
Accessing and Processing Sensing Data

Gilberto Zonta Pastorello Jr and Claudia Bauzer Medeiros
IC–UNICAMP — Av Albert Einstein, 1251 – Campinas-SP – Brasil

{gilberto,cmbm}@ic.unicamp.br

André Santanchè
DCEC–UNIFACS — Av Cardeal da Silva, 747 – Salvador-BA – Brazil

santanche@unifacs.br

Abstract

Scientific models are increasingly dependent on pro-
cessing large volumes of streamed sensing data from
a wide range of sensors, from ground based to satel-
lite embarked infrareds. The proliferation, variety and
ubiquity of those devices have added new dimensions
to the problem of data handling in computational mod-
els. This raises several issues, one of which – provid-
ing means to access and process these data – is tackled
by this paper. Our solution involves the design and
implementation of a framework for sensor data man-
agement, which relies on a specific component technol-
ogy – Digital Content Component (DCC). DCCs homo-
geneously encapsulate individual sensors, sensor net-
works and sensor data archival files. They also imple-
ment facilities for controlling data production, integra-
tion and publication. As a result, developers need not
concern themselves with sensor particularities, dealing
instead with uniform interfaces to access data, regard-
less of the nature of the data providers.

1 Introduction

Advances in sensor networks have leveraged research
in computational models, which can now rely on more
kinds of data on real world phenomena. This, how-
ever, brings new challenges to computational science.
From the data perspective, challenges include deal-
ing with integration of heterogeneous sources, sam-
pling rates, data redundancy, sensor data querying, fu-
sion and summarization, processing of stream real-time
data, all subject to node, sensor and communication
failures. From the network point-of-view, challenges
include power management, communication protocols,
physical device management, or dynamic reconfigura-

tion of nodes. This paper is concerned with the data
perspective - i.e., how to offer applications that imple-
ment the models transparently access sensor data, re-
gardless of sensor physical characteristics, specific mid-
dleware programming environments, and data publica-
tion formats.

Middleware-like solutions, e.g. [8, 11, 17], are fre-
quently proposed to enable applications to access the
sensing data sources – usually through the offer of
APIs. If, however, the models require new data pro-
cessing functions, it is necessary to adapt or extend the
middleware. Moreover, if extra data sources are re-
quired by the models, the applications must cope with
the problem of complying with additional middleware
or data formats.

To solve these problems, our approach supports uni-
form encapsulation of sensors and sensing data. It
is based on a special kind of component paradigm –
Digital Content Components (DCC) [15] – which pro-
vides mechanisms for uniformly encapsulating both
data and/or data processing units, and for compos-
ing them into more complex elements, thereby helping
solve interoperability issues. Applications that encode
the models thus have homogeneous access to heteroge-
neous sensing devices, eliminating the need for appli-
cation developers to concern themselves with whether
data comes from static files or dynamic sources, as well
as device-level implementation issues.

To achieve these goals, we had to create a new fam-
ily of DCCs, geared towards stream and sensing data
sources. As will be seen, this involved dealing with sev-
eral challenges, such as how to encapsulate data sources
with dynamic and/or context-sensitive behavior. Yet
another obstacle concerned the need for implementing
device-dependent drivers, to offer application develop-
ers uniform access to sensor generated data.

We illustrate our solution with a real case study of



modeling environmental conditions for agricultural (i)
planning and (ii) monitoring [3]. Planning (i) involves
developing sophisticated models which run on hetero-
geneous files containing sensor-produced data to sim-
ulate crop growth in a given region. The main data
sources are satellite-based sensors and spatially dis-
tributed networks of ground-based sensors. Once the
crop is planted, monitoring (ii) concerns re-running and
calibrating the models, for continuous use of the same
kinds of sensing data sources, now at real time, at dif-
ferent sampling time frames, to capture and control
crop response to changes. While data sets in phase (i)
are static, phase (ii) adds the issues of real-time data
capture and management. Our framework, as will be
seen, provides a uniform solution to both phases.

The paper is organized as follows. Section 2 presents
basic concepts and an overview of our proposal. Sec-
tion 3 shows our solution to encapsulate data sources,
software and sensor data within DCCs. Section 4 con-
cerns preliminary implementation results. Section 5
discusses related work. Section 6 presents conclusions
and ongoing work.

2 Solution Basics

2.1 Digital Content Components

A Digital Content Component (DCC) is a unit of
content and/or process reuse, which can be employed
to design complex digital artifacts [15]. From a high
level point of view, a DCC can be seen as digital con-
tent (data or software) encapsulated into a semantic
description structure. As shown in the example in Fig-
ure 1, it is comprised of four sections:
(i) the content itself (data or code, or another DCC), in
its original format. In the example, a communication
driver for a MICAz1 sensor;
(ii) the declaration, in XML, of an organization struc-
ture that defines how DCC internal elements relate to
each other (here, delimitating driver software);
(iii) specification of an interface, using adapted versions
of WSDL and OWL-S – in the example, the getTemp
and subscribeGetTemp operations;
(iv) metadata to describe functionality, applicability,
etc., using OWL (in the example, the DCC is declared
as belonging to the temperatureSensorDCC class).
Interface and metadata are linked to ontology terms
– e.g., the getTemp operation has an input parameter
that is a timestamp, as defined by the “Time” concept
of NASA’s SWEET [13] ontology.

There are two kinds of DCC – process and passive.
A ProcessDCC encapsulates any kind of process de-

1www.xbow.com/Products/productsdetails.aspx?sid=101

Figure 1. Structure of a SingleSensorDCC

scription that can be executed by a computer (e.g., soft-
ware, sequences of instructions or plans). Their inter-
faces declare operations they can execute. Non-process
DCCs, named PassiveDCCs, consist of any other kind
of content (e.g., a text or video file). We refer the
reader to [14,15] for details on DCCs.

2.2 Overview of Our Solution

The usual approach to access sensor generated data
is either to communicate with the sensor directly in its
specific protocols or to use a wrapper implemented for
each type of sensor. We propose instead to encapsu-
late all the data production particularities behind new
kinds of DCCs. Besides providing data access, such
DCCs can aggregate several functionalities – e.g., data
delivery rate, stream data control, data annotation.

Figure 2. DCC taxonomy for sensor sources

Figure 2, gives a functional overview, summarizing
our new DCC types. On the left, there are Process-



DCCs proposed to encapsulate data sources and data
manipulation software; at the right side are the Pas-
siveDCCs proposed to encapsulate data itself.

The diamond ended lines represent the subclass re-
lationship, i.e., a SensorDataDCC is a PassiveDCC.
From the process point of view, there are two main
branches: DataSourceDCC and ManagementDCC. The
former is used for data source encapsulation – see Sec-
tion 3.1; and the latter is the basis for encapsulating
data manipulation functions, discussed in Section 3.2.
As will be seen, data sources can be dynamic or stable.
A SensorDataDCC (Section 3.3) encapsulates sensor
generated data. Data encapsulation consists of wrap-
ping data with accessibility rules, descriptive metadata
and structure. Data, devices and software are accessed
through the same interface scheme, the major advan-
tage of adopting a DCC framework.

Figure 3. Management Layers

Figure 3 gives an architectural overview of our so-
lution, using the DCC types from Figure 2. It shows
the encapsulation of data in PassiveDCCs and of data
sources and data management functions in Process-
DCCs. Continuous lines indicate data flow between
the elements (e.g., from B to Y), whereas dotted lines
indicate reference to data sources (e.g., from A to D
to Y). The bottom Layer contains the data sources:
sensors (and their auxiliary devices and communica-
tion features), DBMS and other kinds of data sources
(e.g., repositories of text, satellite images, historical
time series). The second Layer contains the DCCs that
provide access to data (e.g., SensorDCCs A and B,
DynamicDataSourceDCC C, and SensorDataDCCs D
and E), which play a role comparable to that of a me-
diator to access the data. The third Layer has data or-
ganization and centralization features (pre-processing,
summarization, fusion). Applications, which imple-
ment the computational models, are in Layer four and
access raw data from Layer two or pre-processed data
from Layer three.

3 Encapsulation of Resources

This section explains how we met the challenges in-
volved in the encapsulation of three kinds of resources:
data sources (Section 3.1), manipulation software (Sec-
tion 3.2), and sensor data (Section 3.3).

3.1 Data Sources

We consider two kinds of data sources: stable and
dynamic. Stable data sources are characterized by
eventual updates, being used here to supply compu-
tational models with context data, e.g., the spatial lo-
cation of sensors’ readings (including geographic coor-
dinates or region names), data quality parameters, etc.
These sources can also supply metadata, depending on
the application. There are many implementations of
these sources, including DBMS, XML files, or even web
services.

Encapsulation of stable sensor-related data sources
into ProcessDCCs is a straightforward application of
DCC techniques – see [14, 15]. Sensor-related chal-
lenges appear when dynamic access is considered.

Dynamic data sources go through systematic up-
dates. Two kinds of dynamic data sources are con-
sidered here: (i) sensing devices and (ii) subscribable
services. Sensing devices are encapsulated within a
SensorDCC, a specialization of a ProcessDCC. Sensor
encapsulation is further explored in below.

Subscribable services provide data under some sort
of agreement (e.g., upon request). An example is a
weather forecasting service which produces updates on
the rainfall forecast every hour, or when some thresh-
old is crossed. These services are encapsulated into Dy-
namicDataSourceDCCs, which offer access to the same
functions of the service plus simulation of stable data
source functions. Following the previous example, a
DynamicDataSourceDCC encapsulating a rainfall fore-
cast service can generate a notification adapted to each
forecast event received. It can also offer, for instance,
a summary of the forecasts for a period.

When a sensor is encapsulated within a DCC, its
features are exposed through the uniform interface pro-
vided by the DCC. The major advantage of this ap-
proach is the separation of concerns it provides. On
the one hand, there is the problem of developing sen-
sor device drivers, including here other sources of sens-
ing data, such as other middlewares (see Section 3.2.1).
On the other hand, using DCCs, application changes
do not require driver modification, and sensor (or mid-
dleware) changes do not affect applications.

Since each kind of sensing device has a specialized
format for outputting data, different drivers must be



implemented for distinct platforms, resulting in differ-
ent SensorDCCs. As an example, a specific SensorDCC
implementation had to be built to access TelosB2 de-
vices (sensor network enabled device). SensorDCCs are
similar to proxies to access the data. They allow creat-
ing a network of heterogeneous sensors as if they were
homogeneous – e.g., in a crop monitoring model, a net-
work with both rainfall and temperature sensors.

If one single sensor is encapsulated, we call it a Sin-
gleSensorDCC; if a sensor network is encapsulated, we
have a SensorNetworkDCC. Both are SensorDCCs. A
SensorNetworkDCC is responsible for all the sensors
it encapsulates. Any message sent to this DCC is re-
layed to the encapsulated sensors, and it controls the
forwarding of the data generated by its sensors. The
sensors are not aware of the existence of the DCCs,
thus suffering no interference in their functioning.

Figure 1 shows an example of a SingleSensorDCC
we implemented, with details omitted. The structure
section describes the organization of a software module
that communicates with the sensor to access its data,
i.e., it is the driver that establishes the communica-
tion between the SensorDCC and the sensor. Here, the
driver implements a Java communication interface with
a MICAz mote coupled with a temperature sensor. The
getTemp operation receives a time interval in which
the readings (floating-point numbers representing Cel-
sius temperatures) will be returned to the caller. The
second operation (subscribeGetTemp) receives the fre-
quency in which it should pack and send the polled
sensor data, until the (unsubscribeGetTemp) opera-
tion is invoked. The metadata section describes the
SensorDCC: sensorType indicates the type of sensing
device that is encapsulated within the DCC, in this case
a TemperatureSensorDCC; phenomena indicates which
kind of measure the produced data represents; cover-
age shows in which region the sensor is acting; finally,
location specifies where the sensor is located.

SensorNetworkDCC allow representing an entire
network within one DCC. The schematics are similar
to the SingleSensorDCC, adapting the structure part
to take care of multiple sensors. An external request
sent to the DCC (e.g., getTemp) is translated into a
request that is retransmitted to the sensors (through
the wireless network) by the drivers. The query can
be answered by every sensor individually or with data
condensed within the network. The results make the in-
verse flow path. A SensorNetworkDCC is particularly
valuable in networks that do not univocally identify
each sensor, or in situations where it is not interesting
or feasible to control each sensor node individually.

A sensor network can actually be encapsulated

2www.xbow.com/Products/productdetails.aspx?sid=252

through its access point or base station. A DCC that
encapsulates an access point (AccessPointDCC) creates
an interface to the entire network. Through these in-
terfaces, the applications can query the sensor network.

3.2 Encapsulation of Data Manipulation
Functions

Each SensorDCC can offer individual management
methods in its interface – e.g., setting and reconfiguring
data generation parameters. However, controlling each
SensorDCC on an individual basis may not be feasible.
Higher level management layers can be created in order
to further facilitate the management of data production
and annotation. We thus introduce a specialized DCC,
called ManagementDCC, which aggregates operations
whose implementation is based on the individual man-
agement operations of each SensorDCC.

3.2.1 Processing Data

The processing of sensor data requires several special-
ized functions – e.g., summarization. We encapsulate
such functionalities within ProcessingDCCs, a special-
ization of ManagementDCC – located in Layer 3 (cen-
tralization) of Figure 3. There are two kinds of Pro-
cessingDCCs: BasicProcessingDCCs, which are im-
plemented to directly compute functions on sensor-
produced data, and BridgeDCCs, which serve as a con-
nection point to sensor middlewares.

The former include functionalities such as data fil-
tering, clustering and classification, application of as-
sociation rules, multi-source data fusion, data summa-
rization, among others. They, can be combined to ob-
tain more complex processes.

BridgeDCC exist in order to take advantage of the
many solutions already implemented in other frame-
works. Consider, for instance, TinyDB [11], a popu-
lar middleware solution for accessing sensor data. Its
SQL-like queries can be offered by operations on a
BridgeDCC interface. Instead of having to become fa-
miliar with TinyDB, the application sends a request
to the corresponding BridgeDCC, which translates it
into the appropriate syntax, forwards the request and
returns the result. The query proxy system from
Cougar [17], or application adaptation update mech-
anisms from Impala [10], can also be made available
through a BridgeDCC’s high level interface. The same
interface specification can thus serve to access these
distinct systems.



3.2.2 Accessing Data

The AccessDCC is a ManagementDCC that offers op-
erations for higher level data access. These operations
reflect all the features offered by DCCs in lower layers.
Consider, the following three examples. A BridgeDCC
that implements access to the TinyDB middleware will
transform requests from an AccessDCC into TinyDB’s
SQL-like queries. A SensorDCC that offers access to
reprogramming sensor nodes may receive a parameter
that contains the compiled software to reprogram the
node. A ProcessingDCC that classifies data may re-
ceive as a parameter the maximum number of cate-
gories desired.

3.3 Encapsulation of Data

This section discusses the SensorDataDCC, a spe-
cialization of a PassiveDCC that encapsulates sensor
generated data (Section 3.3.1), and its specialization,
StreamDataDCC (Section 3.3.2), which encapsulates
streamed data from sensor data sources.

3.3.1 Sensor Data

An infrared satellite image, or a file containing a tem-
poral series of rain data, are typical examples of en-
vironmental data to be encapsulated into a Sensor-
DataDCC. Like any DCC, a SensorDataDCC is anno-
tated using ontology terms, e.g., data type, the physi-
cal phenomenon being measured (temperature, level of
moisture, etc), the geographical location of the reading.

Any sensor generated data can be encapsulated in a
SensorDataDCC. One option is to simply encapsulate
existing files. Another is to apply filters to these files.
Here we consider three factors that limits sensor data
encapsulation: size, granularity and time.

From the granularity (number of readings) view-
point, the options considered by us for creating a Sen-
sorDataDCC are: ignore readings (store only metadata
from the sensor, for verification of the sensor’s capabil-
ities); one reading (a single reading is stored, for in-
stance, the temperature at a given timestamp); a pre-
defined number of readings (e.g., the last five readings
of the sensor); and an unbounded number of readings,
which requires a signal to stop transmission. From the
size viewpoint (storage occupied), the options are: a
pre-defined limit on the size of the DCC (e.g., using a
memory window); and an unbounded size, also requir-
ing a stop signal. From the time viewpoint, the options
are: a pre-defined start/stop time limit, time interval
or no time limit (any reading can be considered);

We can also combine the dependency among pairs
of factors, such as (i) size dependent granularity (e.g.,

a pre-defined number of messages limited by their total
size); (ii) size dependent timing (e.g., a start time for
a pre-defined size); or (iii) time dependent granularity
(e.g., all the messages within a time frame). Combina-
tions of the three factors are also possible (e.g., all the
messages within a pre-defined time and memory win-
dows). Dealing with a stream source includes a fourth
dimension to the problem, discussed next.

3.3.2 Streamed Sensor Data

DCCs have, by nature, a closed scope specification, i.e.,
they are clearly defined and can only be changed by
an authorized user. Thus, a StreamSensorDataDCC
does not directly support data stream encapsulation,
rather it uses different strategies to mimic the behav-
ior of stream data. This is a problem for a computa-
tional model that needs to handle stream data – e.g.,
for crop monitoring. Frequently, not all data can be
stored, which either requires immediate consumption
by applications, or some form of caching, or selective
storage. Each of these approaches are implemented
with DCCs for dealing with this incompatibility.

Since StreamSensorDataDCCs are passive, streams
require a ProcessDCC – say, P – to pre-process the data
to be encapsulated. In the first approach (forwarding
the data for immediate consumption), P accesses the
stream source only when needed, i.e., when an oper-
ation is posted to P. In this case, P ignores the data
stream production until data is requested.

In the caching approach, P keeps the data available
(e.g., in main memory) using a window of limited size
combined with a discarding policy, e.g., first-in-first-
out, least-used, or least-recently-used.

In selective storage, P polls the stream source in or-
der to acquire the data at some constant rate, and
stores it according to one (or more) of these three
strategies: (i) directly into a database management
system; (ii) in files, using some kind of structure for
the data; (iii) P sends on the data to one or more addi-
tional ProcessDCCs that will take care of the data from
that point on. In strategies (i) and (ii) the implemen-
tation of the storage must use a selection policy on the
datasets to be stored. Examples of such policies include
those for caching plus summarization (e.g., only means
are stored), sampling methods (only a few values are
stored), outlier detection methods (only out-of-range
values are stored), and so on. In strategies (ii) and
(iii), files can be encapsulated by SensorDataDCCs.



4 Implementation Issues

This section gives an overview of DCC implementa-
tion aspects. The presentation concentrates on specific
components, thereby exemplifying some of the prob-
lems encountered. Code was implemented in Java. An-
notations follow the OWL vocabulary and refer mainly
to three ontologies: NASA’s SWEET [13], POESIA [3]
and the DCC ontology [14]. Performance issues are yet
to be evaluated with a larger number of sensing devices,
data sources and applications.

4.1 Data Encapsulation

This section describes three of the implemented Sen-
sorDataDCCs (Section 3.3), namely, TemperatureSen-
sorDataDCC, RainfallMapSensorDataDCC and Rain-
fallMapSetSensorDataDCC.

The TemperatureSensorDataDCC encapsulates a
temperature time series stored in a plain text file,
whose records are pairs <temperature, timestamp> –
both measures as defined by SWEET – captured by
a sensor in a given geographic location. There is one
TemperatureSensorDataDCC per sensor/location. Op-
erations available include retrieval of one pair, or a se-
quence thereof, and some summarization computations
(e.g., average). For instance, getTemp(Date begin,
Date end) returns the set of all temperature readings
within the time frame from begin to end. DCC meta-
data contain location coordinates, the measurement
unit (e.g., Celsius degrees), and information on orig-
inating sensor.

The RainfallMapSensorDataDCC encapsulates one
GeoTIFF file (standard where each pixel corresponds
to a given geographical coordinate and contains one
rainfall measure for a particular month of a particular
year). Its operations concern: getting the entire Geo-
TIFF file, getting values from individual pixels (given
either geographical coordinates or pixel relative posi-
tion in the image). Metadata are of a similar nature to
those provided for the temperature sensor.

We recall that SensorDataDCCs are passive com-
ponents; thus, the implementation of these DCCs had
to be followed by the implementation of ProcessDCCs,
which contains the code of all interface operations. The
main challenges faced here were determining the appro-
priate operations and their parameters, and the actual
implementation of the operations.

4.2 Data Sources Encapsulation

Here we discuss issues of implementing DCCs de-
scribed in Section 3.1. Implementation was divided in

two parts – creating communication drivers to access
data through sensor-specific protocols, and creating the
DCCs themselves. The first part required familiarity
with the characteristics of each sensor, e.g., to interpret
the data packets emitted. This kind of effort is needed
for every new kind of sensor device encountered – not
only in our approach, but for any environment that
wishes to support access to sensor data. The difference
to other solutions appears in the second part. Whereas
they require extensive communication-oriented coding
to forward data delivered by the drivers, DCCs directly
map driver operations to interface operations. Thus,
coding effort is much smaller – the DCC approach not
only supports homogeneous access from external appli-
cations, but also simplifies a programmer’s work. Chal-
lenges in developing these DCCs were mostly associ-
ated with semantic annotations (e.g., finding appropri-
ate ontology terms).

We implemented the communication driver using
TinyOS [9] interfaces. Sensors were programmed with
TinyOS and software developed in the NesC language,
a C-derived component programming language.

We implemented SensorDCCs for the MICAz
mote (MicazSensorDCC) and for the TelosB mote
(TelosbSensorDCC). These SensorDCCs have simi-
lar interfaces and were tested with temperature and
light readings. The MICAz mote requires an auxil-
iary MTS300 sensorboard, whereas TelosB came with
integrated sensors. The MicazSensorDCC and the
TelosbSensorDCC are generating real-time data and
making them available in four ways (operations im-
plemented): (i) on-demand access (application receives
the data as needed in real time); (ii) generating text file
data outputs; (iii) generating new SensorDataDCCs
(TemperatureSensorDataDCCs); and (iv) updating ex-
isting SensorDataDCCs.

4.3 Examples with sensors

Models in agricultural planning require analysis of
several kinds of sensing data, and their comparison
along time, to detect trends in climatological values
and their relationship with productivity of a given crop
(e.g., [12]).

Consider a model that needs to compare rainfall
data from two different periods, for São Paulo State,
producing a map that shows the result of this com-
parison. Figure 4 shows a screen capture of this ap-
plication. It invokes getMap operations on two Rain-
FallMapSetSensorDataDCC containing data on São
Paulo State. One of these DCC encapsulates one Geo-
TIFF file, created from historical rainfall data, whereas
the other encapsulates a service that provides rainfall



Figure 4. Screenshot comparing rainfall data.

data expressed in the GeoTIFF standard. Once these
two datasets are obtained, the model calculates their
“difference”; this is obtained by comparing the values
of pixels that correspond to the same geographical po-
sitions. This may also requires pre-processing the data,
to ensure that both datasets are scale and coordinate
compatible (information provided by associated DCC
metadata).

Figure 5. Polling a TemperatureDCC

Monitoring models, on the other hand, process sens-
ing data at real time. Figure 5 shows the result of a
loop that polls a MicazSensorDCC, and plots a real
time temperature curve, to be interpreted by experts.
Polled data is also fed to another set of modules. In
agriculture, experts typically compute aggregate val-
ues (e.g., average or maximum for a given time win-
dow) that are then used in a broader context – e.g.,
to create a dynamic average temperature map of an
area, or to detect deviations from the norm. Such real
time data is also stored in temporary files, to re-run
the original planning models (e.g., as in the previous
example).

We point out that, from an application point of
view, all was achieved by invoking DCC operations,
regardless of the characteristics of the underlying sens-
ing sources. A planning model will process a sequence
of invocations, whereas monitoring will perform a loop

that will invoke a given sequence over and over, at spe-
cific time intervals.

5 Alternative Solutions

We have commented on related work throughout the
paper. There remains to compare our proposal with
alternative approaches to data management solutions,
in particular to homogeneous access to resources, which
we achieve by encapsulating them within DCCs.

The solutions considered are: (i) Specialized (and
language specific) implementations; (ii) Standards for
data access such as Service Data Objects (SDO)3 (iii)
Software components and communication middlewares,
such as CORBA, COM (DCOM and COM+) and
.NET , EJB, and others; and, (iv) WSN middleware
as defined by [5]. The first approach has the classic
overhead of unnecessary repetition of work, hard main-
tenance, lack of standardization and interoperability.
SDO or similar initiatives only take into account data
representation; furthermore a DCC can offer access to
data using SDO. Components and general middleware
lack stream manipulation flexibility, semantic descrip-
tions, and, more importantly, homogeneous treatment
of data, devices and software.

Exploring further the WSN middlewares, four ap-
proaches are close to ours. Global Sensor Network
(GSN) [1,7], has similar goals. However, data manage-
ment is restricted to homogeneously accessing the net-
work using a declarative language, while our proposal
considers including pieces of software in new DCCs.
The Sensor Network Services Platform (SNSP) [16]
proposal considers the possibility of including process-
ing software through the concept of “auxiliary service”.
However, it is centered around a formal specification
of levels and services, leaving aside implementation is-
sues, both for data publishers and data consumers.
Hourglass [6] concisely considers processing solutions,
but requires the use of a specific definition language
and uses low-level TCP socket communication schemes,
while DCCs use Semantic Web standards for both spec-
ification and communication. IrisNet [4] limits the use
of sensor data to a hierarchical XML database, using
XPath queries. DCC interfaces, on the other hand, can
support a wide range of access mechanisms.

Other proposals act in more specialized branches.
TinyDB [11] provides access to an entire network in a
single entry point, which uses an SQL-like query sys-
tem. It also aggregates data readings, decreasing the
transmission costs, but at the cost of maintaining infor-
mation on the network structure, compromising scala-
bility. Cougar [17] works well on large sensor sets and

3www.jcp.org/en/jsr/detail?id=235



makes data access easy with its query system; however,
its focus is centered in efficient sensor programming,
while our proposal is concerned with the management
of data from the sensor outwards. Impala [10] is limited
to a specific handheld hardware, but supports protocol
and operation mode updates. Maté [8] addresses is-
sues such as protocol updates and node heterogeneity
(using a virtual machine approach), but lacks effective
and easy communication with applications. Magnet [2]
delivers a Java virtual machine on top of the network,
facilitating the development of Java applications, but is
unfit for nodes with limited capacity. These solutions
can be encapsulated in our BridgeDCC.

6 Concluding Remarks

This paper presented a framework to support flex-
ible management and publication of sensor-produced
data, an ever-growing need of computational models.
Part of this framework has been implemented and val-
idated. It is based on two main aspects: the use of
DCCs to provide uniform access to sensor data, sens-
ing devices and software to process the data; and the
construction of ManagementDCCs to coordinate sensor
data integration and publication.

Through this solution, applications that implement
scientific computational models do not need to con-
cern themselves with device dependent issues or with
whether they are handling historical data files, or real
time data streams. They just need to invoke the ap-
propriate sensor and management DCCs to access the
desired data, simplifying the problem of model con-
struction and tuning.

Ongoing work involves several issues. As mentioned
in Section 4, we are constructing more SensorDCCs,
and extending our implementation to process data from
large sensor networks. We are also working on the ac-
tual construction of BridgeDCCs to expand the com-
patibility base for experiments.

Acknowledgements. This work was supported by FAPESP

(grant 04/14052-3) and partially financed by CNPq, CAPES and

an HP Digital Publishing grant.

References

[1] K. Aberer, M. Hauswirth, and A. Salehi. A Middle-
ware for Fast and Flexible Sensor Network Deploy-
ment. In Proceedings of the 32nd VLDB Conference
(Demo Session), 2006.

[2] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D.
Kim, B. Zhou, and E. G. Sirer. On the need for system-
level support for ad hoc and sensor networks. ACM
SIGOPS Operating Systems Review, 36(2):1–5, 2002.

[3] R. Fileto, L. Liu, C. Pu, E. D. Assad, and C. B.
Medeiros. POESIA: An Ontological Workflow Ap-
proach for Composing Web Services in Agriculture.
The VLDB Journal, 12(4):352–367, 2003.

[4] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Se-
shan. IrisNet: An Architecture for a World-Wide Sen-
sor Web. IEEE Pervasive Computing, 2(4), 2003.

[5] S. Hadim and N. Mohamed. Middleware Challenges
and Approaches for Wireless Sensor Networks. IEEE
Distributed Systems Online, 7(3), 2006.

[6] J. Shneidman and P. Pietzuch and J. Ledlie and M.
Roussopoulos and M. Seltzer and M. Welsh. Hour-
glass: An Infrastructure for Connecting Sensor Net-
works and Applications. Technical report, Harvard
University, 2004. TR-21-04.

[7] K. Aberer and M. Hauswirth and A. Salehi. The
Global Sensor Networks middleware for efficient and
flexible deployment and interconnection of sensor net-
works. Technical report, Ecole Polytechnique Fédérale
de Lausanne, 2006. LSIR-REPORT-2006-006.

[8] P. Levis and D. Culler. Maté: A Tiny Virtual Ma-
chine for Sensor Networks. In Proc. 10th Int. Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), pages 85–95, 2002.

[9] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. Ambient Intelligence, chap-
ter TinyOS: An Operating System for Wireless Sensor
Networks. Springer Verlag, 2004.

[10] T. Liu and M. Martonosi. Impala: A Middleware
System for Managing Autonomic, Parallel Sensor Sys-
tems. In Proc. ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming (PPoPP 03), 2003.

[11] S. R. Madden, M. J. Franklin, and J. M. Hellerstein.
TinyDB: An Acquisitional Query Processing System
for Sensor Networks. ACM Transactions on Database
Systems, 30(1):122–173, 2005.

[12] S. Park, J. Feddema, and S. Egbert. Hydroclimatologi-
cal parameters and their relationship with land surface
temperatures (LST) and NDVI anomalies. In Proc.
2002 ASPRS-ACSM Annual Conference, 2002.

[13] R. Raskin and M. Pan. Semantic Web for Earth and
Environmental Terminology (SWEET). In Proc. of the
Workshop on Semantic Web Technologies for Search-
ing and Retrieving Scientific Data, 2003.

[14] A. Santanchè and C. B. Medeiros. A Component
Model and an Infrastructure for the Fluid Web. IEEE
Transactions on Knowledge and Data Engineering,
19(2):324–341, 2007.

[15] A. Santanchè, C. B. Medeiros, and G. Z. Pastorello Jr.
User-centered Multimedia Building Blocks. Multime-
dia Systems Journal, 12(4):403–421, 2007.

[16] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and
J. M. Rabaey. Ambient Intelligence, chapter A service-
based universal application interface for ad hoc wire-
less sensor and actuator networks. Springer, 2005.

[17] Y. Yao and J. Gehrke. The Cougar Approach to In-
Network Query Processing in Sensor Networks. SIG-
MOD Record, 31(3), 2002.


