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Abstract. The first SBC Challenge aims to provide solutions to the problem
of managing large volumes of multimedia data. Our goal is to contribute to-
wards research in these directions by discussing the problems involved in shar-
ing scientific digital information. First, we propose a conceptual framework
(SciFrame) that helps to understand the main issues involved and to integrate
related research efforts. Second, we use a real case study to point out problems
which are particular to scientific data management. Finally, we describe our
case study using SciFrame.

Resumo. O primeiro Grande Desafio da SBC estd voltado a solucdes para o
problema do gerenciamento de grandes volumes de dados multimidia. Nosso
objetivo é contribuir para a pesquisa nessa dire¢cdo através da discussdo do
compartilhamento de dados cientificos em midia digital. Primeiro, propomos
um arcabouco conceitual (SciFrame) que ajuda o entendimento dos principais
problemas envolvidos e integra esforcos de pesquisa relacionados. Segundo,
utilizamos um estudo de caso real para destacar problemas particulares ao con-
texto de gerenciamento de dados cientificos. Finalmente, exploramos alguns
problemas presentes no estudo de caso, organizando-os através do arcabouco
proposto.

1. Introduction

Computer Science has introduced a revolution in scientific research, and is recognized,
nowadays, as being essential to the advance of science. The term eScience [Getov 2008]
was introduced in the end of the 90’s. While it originally focused in the computer simula-
tions that accelerate scientific discovery, and the high performance distributed platforms
these simulations ran on, it now encompasses several branches of Computer Science. In-
deed, these platforms are fed by sophisticated instruments — e.g., telescopes, satellites,
medical devices — which generate large volumes of complex and heterogeneous data at
fast rates. These data should be processed by scientists using suites of complex algorithms
and computational tools, and novel visualization methods. Interpreted results are fed back
to the network, to become part of eScience data available.

As such, information representation and information sharing are both essential
components of eScience. In fact, the World Wide Web — the most visible face of the
Internet — was motivated by the need to communicate information among researchers.
However, the ease to publish in the Web, associated with the vast amount of scientific data



produced every day, caused an explosive growth in the amount of information available
to scientists.

Voluminous data with a fast growth rate are just part of the problem. Heterogeneity
is frequently cited as one of the most complex problems in data sharing. In eScience, it is
aggravated by the inherent multidisciplinarity - besides the usual problems of variety in
data acquisition, modeling, storage, processing and publication, all of which responsible
for heterogeneity, there exists the issue that the scientists that participate in any given
project have very distinct profiles and work contexts.

Another problem is how information is represented so that sharing can be facili-
tated. A white paper, a spreadsheet or a raster image are all valid representation formats,
but not necessarily self-sufficient or complete. For instance, a white paper may lack de-
tails about the raw data used in an experiment, a spreadsheet may not inform from where
or when the data were gathered, or a raster image might omit details about the sensors
used for data capture. Completeness criteria depend not only on data producers, but also
on the consumer’s intent. This has prompted research on metadata, annotations and on-
tologies to enhance data characterization and provenance.

Sharing of data is just part of the problem — scientists also need to share models,
which are defined in terms of sequences of operations, usually as scientific workflows
— e.g., [Oliveira et al. 2008]. This paper does not directly cover workflows and models,
concentrating on data aspects. We do, however, indicate several challenges associated
with such workflows, which are closely connected with the second Grand Challenge of
SBC — the management of models.

The goal of this paper is to exploit the many facets of the problem of sharing sci-
entific digital data. This research is directly connected with the first Grand Challenge of
SBC: management of large multimedia data volumes [Medeiros 2008]. Our main con-
tributions to the Challenge concern the proposal of a conceptual model to be used as
background to support an integrated analysis of these issues. Moreover, SciFrame can be
used as high-level design pattern from which scientists can structure and describe their
own work. The use of this model is exemplified through a real-world case of scientific
data sharing. We conclude the paper with references to research efforts that try to tackle
some of these issues.

2. SciFrame: A Conceptual Model to describe Information Sharing

According to Longworth [Longworth and Davies 1996], the stages in human learning
can be described by the following information ladder also known as the DIKW model:
Data — Information — Knowledge — Understanding — Insight — Wisdom.

While the rightmost stages belong to the domains of cognition, psychology and
philosophy, the first three steps are directly related to the first SBC Grand Challenge, and
to SciFrame. The terms data, information and knowledge have various definitions and
can be used for overlapping concepts. However, in the context of SciFrame, we adopt
the following definitions: Data is a structured collection of typed values, represented in
digital form. The important distinction between data and information is that the latter
has explicit semantics. Information is a set of inter-related data, bound to semantics
and useful for some purpose. From a Semiotics point-of-view, data are symbols and
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Figure 1. SciFrame - Scientific Digital Data Processing Framework

information occurs when data are used to refer to something. Knowledge represents the
cognitive dimension of the information’s consumer, linking information from the process
domain to information present in the “out-of-process world”. From the DIKW model,
knowledge is created by using the information for action.

In this section we define a conceptual framework that describes systems or pro-
cesses involving scientific digital data manipulation — the Scientific Digital Data Process-
ing Framework, or SciFrame for brevity. SciFrame is depicted in Figure 1, and it is
divided into three high-level abstractions: Interfacing, Data Management and Informa-
tion Management. This overall structure and its elements are well known and compose
a long-time adopted pattern. Nevertheless, this pattern lacked a cohesive definition in a
standardized vocabulary, that we try to remedy here.

Let us consider an eScience process that involves some kind of scientific data
manipulation. Interfacing defines the process boundaries and comprehends all digital
data exchange between the process itself and external entities, either human or artificial.
The Interfacing element has two subdivisions: acquisition and publication. Acquisition
represents the obtention of data: in digital form, with a known structure, from a known
source, through a given media. This stage represents the process input. Publication
stands for suitable data representations that allow proper communication with external
entities. Data are published in digital form, with a known structure, via a given media.
This stage represents the process output. The acquisition and publication elements of a
given eScience process are potentially independent from each other. When two processes
are interacting, the acquisition element of one is coupled to the publication element of the
other [Pastorello Jr et al. 2008].

One way to define their data exchange pattern is to determine which role takes
initiative in the transaction. A PUSH pattern occurs when the data provider initiates



the data exchange, and conversely a PULL pattern occurs when the data consumer takes
the initiative. Data exchange can be divided into three stages: discovery, extraction and
transference. Discovery represents the acquisitor’s concern with identifying suitable data
publishers given a set of information needs. On the other hand, publishers are concerned
with making themselves well-known to potential acquisitors. Extraction represents the
problem of extracting the information from a chosen data provider/publisher. Transfer-
ence represents the problem of moving data from the publisher into the data management
facilities of the consumer.

SciFrame makes the distinction between Information Management and Data Man-
agement. Information Management is responsible for higher-level information manipula-
tion, analysis and synthesis. Data Management is responsible for lower-level data manip-
ulation for persistence purposes.

The Data Management element is subdivided into storage and manipulation ele-
ments where: Storage is responsible for data persistence (caching inclusive). Manipula-
tion provides support for the basic interactions with the storage element. These interac-
tions are called CRUD, an acronym for the operations: create, retrieve, update and delete.
We have also included the index interaction. Therefore, we shall refer to it as CRUDI.

In the context of Information Management, an eScience process can be exam-
ined and modeled according to two main axes: data description and data transformation.
Transformation corresponds to a finite number of operations that the process applies to
the stored data, in order to change its contents or structure. We present an informal set of
definitions for the operations. Augmenting adds information to the data present. Fusing
generates new information by coalescing part of the data present. Filtering decreases the
amount of information by discarding data. Summarizing decreases the amount of data
by classifying, clustering or generalizing data. Searching locates information inside data.
Mining extracts unperceived information from data.

The last two, searching and mining, can be seem as idempotent transformations,
considering that the status of the data is not altered. Transformation can occur at any time,
but when it takes place immediately after acquisition, it is often called pre-processing. The
Description element is orthogonal to the Transformation element. It corresponds to the
gathering and organization of information about the process data elements, documenting
their nature, structure and purpose. It is also encompasses the roles of annotation and
schematization. As an example, provenance is one of the most important types of de-
scription, fundamental in the eScience context to ensure the shared data elements’ quality
and usefulness.

We acknowledge that SciFrame requires a more complete and formal character-
ization of the interactions and dependencies of its constituent elements. However, due
to restrictions in this paper’s length, we chose to present a case study instead. The case
study illustrates a typical example of a scientific application with a strong focus on in-
formation and data sharing, evidentiating the role of SciFrame as a generic pattern to
describe eScience research.

3. Case Study: Crop Monitoring in WebMAPS

In order to illustrate SciFrame’s applicability, we present a real-world scenario from the
WebMAPS eScience project [Macario et al. 2007]. This is a multidisciplinary effort in-



Data Management

Storage organize and persist input raster images and their textual metadata
organize and persist composite NDVI profiles
Manipulation index and fetch regions from images
Information Management
Description spatial regions of interest are described in Well-Known Text notation (WKT),
raster images in HDF format have embedded textual metadata
Transformation eliminate clouds by generating composite images (data gaps removal)

detect and mitigate perturbing factors
calculate NDVI time series
filter out noise using HANTS (Harmonic Analysis of Time Series)
Interfacing
Acquisition Discovery elect adequate remote sensing data products and providers available in the Web
Extraction identify a path to data products in the provider’s Web portal
Transference | download products (raw multispectral satellite images) via HTTP or FTP
Publication publish NDVI profiles as 2D scatter plots (average NDVI vs time) in WebMAPS
portal

Table 1. NDVI profile generation described with SciFrame

volving computer scientists and experts on agricultural and environmental sciences to de-
velop a platform for agro-environmental planning. The case study concerns an eScience
process within WebMAPS, and shows that sharing scientific data presents challenges that
are not found in other kinds of data sharing (e.g., in industrial or business contexts).

An important problem in agro-environmental planning is monitoring crop behav-
ior. One of the earliest studies [Ulaby 1975] about deriving crop condition from solar radi-
ation has shown that there is a strong correlation between radar measurements (backscat-
ter) and leaf area index (LAI). LAI determines the amount of energy available to the plant
for photosynthesis which in turn drives the plant development and subsequent yield.

One of the tools used by experts to monitor crop behavior is based on Normal-
ized Difference Vegetation Index (NDVI). Informally, this index represents the healthi-
ness (“‘green-ness”) of a given vegetation cover. It is computed as the difference between
the red (RED) and near-infrared (NIR) bands of multispectral images, given by the for-
mula: NDVI = (NIR — RED)/(NIR+ RED) There are several vegetation indexes
proposed, such as: Perpendicular Vegetation Index [Richardson and Wiegand 1977], the
Soil-Adjusted Vegetation Index (SAVI) [Huete 1988], the Atmospherically Resistant Veg-
etation Index (ARVI) [Kaufman and Tanre 1992] and the Global Environment Monitoring
Index [Pinty and Verstraete 1992]. Choosing amongst them is part of the problem — dis-
tinct scientists favor different indexes, which result in incompatible analyses. However,
NDVI remains the most well-known and used index to detect live green plant canopies
from multispectral remote sensing data.

One of the processes in WebMAPS corresponds to a tool that generates NDVI pro-
files. Each profile is a time series of average NDVI measurements, which represents the
vegetation’s health (biomass status) in a particular region for a given time period (crop’s
phenological cycle). NDVI profiles characterize the spatio-temporal behavior of spe-
cific crops. They allow experts to monitor the evolution of the crop, detect (and prevent)
anomalies and forecast crop yield.

The management of spatio-temporal data series is a problem common to many
eScience domains, which is one of the reasons for our choosing this case study. Table 1
gives an overview of the process that generates NDVI profiles, summarized under our



SciFrame conceptual model. Some processing details were omitted, but it serves the
purpose of illustrating SciFrame’s application.

For instance, although the NDVI formula is mathematically simple, satellite im-
age pre-processing is complicated and requires extensive data correlation. Perturbing
factors should be detected and mitigated in order to avoid negative influence in the com-
puted NDVI. They include: (i) high level of water vapor and aerosols; (ii) soil moisture;
(ii1) angular geometry of illumination and observation at the time of the measurements;
(iv) sensor-dependent data calibration. These issues represent nested processes in NDVI
profile generation. Though not described in this paper, we point out that they have a
SciFrame’s description of their own.

3.1. Practical Pitfalls

Consider a scientist in charge of studying sugarcane crops in Ariranha County in S3o
Paulo state (Brazil). The goal is to analyze sugarcane yields using year 2001 as bench-
mark, when it was the top producer county, yielding approximately 5.15 million tons/year.
This scientist decided to use a NDVI profile as an estimator [Carlson and Ripley 1997],
based on previous studies of NDVI correlation to crop yields.

In order to do that, first of all, this scientist needs the georeferenced perimeter
of every farm growing sugarcane in Ariranha County. Georeferencing means to estab-
lish an appropriate set of coordinates defining accurately the region’s location on the
Earth’s surface. Here we face a common barrier in eScience — data availability. Georefer-
enced boundaries may be hard to obtain in practice, due to the lack of reliable boundary
databases. This may be circumvented by a ground survey with GPS measurements, which
requires the farmers agreement. We are not concerned here with confidentiality issues.
Data privacy and security are valid open problems in eScience data sharing that are out of
the focus of this proposal.

In addition to the spatial regions of interest, the scientist must collect remote
sensed imagery covering the county’s area (aprox. 133 km?) during the target years.
NASA’s MODIS sensor is a reasonable data source. One of its derived products is
“MOD13Q1 - Vegetation Indices 16-Day L.3 Global 250m”. This dataset is delivered by
NASA already pre-processed, with 11 pre-calculated vegetation indexes, including NDVI.
MOD13Ql1 is distributed as files encoded in NASA’s HDF-EOS format [Qu et al. 2007],
each covering an area of 5,760,000 km? with average size of 500 Mbytes.

This means that a 2-year long NDVI time series covering Ariranha County’s area
(532 pixels per MOD13Q1 image) requires 46 images. The data volume amounts to
roughly 47.8 Kbytes. However, due to distribution granularity (in 500 Mb files), this
scientist will have to download 23 Gbytes. Therefore, 99.99979% of the downloaded data
is useless considering the target study. In the worst case where a single satellite image
snapshot (swath) does not entirely contain the region of interest, the waste is doubled.

Moreover, to download the 46 files (92 in the worst case scenario), the scientist
will have to fill out a NASA web form (maybe several times) specifying product, swath
(region of interest) and time interval. The estimated delivery delay can range from a day
to a week, depending on the available network throughput. Nevertheless, that is still a
straightforward process. Each web portal providing remote sensed imagery implements a
different acquisition workflow. Some portals demand a round of e-mail exchanges prior



to data release. Other portals arrange the files in hierarchies, forcing the user to browse
through several pages before reaching the target links.

After all data are obtained, there remains the issue of compatibility with the
scientist’s processing environment. For instance, computing time and storage space
may be required to convert NASA’s HDF-EOS format into more widespread input for-
mats such as GeoTIFF [Ritter and Ruth 1995], NetCDF [Rew and Davis 1990], HDF4,
or HDFS5 [Folk et al. 2002].

Once the satellite data are converted and stored, several other issues remain. For
instance, the acquired images may present gaps in the region of interest (e.g., clouds)
that could be compensated by additional processing (e.g., by acquiring images from other
providers, or executing complex data manipulation procedures). Image noise has to be
taken into account.

Once all preprocessing is finished to the scientist’s satisfaction, the profiles can be
generated. Again, this presents many challenges. For instance, just as they may choose
distinct vegetation indexes, research groups may adopt different procedures to generate
profiles, which in turn may result in differences in profiles. Notice that each processing
strategy chosen will compound the obstacles to sharing profile data. Hence, in order to
share the published profiles with other groups, an appropriate description of the entire
profile generation process must be provided — e.g., indicating the source images used, the
scientific workflow selected to create the profile, and so on. This kind of discussion falls
into the general problem of provenance in eScience.

These are just a small sample of problems involved in sharing eScience data.

4. Conclusions

The first Grand Challenge of SBC involves the management of multimedia data, which
includes scientific data. There are many issues concerning the latter that need to be in-
vestigated using specific procedures, given some of their peculiarities. This paper is a
step towards this direction, providing an integrated perspective of efforts and phases in-
volved in sharing of eScience data. The SciFrame model, conceived with this in mind,
was presented through a case study of scientific data manipulation in WebMAPS. This
study illustrates some typical problems related to data sharing, particularly the problem
of distributing large datasets over the Web. We concluded the paper pointing out that
SciFrame should be used as a design pattern, from which scientists could structure and
describe their own eScience efforts.
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