedure proposed
in [9]. Then the rules become of the form the form X — r;,

where the antecedent of the rule is a set of similarity val-
ues (potentially coming from different descriptors) and the
consequent is a relevance level.

Two measures are used to estimate the quality of a rule:

e The support of X — r;, represented by o(X — r;), is
the fraction of examples in the training set containing
the feature-set X and relevance ;.

e The confidence of X — r;, represented by (X — r;),
is the conditional probability of r; given X'. The higher
confidence, the stronger is the association between X
and r;.

In order to avoid a combinatorial explosion while extract-
ing rules, a minimum support threshold, is employed.

In order to estimate the relevance of an image, it is nec-
essary to combine the predictions performed by different
rules [41]. Our strategy is to interpret each rule X — r; as
a vote given by X for relevance level r;. Votes have different
weights, depending on the confidence of the corresponding
rules The weighted votes for relevance r; are summed and
then averaged by the total number of rules predicting 7;, as
shown in Equation 3, where R is the set of rules used in the
voting process:

Z 0(X — 1)
X—r;ER
s(ri) = (3)
IR

Thus, the score associated with relevance r;, s(r;), is es-
sentially the average confidence associated with rules that
predict r;. Finally, the relevance of an image is estimated
by a linear combination of the normalized scores associated
with each relevance level (r; € {0,1}), as shown in Equa-

tion 4:

5(ri)
relevance = (ri X ———>—) (4)
iE%l} Z s(rj)

je{o,1}

The reader is referred to [41] for a more detailed descrip-
tion of the process of estimating relevance using association
rules.

4. EXPERIMENTAL EVALUATION

In this section we present the experimental results for the
evaluation of the proposed learning to rank algorithms in
terms of ranking performance. Our evaluation is based on
a comparison of the CBIR-SVM, CBIR-GP, CBIR-AR algo-
rithms.

We first present general information about how the exper-
iments were conducted (databases, evaluation metrics, pa-
rameters etc.), and then we present and discuss the results
obtained.

4.1 Image Databases

We have employed subsets from two large image databases
in our evaluation. The first database, Corel, was extracted
from a database containing 20,000 images from the Corel
GALLERY Magic - Stock Photo Library 2. Our subset is
composed by 3,906 images and 123 query images. There



are 85 classes of images and the number of images per class
varies from 7 to 98.

The second database, Caltech, contains 8,677 color images
extracted from the Caltech101 database [26]. Those images
are grouped into 101 classes (i.e., planes, ants, brains, cam-
eras etc.) and the number of images per class varies from 40
to 800. There are 122 query images.

In both databases, classes are mutually exclusive, i.e., an
image can be associated to only one class. An image is
considered relevant to a query image if both belong to the
same class.

For each database, a matrix of the similarity values be-
tween each pair of images has been computed, using each
one of the eighteen descriptors showed in Table 1.

Figure 3 shows the percentage of relevant images for each
query image used. This is related to the difficulty of image
retrieval on each database, since a query with too few poten-
tial answers is, all other things being equal, more challenging
to the CBIR system.

0.1

At each run, three folds are used as training set, one fold is
used as validation-set and the remaining fold as test-set.
Parameters for each learning algorithm were chosen using
the validation-set (i.e., the parameters that lead to the best
performance in the validation-set were used in the test-set),
and are shown in Tables 2 and 3. Exhaustive variations
of GP parameteres were performed in a small sample of the
training set in order to find the optimal combination of them.
However, because of the deviation among them has been
minimum, it was used the same configuration set in all folds.

Corel Caltech
Run | CBIR-AR CBIR-SVM | CBIR-AR CBIR-SVM
(Omin) ©) (omin) ©
1 0.0025 0.2000 0.0005 0.9000
2 0.0050 0.2000 0.0001 0.2000
3 0.0050 0.0900 0.0002 0.0900
4 0.0025 0.1000 0.0001 30.000
5 0.0075 10,000 0.0001 0.0900
Table 2: Parameters used on the CBIR-AR and

0.09

Corel
Caltech

CBIR-SVM algorithms, for each database.
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Figure 3: Distribution of relevant images, indicating
the expected abundance/scarsity of correct answers
for each query. This has an impact on the degree of
difficulty of the retrieval task (this distribution indi-
cates that the Caltech database is more challenging).

4.2 Evaluation Metrics

To evaluate the ranking performance of the algorithms,
we have used two metrics: precision (taken at a few topmost
positions), and MAP (Mean Average Precision, which gives
a summarized measure of the precision x recall curve).

While both measures tend to emphasize quality at the top
of the rank, the effect is less pronounced on MAP, which is
sensitive to the entire ranked list of images. The precision
measure is much more focused on the top of the ranked
list. For detailed discussion about the metrics, the reader is
referred to [27].

4.3 Setup

To evaluate the ranking performance of the algorithms, we
conducted five-fold cross validation. Thus, each database is
arranged in five folds, including training, validation and test.

GP Parameter | Value
Population 600
Generations 30
Crossover 0.85
Mutation 0.10
Reproduction 0.05
Tree Depth 8

Table 3: Parameters used for CBIR-GP for both
Corel and Caltech databases.

4.4 Results

We first report results obtained from evaluation of all de-
scriptors used in our experiments (Section 4.4.1). Next (Sec-
tion 4.4.2), we will discuss the results from a coarse grained
analysis, averaged by query, and by run. This analysis is
intended to give an overall picture concerning the ranking
performance of the algorithms. In section 4.4.3 we will dis-
cuss the results obtained using a finer grained analysis.

4.4.1 Evaluation of Image Descriptors

Table 4 shows the precision values for Corel database, con-
sidering eigthteen descriptors (those presented in Table 1).
As it can be observed, the BIC descriptor yields the best
results in terms of precision values for different numbers of
retrieved images. For Caltech database, similar results were
observed.

The results of the experiments using the BIC descriptor
was used to confirm that the combination of different de-
scriptors provides better results than the use of a single one.

442 Coarse Grained Analysis

Table 5 shows MAP values for Corel and Caltech
databases. The result for each run is obtained by averaging
partial results considering each query in the run. The final
result is obtained by averaging the five runs.

For the Corel database, CBIR-AR and CBIR-GP are
the best performers. On average, CBIR-AR and CBIR-



GP present similar performance, being superior than CBIR-
SVM and BIC. CBIR-AR showed improvements of about
4.2% and 21.0% when compared to CBIR-SVM and BIC,
respectively. CBIR-GP, in turn, showed improvements of
about 4.7% and 21.6%, when compared to CBIR-SVM and
BIC, respectively.

The same trend holds in the Caltech database. Again,
CBIR-AR and CBIR-GP present the best results on aver-
age. Specifically, for run 3, CBIR-AR and CBIR-SVM are
statistically tied. CBIR-AR showed improvements of about
14.3% and 24.0. CBIR-GP, in turn, showed improvements
of about 9.7% and 19.8%, when compared to CBIR-SVM
and BIC, respectively.

The next set of experiments evaluates the effectiveness of
CBIR-AR, CBIR-GP, CBIR-SVM, and BIC in terms of the
precision measures. Table 6 shows precision values obtained
for each algorithm.

In the Corel database, CBIR-AR showed the best rank-
ing performance at the first four positions of the ranking.
However, CBIR-GP showed a slightly better performance
at the final positions. For the Caltech database, CBIR-AR
presents the best ranking performance for all positions con-
sidering precision measure.

MAP results, which take into account the entire rank,
show a statistical tie between CBIR-AR and CBIR-GP, both
showing better results than CBIR-SVM. The precision re-
sults favor CBIR on the topmost (and most critical, from
the user point of view) positions of the rank. The single
descriptor retrieval (BIC) is almost always outperformed by
all other methods.

The significance of the results were confirmed by statisti-
cal tests. We have conducted two sets of significance tests
considering each database. The first set of significance tests
was carried on the average of the results for each query, while
the second considered the average of the five runs.

4.4.3 Fine Grained (Query-Level) Analysis

We were interested in studying the correlation between
learning algorithms, so that we could analyze the situations
in which one of the algorithms outperformed the other.

Figure 4 shows scatter plots of MAP values obtained by
different algorithms for each query. The coordinates associ-
ated with each point in one of the graphs are given by the
MAP values obtained by the two algorithms indicated in
the axes. For example, the point p; (labeled in the topmost
graph) represents a query in Corel database for which CBIR-
AR achieves a MAP value of 1.0 and CBIR-GP achieves a
MAP value of 0.10 (x-axis). Similarly, the point labeled p2
represents another query, where CBIR-AR achieves a MAP
of 0.01 and CBIR-GP achieves a MAP of 1.0.

As it can be seen, CBIR-GP and CBIR-SVM are strongly
correlated (correlation coeflicients are above 0.90), indicat-
ing that those algorithms tend to achieve similar ranking
performance in roughly the same queries. On the other
hand, the performance of CBIR-AR is little correlated with
the performances of the other two algorithms, showing that
it tends to perform well where the others perform badly and
vice-versa. This phenomenon is also observed in Caltech
database (correlation coefficients shown in Table 7).

A manual inspection of the queries revealed that, for
CBIR-GP and CBIR-SVM, the key property that leads to
a good ranking performance is the number of relevant im-
ages for each query. Specifically, CBIR-GP and CBIR-SVM

achieve higher MAP values in queries with several relevant
images, and lower MAP values in queries with few relevant
images. CBIR-AR, on the other hand, is less sensitive to
this property, being able to achieve good ranking perfor-
mance even for queries that have only few relevant images.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have evaluated three different machine
leaning algorithms for ranking images in CBIR systems:
CBIR-~-SVM (based on Support Vector Machines), CBIR-GP
(based on Genetic Programming) and CBIR-AR (based on
Association Rules). CBIR-AR is an original contribution.

We have shown that the learning algorithms, used to com-
bine evidence from multiple descriptors, largely outperform
the results obtained from the single best descriptor (BIC),
showing the advantage of the learning schemes.

Among the learning schemes, CBIR-AR and CBIR-GP
yield similar performances considering the whole ranking,
but CBIR-AR outperforms CBIR-GP on the topmost (and
most critical) positions of the rank. Both outperform CBIR-
SVM in all considered metrics.

The fine-grained analysis showed an interesting lack of
correlation between the quality of the results of CBIR-AR
and the other two schemes, which indicates the opportunity
to combine the schemes to obtain an even better ranking.
We are currently working on that direction.
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Descriptors @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 Avg
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Table 4: Precision values for Corel database. Best results are shown in bold.

Corel Caltech
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2 0.312 0.328 0.308 0.298 0.106 0.057 0.038 0.018

3 0.366 0.376 0.351 0.341 0.098 0.089 0.098 0.093
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Table 5: MAP values for Corel and Caltech databases. Best results, including statistical ties, are shown in
bold. The percentage values represent the relative gain between techniques.
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Table 6: Precision values for the Corel and Caltech databases. Best results, including statistical ties, are
shown in bold.
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Table 7: Correlation coefficients between M AP numbers for each query.
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Figure 4: Each graph shows a scatter plot of the
MAP values obtained for each query on two differ-
ent schemes. On top: CBIR-AR x CBIR-GP; on
middle CBIR-AR x CBIR-SVM; on bottom CBIR-
GP x CBIR-SVM. The correlation coefficient (CC)
is shown inside each graph.
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