An infrastructure to support choreographies in
interorganizational business processes

Alan Massaru Nakai
IC - Institute of Computing
UNICAMP - University of Campinas
13083-970, Campinas, SP, Brazil
alan.nakai@ic.unicamp.br

ABSTRACT

The main attractiveness of Web services is their capacity
to provide interoperability among heterogeneous distributed
systems. Increasingly, companies and organizations have
adopted Web services as a way to interoperate with their
business partners. In such a scenario, Web services chore-
ography can be applied in the specification of interorgani-
zational business processes. However, the dynamic nature
of business partnerships requires mechanisms for agile de-
signing and deploying of choreographies. In this paper, we
present an infrastructure that aims to address the above
concern. Our approach, which is based on WS-CDL, BPEL,
and UDDI standards, aims to reach flexibility by providing
mechanisms for sharing, finding and executing choreogra-
phies in a friendly manner for the user. We also present
a prototype implementation and its application in a supply
chain integration system.

Keywords
Web Services Choreographies, Interorganizational Business
Processes

1. INTRODUCTION

Web services are applications that are published, located
and invoked over the Web, using XML standards and Inter-
net protocols. The major attractiveness of this technology is
its capacity to provide interoperability among heterogeneous
distributed systems. Increasingly, companies and organiza-
tions have adopted Web services to interoperate with their
business partners. In this scenario, services are building
blocks that are used for the creation of interorganizational
business processes.

Web services-based business processes can be specified as
Web services choreographies, which are conversations among
multiple services that interact in a collaborative fashion to
solve a specific problem. We envision three central issues re-
lated to this approach. First, the business environment can
be very dynamic; factors such as consumer demand and sup-
plier capacity can lead to changes in partnerships. In conse-
quence, the mechanisms for specification of processes must
be flexible enough to accomplish these changes. Second,
choreography representations are not directly executable.
They need to be mapped to other representations to be exe-
cuted by specific infrastructures. Finally, partners may not
be known at specification time; it can be necessary to dis-
cover partners at execution time. In this paper, we present
an infrastructure that aims to address the above questions.

Edmundo Madeira
IC - Institute of Computing
UNICAMP - University of Campinas
13083-970, Campinas, SP, Brazil
edmundo@ic.unicamp.br

In our infrastructure, interorganizational business processes
are represented by WS-CDL (Web Services Choreography
Description Language) [10], which are performed by a set of
coordination managers that execute BPEL4WS (Business
Process Execution Language for Web Services) [1] composi-
tions. BPEL is used to represent the specific behavior of one
choreography partner and to integrate its public behavior
with its internal logic. The infrastructure comprises a WS-
CDL to BPEL translator that makes the generation of BPEL
code that is executed by coordination managers faster and
reduces the possibility of errors and inconsistencies in this
task. The specification and deployment of choreographies
are facilitated by a coordination management mechanism
that spares choreography designers from details of partner
binding and context control. The infrastructure allows auto-
matic discovery of partners combining the roles abstraction
provided by WS-CDL and the categorization mechanism of
UDDI (Universal Description, Discovery and Integration)
[9]. Choreography descriptions and their related roles are
identified by URIs, which are used for categorizing partners
in a UDDI registry. This idea, although simple, allows au-
tomatic discovery of partners that play specific roles using
standard UDDI.

The main contribution of our work is an infrastructure that
allows users to quickly find a choreography that matches
their necessities, and deploy and execute their portion of
the process, despite knowing or not their partners.

This paper is organized as follows. Section 2 presents some
related works. Section 3 describes the proposed infrastruc-
ture. Section 4 addresses some issues of a prototype im-
plementation and the use of our infrastructure in a supply
chain integration system. Finally, in Section 5, we present
conclusions and future works.

2. RELATED WORK

Examples of work related to choreography and composition
mapping are [8] and [5]. Medling and Hafner [8] present a
straight derivation of WS-CDL choreographies to BPEL pro-
cesses. They show the relationship among BPEL and WS-
CDL elements and argue about the derivation limitations.
Diaz et al. [5] proposes a mechanism for automatic genera-
tion of BPEL skeletons from WS-CDL choreographies. This
mechanism uses timed automatas as an intermediary model.
According to the authors, the use of timed automatas en-
ables verification and validation of the generated processes.



Choreography
Repository

Choreography Plan ‘ Om=
3

(WS-CDL) Generator

Plan Skeleton
(BPEL)

___
Participant
Repository

S}Qﬁ ‘ Coordination
Manager

Plan
(BPEL)

Figure 1: Infrastructure overview.

Chung et al. [4] present the WSCPC (Web Service oriented
Collaborative Product Commerce), an architecture for busi-
ness process management based on Web services orchestra-
tions. This architecture represents business processes using
a specific grammatic. The grammatic allows to specify task’s
dependences, inputs, and outputs. The architecture pro-
vides mechanisms to discover services, bind them to tasks,
and coordinate them.

Caituiro-Monge and Rodriguez-Martinez[3] and Jung et al.
[6] present solutions based on Web services choreography for
E-Government and business processes, respectively. Caituiro-
Monge [3] introduces a framework for Web services collab-
oration in E-Government. This framework includes control
data in an XML document, which is attached to service re-
quests and partial results. These control data indicate the
next Web service to be invoked, the destination of partial
data and the way that partial data should be processed.
Jung [6] proposes a methodology for business process chore-
ography that incorporates existing workflows into interorga-
nizational business processes. This methodology is based on
an architecture that uses an interface protocol which allows
interoperability between business partner’s internal work-
flows and external business logic.

3. INFRASTRUCTURE

This section presents the proposed infrastructure. Section 3.1
introduces the choreography representations adopted by our
infrastructure. Section 3.2 shows an overview of the infras-
tructure. Sections 3.3 addresses the mechanism for resolving
partners and finally, in Section 3.4 we present the coordina-
tion management provided by the infrastructure.

3.1 Choreography Representations
Our infrastructure is based on two levels of choreography
representations:

e Global view: it is a document that defines the role
of each business partner in the context of a business
process. It describes, in a global point of view, the
interactions among partners, the conditions for inter-
actions to happen and the set of data exchanged during
the collaboration. We have adopted WS-CDL for rep-
resenting global views. Each global view is assumed to
be uniquely identified by a URI (choreographyID). In
the same way, each role that is defined in the global
view is uniquely identified by a URI (roleID) in the
context of that global view;

e Coordination plans: Each coordination plan describes
the individual behavior of one of the roles defined in a
global view. A coordination plan is composed of a set
of instructions that trigger operation invocations from
other partners, provide operations to other partners
and control the flow of actions of the related partner.
Besides, the coordination plan integrates the external
logic defined by a global view with the internal logic
of an individual partner. We have adopted BPEL for
representing coordination plans.

The rules and constraints defined in a global view enable
an organization to design a coordination plan that reflects
its behavior in the correspondent business process. A global
view ensures that coordination plans for distinct roles, gen-
erated from the same global view, are interoperable. How-
ever, global views do not define a partner’s specific internal
logic. So, an organization that wants to play a role in a
business process described by a global view must generate a
coordination plan skeleton from that global view and then
customize it, including organization’s internal logic.

3.2 Overview

Our infrastructure is showed in Figure 1. It is composed of
four elements: the choreography repository, the plan gener-
ator, the coordination manager, and the participant reposi-
tory.

The choreography repository stores and shares choreography
descriptions. It allows users to publish and discover choreog-
raphy descriptions that fulfills their business requirements.
Any organization that wants to participate in a choreog-
raphy can access a choreography repository to obtain the
corresponding description. Such a description is used as
the input of a plan generator that creates a coordination
plan skeleton. If required, a programmer can customize the
skeleton including the organization’s internal logic. Each
generated plan implements the logic needed for playing a
role specified by the global view.

Since the coordination plan is generated, it can be inter-
preted and executed by a coordination manager. The co-
ordination manager is also responsible for performing the
binding of choreography partners. The binding of a partner
encompasses the use of a UDDI-based participant repository.
The participant repository allows coordination managers (i)
to discover a coordination manager that is able to perform
a determined choreography role or (ii) to resolve the end-
point reference of a coordination manager that is already



Order transport

Figure 2: Example of a simplified choreography for
raw material supplying.

performing such a role.

To illustrate the use of our infrastructure, consider a sim-
ple scenario: a manufactory M needs to implant a business
process to order raw material. Therefore, M searches in a
choreography repository for a global view that accomplishes
its requirements. Assume that M chose the choreography
described in Figure 2.

The choreography example defines three roles: client, sup-
plier, and transport. The client partner invokes a specific
Web service operation to order raw material from supplier.
Next, client orders transport service from transport. To per-
form its portion of the process, transport needs to ask sup-
plier for load details. From the choreography global view, M
generates the coordination plan (plan-client) for role client
and deploys this plan in its coordination manager.

To execute plan-client, M’s coordination manager interacts
with a participant repository to discover partners that are
able to execute coordination plans relative to roles supplier
and transport — in fact, partner binding does not need neces-
sarily to be done through a participant repository; we detail
binding issues in later section. After having discovered ap-
propriate partners (consider S and T for roles supplier and
transport, respectively), M’s coordination manager can in-
voke their operations, according to constraints defined by
its plan. Partner T’s coordination manager, in its turn,
needs to interact with the participant repository to obtain
the endpoint reference of the specific partner that is playing
the supplier role in the current instance of the choreography
— in the case, S. Figure 3 shows the choreography execution
in a high level.

3.3 Resolving Partners

Our infrastructure allows a choreography participant to re-
solve partners at execution time with small effort of chore-
ography designers. Global views and coordination plans can
be designed in a partner role level, in spite of who will play
each role. The logic for resolving partner’s endpoint ref-
erences is implemented by the coordination manager and is
almost transparent for designers. The coordination manager
can obtain a partner endpoint reference by three ways:

e Automatic partner discovery: the coordination man-
ager searches for partners in a participant repository
using the identifier of the role (choreographyld + roleld)
the partner must be able to play (e.g. interactions in-
volving partner M in Figure 3). The participant repos-
itory returns a list of possible partners and the coor-
dination manager chooses one by consulting a human

Partner S

BPEL

plan_supplier

Discover transport

Discover supplier

Ask for
q — load details
[ .- (3 »| Participant :
I repository
Internal logic Discover
supplier

I Partner M
B 4=m | BPEL
BPEL Order transport
y I plan_transport
plan_client

Internal logic

Partner T

Figure 3: Example execution.

user or by using a preestablished criterion. Automatic
partner discovery should be used when, in the chore-
ography execution, a partner is not previously known
and should be initiated by the one that is performing
the search.

e Automatic instance discovery: the coordination man-
ager searches in a participant repository for the partner
that is already playing a role in a specific choreography
instance (e.g. interaction among partners 7 and S in
Figure 3). The key used for searching is the combina-
tion of the identifiers of the role and the choreography
instance. Automatic instance discovery should be used
when, in the choreography execution, a partner is not
previously known and is already initiated.

e Static addressing: the endpoint reference of the part-
ner is defined at deployment time of the coordination
plan. Static addressing should be used when the part-
ner is known before the choreography execution.

The coordination manager maintains a configuration file for
each coordination plan that it is able to execute. This con-
figuration file, which is created by the plan designer, defines
the form for resolving the endpoint reference for each part-
ner.

We have specified the participant repository using UDDI.
Each business partner registers a uddi:businessEntity® ele-
ment in the UDDI registry. This element presents partner’s
information, such as description and contacts. UDDI catego-
rization mechanism is used to associate partners and roles.
Uddi:businessEntity elements are categorized according to
the identifier of the roles that the partner can play. Auto-
matic partner discovery is enabled through the find_business
operation, provided by the UDDI inquiry API, using the role
identifier as category.

The uddi:businessService is used to represent an instance of
the role that is executing and holds the partner endpoint ref-
erence. When a coordination manager starts a coordination

'We use the prefix uddi to denote UDDI elements.



plan, a new uddi:businessService is created in order to rep-
resent the instance of that plan. The uddi:businessService
is categorized according to the identifier of the role it is
related to and the identifier of the choreography instance.
Automatic instance discovery is enabled by find_service and
find_binding operations, provided by the UDDI inquiry API,
using identifiers of instance and role as categories.

3.4 Coordination Management

An important issue when executing choreographies is to pre-
serve the context of choreography instances to ensure that
messages arrive to the right instances of coordination plans.
Coordination managers provide a coordination management
abstraction that controls context, in a level that is hidden
from designers. It means that choreography designers can
design global views and coordination plans without concern-
ing about context control.

Interactions between two coordination managers are pre-
ceded by a connection phase. In this phase, coordination
managers agree on the choreography to be followed, the role
to be played by each one, and the context identifier that dis-
tinguishes the choreography instance. The connection phase
is initiated when a coordination plan instance issues a mes-
sage that must be sent to a disconnected partner. To connect
to a partner, the coordination manager resolves the partner
endpoint reference (as shown in Section 3.3), sends it a con-
nection proposal and waits for a connection confirmation. If
the connection is refused, the coordination module throws
an exception message.

When the Coordination Manager receives a connection pro-
posal, it must be validated. A connection proposal may
be invalidated due to two reasons. First, the coordination
manager may be unable to execute the appropriate coordi-
nation plan in order to play the destination role. Second, an
identical connection may be already active. In the future,
we intend to add authentication, authorization, and security
mechanisms in the connection validation.

If the connection proposal is validated, the coordination
manager checks if the appropriate coordination plan is al-
ready in execution. If the Coordination Plan is not execut-
ing, the coordination manager starts it and registers the plan
instance in the participant repository. Next, a confirmation
message is sent back to the coordination manager that has
requested the connection.

All application messages — those exchanged by coordination
plan instances — carry, in their headers, data used in context
control and message delivery. Such data includes identifiers
for: choreography (ChoreographyID), choreography instance
(CIID), sender partner (SRID - Sender roleID), and des-
tination partner (DRID - Destination roleID). These data
uniquely identify a connection between two coordination
managers. Through them, the sender coordination manager
can retrieve the endpoint reference of the destination one
from a table of connections. In other side, the destination
coordination manager can deliver the message to the right
coordination plan instance.

Figure 3.4 shows the coordination manager architecture. It
is composed of two main components: the execution engine

Coordination Manager

- Partner Coordination
M m Manager

-

-

Human
User

Participant
Management Module Repository
x Internal
Web Services

{ Execution Englne

CM Interface

£])

Coordination Plans

Figure 4: Coordination Manager Interface

and the management module. The execution engine inter-
prets and executes coordination plans. It issues messages
to the management module and processes messages that are
delivered by it, according to the plan flow control. The
execution engine can execute more than one instance of a
coordination plan simultaneously. Moreover, it can execute
distinct coordination plans simultaneously.

The management module is responsible for the interaction
with other coordination managers, participant repositories,
and Web services that represent the internal logic of the or-
ganization. The management module implements the logic
for resolving partner endpoint references, managing connec-
tions, forwarding messages that are generated by the BPEL
engine to destination partners, and delivering messages that
are received from partners.

In addition, the management module provides an interface
for human user interaction. This interface is useful when,
during a coordination plan execution, some decisions must
be taken by human users. For instance, an exception mes-
sage received as response to a Web service request can trigger
an alarm. This alarm could ask a human actor whether the
coordination plan execution should continue or stop.

The user interface also allows human users to request con-
trol operations. We have specified two control operations:
getStatus, which returns the execution status of a coordina-
tion plan to the user, and abort, which forces coordination
plan termination.

4. PROTOTYPE IMPLEMENTATION

In order to validate our infrastructure, we have implemented
a prototype. In the following, we present some issues about
our implementation experience:

Coordination manager: we have used a conventional BPEL
engine? as the execution engine. For this reason, it was nec-
essary to specify a basic structure that all coordination plans
must follow to provide a specific interface for the manage-
ment module. The normal flow of the coordination plan
is initiated when the management module invokes an Eze-
cutePlan operation. After FxecutePlan response, the spe-
cific logic of a choreography role is placed. This section of
code may be customized by a coordination plan designer.

2 ActiveBpel, available in http://www.activebpel.org/.



Table 1: Main rules for WS-CDL/BPEL elements

mapping.
WS-CDL Element BPEL Mapping
cdl:variable bpel:variable

cdl:getVariable
cdl:globalizedTrigger
cdl:sequence

bpel:getVariableData
Subexpression related to the specific role
bpel:sequence

cdl:parallel bpel:flow

cdl:choice bpel:switch/bpel.cas

cdl:workunit Combination of bpel:while and bpel:switch/bpel:case
cdl:silentAction bpel:empty

cdl:assign bpel:assign

cdl:interaction Combination of bpel:invoke and bpel:receive

The normal flow ends when the BPEL engine reports termi-
nation by a PlanConclusion operation request. The control
operations (GetStatus and Abort) are specified in the skele-
ton as BPEL event handlers. The basic structure also defines
a default partnerLink® element, which represents the link
between the execution engine and the management module,
and a default correlationSet?, which enables the composi-
tion engine to use message context data in the context con-
trol. The management module was implemented as a Java
servlet to receive and respond SOAP messages over HTTP.
SOAP processing was implemented using JAXM (Java API
for XML Processing). Data persistence was made by a Post-
gres database.

Participant repository: we have implemented it as a sim-
ple Web service that is able to register and discover endpoint
references. We have implemented only the operations that
are needed to test coordination manager functionalities.

Plan Generator: we have specified a set of rules for trans-
lating WS-CDL global views to BPEL coordination plans.
The central idea of this translation is to generate a coordi-
nation plan skeleton for each role defined in the global view.
The skeleton must follow the basic structure mentioned bel-
low. After that, for each WS-CDL element that is related to
a specific role, a BPEL mapping is added in the correspon-
dent coordination plan. Table 1 summarizes the main rules
for mapping WS-CDL elements to BPEL elements.

We have adopted some restrictions when using WS-CDL lan-
guage in order to adjust it to our needs. For example, in a
WS-CDL choreography, a role is specified as a set of be-
haviors. To simplify the translation, we have limited in one
the number of behaviors of a role. This limitation does not
affect our model, because a coordination manager can play
more than one role. It is equivalent to play a single role
with multiple behaviors. Another restriction is the “elimi-
nation” of the WS-CDL channelType element. This element
defines the endpoint of a choreography partner, the context
information used in its message exchanges and some channel
constraints. In our architecture, endpoint and context infor-
mation are implicitly dealt by the coordination manager.

3PartnerLink: BPEL element that represents a relationship
among partners.

4CorrelationSet: BPEL element that defines the fields
within a message that must be used as the key of context
control

Choreography repository: it can be implemented as a
Web site with information and links for each choreography
description. However, we are working in a mechanism based
on semantic information to facilitate to find the choreogra-
phy description.

4.1 Using in a Supply Chain Integration Sys-

tem
Our infrastructure has been developed inside a larger project
that aims to provide an architecture for supply chain integra-
tion [2, 7]. This architecture defines a set of components that
treat supply chain management issues, such as coordination
of activities, contract negotiation, and product traceability.

The coordination manager is the component that is responsi-
ble for coordinating supply chain activities. These activities
include business activities, such as purchase requests and
invoice emissions, and also management activities, such as
the initiation of other architecture components. All activ-
ities are triggered by Web services invocations, which are
specified by coordination plans.

Other components are: the negotiation manager, which is
responsible for negotiating business contracts whit partners,
the summary manager, which manages the supply chain
traceability, and the regulation manager, which aims to as-
sure that supply chain regulations are maintained.

In order to illustrate the use of our infrastructure in the sup-
ply chain integration system, we present, in this section, a
simple case study based on the example shown in Section 3.2.
Let us consider, however, that client quotes prices for raw
material at two suppliers and requests a purchase order from
the one with the cheaper offer. Figure 5(a) shows a global
view for this scenario, represented in pseudo-WS-CDL nota-
tion. Lines 1 to 7 define two interactions that specify quote
requests from client to suppliers. The workunits at lines 8
to 13 compare the obtained quotes so that client can invoke
the purchaseOrder operation of the cheaper supplier. Lines
14 and 15 define the invocation of the transportOrder op-
eration from client to transport. Finally, the workunits at
lines 16 to 23 define the logic needed for transport to re-
solve whether it invokes the getLoadDetails operation from
supplierl or supplier2.

Figure 5(b) presents the coordination plan, generated from
the global view of Figure 5(a), for the client role. In this
plan, which is represented in pseudo-BPEL notation, the
highlighted code is related to the client internal logic. The
switch/case construction at lines 7 to 11 adds the logic to re-
quest the negotiation manager to negotiate a contract with
supplierl. If the negotiation manager successfully completes
the negotiation, client proceeds the transaction and invokes
the purchaseOrder operation from supplier!. If the negoti-
ation fails, client terminates the plan execution. The sup-
plier2’s equivalent code was omitted for simplicity. The re-
quest at line 14 asks the summary manager to register the
completed transaction in order to enable the traceability of
the purchased raw material.

S. CONCLUSION



1. parallel {

2. interaction{

3. exchange (C, S1, getQuote)

4. exchange (S1, C, quotel)}

5 interaction{

6. exchange (C, S2, getquote)

7. exchante (S2, C, quote2)}}

8. workunit (quotel <= quote2) {

9. interaction{

10. exchange (C, S1, purchaseOrder) }}
11. workunit (quotel > quote2) {

12. interaction({

13. exchange (C, S2, purchaseOrder) }}
14. interaction{

15. exchange (C, T, transportOrder)}
16. workunit (transportOrder.S == 'S1') {
17. interaction{

18. exchange (T, S1, getLoadDeatails)
19. exchange (S1, T, loadDetails)}}
20. workunit (transportOrder.S == 'S2"') {
21. interaction({
22. exchange (T, S2, getLoadDeatails)
23. exchange (S2, T, loadDetails)}}}

®doU s WN P

. request (T, transportOrder)
. request (SM, recordTransaction)

flow {
request (S1, getQuote, quotel)
request (S2, getQuote, quote2)}

switch{
case (quotel<=quote2) {
request (NM, startNegotiation, res)
switch{
case(res = 'ok') {
request (S1, purchaseOrder) }
case(res = 'failed'} {
terminate}}
case (quotel>quote2) {...}}

(b)

C: Client - S1: supplier1 - S2: supplier2 - T: Transport
NM: Negotiation Manager — SM: Summary Manager

(a)

Figure 5: (a) Case study global view (pseudo-WS-CDL). (b) Coordination plan for the client.

We believe that an important issue in SOA environments
is the flexibility to agilely adapt to business changes. Our
solution aims to reach such flexibility by providing mecha-
nisms for sharing and finding choreography descriptions and
deploying and executing them with small programming ef-
fort. The prototype implementation shows our infrastruc-
ture’s feasibility.

A contribution of our infrastructure is a mechanism based
on standard UDDI that allows automatic partner discovery.
This feature allows business processes to be executed by dis-
tinct configurations of partners. Another contribution is the
separation between business logic and coordination manage-
ment. Choreography designers do not need to worry about
the way context control will be done or which choreography
partners are connected to the system. This transparency
facilitates the choreography design.

Our infrastructure also facilitates the deployment and exe-
cution of choreographies. The plan generator makes faster
the generation of coordination plans; besides, it reduces the
possibility of errors and inconsistences in this task.

There are some issues that will be addressed as future work:
(1) the use of semantics for choreography descriptions search-
ing; (ii) the improvement of the coordination manager ar-
chitecture to deal with partner authentication, security and
authorization issues; and (iii) the provision of fault toler-
ance.

6. ACKNOWLEDGMENTS

The authors would like to thank CAPES, FAPESP, and
CNPq WEBMaps and AgroFlow projects for the financial
support.

7. REFERENCES
[1] T. Andrews et al. Business Process Execution
Language for Web Services - version 1.1, May 2003.
[2] E. Bacarin, C. Medeiros, and E. Madeira. A
Collaborative Model for Agricultural Supply Chains.

In R. Meersman and Z. Tari, editors,
CooplS/DOA/ODBASE 2004, LNCS 3290, pages
319-336. Springer-Verlag, 2004.

[3] H. Caituiro-Monge and M. Rodriguez-Martinez. Net
Traveler: A Framework for Autonomic Web Services
Collaboration, Orchestration and Choreography in
E-Government Information Systems. In ICWS "04:
Proceedings of the IEEE International Conference on
Web Services (ICWS’04), pages 2-10, Washington,
DC, USA, 2004. IEEE Computer Society.

[4] M. J. Chung et al. A framework for collaborative
product commerce using web services. In Proceedings
of the IEEFE International Conference on Web Services
(ICWS’04), pages 52—60, 2004.

[5] G. Diaz, V. V. M. E. Cambronero, J. J. Pardo, and
F. Cuartero. Automatic generation of correct web
services choreographies and orchestrations with model
checking techniques. In Telecommunications, 2006.
AICT-ICIW °06. International Conference on Internet
and Web Applications and Services/Advanced
International Conference on, pages 186192, 2006.

[6] J. Jung, W. Hur, S.-H. Kang, and H. Kim. Business
Process Choreography for B2B Collaboration. IEEE
Internet Computing, 8(1):37-45, 2004.

[7] A. A. Kondo et al. Web services-based traceability in
food supply chains. In Proceedings of the 3rd
International Conference on Web Information Systems
and Technologies, 2007.

[8] J. Mendling and M. Hafner. From inter-organizational
workflows to process execution: Generating BPEL
from WS-CDL. Proceedings of OTM 2005 Workshops.
Lecture Notes in Computer Science, 3762:506—-515,
2005.

[9] OASIS. Uddi version 3.0.2, 2004.

http://www.oasis-open.org/committees/uddi-

spec/doc/spec/v3/uddi-v3.0.2-20041019.htm.

W3C. Web Services Choreography Description

Language version 1.0, November 2005.

(10]



