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Abstract

Content-Based Image Retrieval (CBIR) systems have
been developed aiming at enabling users to search and re-
trieve images based on their properties such as shape, color
and texture. In this paper, we are concerned with shape-
based image retrieval. Here, we discuss a recently proposed
shape descriptor, called contour saliences, defined as the
influence areas of its higher curvature points. This paper
introduces a robust approach to estimate contour saliences
by exploiting the relation between a contour and its skele-
ton, modifies the original definition to include the location
and the value of saliences along the contour, and proposes
a new metric to compare contour saliences. The paper also
evaluates the effectiveness of the proposed descriptor with
respect to Fourier Descriptors, Curvature Scale Space and
Moment Invariants.

1. Introduction

Acquisition and storage technological improvements
have supported the dissemination of a large number of im-
ages. This scenario demands the creation of information
systems to efficiently search images through these collec-
tions. Many Content-Based Image Retrieval (CBIR) sys-
tems have been developed aiming at supporting image re-
trieval based on image properties [19]. Basically, these sys-
tems are composed by an image analysis phase responsible
for algorithms that manipulate image content (the objects
within an image and their properties such as shape, color
and texture). This manipulation results in a series of de-
scriptors, which are sets of vectors containing distinct data
types to subsume image content. These descriptors can be
subsequently used to index the images and to manipulate
them according to content, in an image database. One prob-
lem in this context is that different images may have similar
descriptors. Thus, the goal is to design algorithms which

can discriminate images, using a given distance metric. Dis-
tance metrics are part of the definition of the specification
of these algorithms. They will derive image descriptors that
will be close to each other when images are similar, and
farther apart when images are dissimilar. In this paper, we
are concerned with shape-based image retrieval. In this con-
text, we discuss a recently proposed shape descriptor, called
shape saliences [4, 20].

Consider a closed contour and a pixel discretization of
the Voronoi regions of its points within a narrow band
around the contour. The saliences of a shape are defined
as the influence areas of its higher curvature points [4].
A contour point is considered convex if its influence area
is greater outside the contour than inside it, and concave
otherwise. A narrow band is used to reduce as much as
possible the cross-influence of opposite parts of the con-
tour, which come close to each other. Unfortunately, the
original method is very sensitive to locate high curvature
points along the contour in the case of intricate and com-
plex shapes. We present here, a robust method to circum-
vent the problem which exploits the relation between the
contour and its internal and external skeletons [14, 21]. On
the other hand, while the cross-influence of intricate con-
tours makes it difficult to detect high curvature points, the
influence areas of those points together with their location
along the contour are very important for shape-based image
retrieval.

Differently than showed in [21], we present in this pa-
per more details related to the algorithm to extract contour
saliences. Furthermore, we evaluate the contour saliences
using measures of CBIR domain, like precision and re-
call to compare it with important shape descriptors: Curva-
ture Scale Space (CSS) [1, 18], Fourier Descriptor [11, 16]
and Moment Invariants [6, 12]. The CSS descriptor is a
shape descriptor, adopted in MPEG-7 standard [3], which
represents a multiscale organization of the curvature zero-
crossing points of a planar curve. Fourier Descriptor and
Moment Invariants are widely used shape descriptors for



comparison purposes [16, 18].
This article starts by presenting an overview of two

Shape Saliences extraction algorithms in Section 2: one
based on the concept of Exact Dilation with Label Propaga-
tion (EDLP) [4] and another based on the Image Foresting
Transform (IFT) [20]. In Section 3, the IFT is used to ob-
tain multiscale skeletons [9], which are used to determine
salience points along the contour. Section 4 evaluates the
proposed shape descriptor, Fourier Descriptors, Moment In-
variants, and CSS descriptor, and discusses the main results
of this work. We state the conclusion and discuss our cur-
rent research on shape descriptors in Section 5.

2 Shape saliences

The algorithm proposed by Costa et al. [4] to determine
shape salience is based on the concept of Exact Dilation
with Label Propagation (EDLP). More formally, the EDLP
of a given seed set � assigns to each image pixel � a value��� ��� and a label � � ��� , which is the minimum Euclidean dis-
tance from � to � (Euclidean distance transform) and the
label of its closest pixel in � (discrete Voronoi regions) re-
spectively.

Basically, the proposed method takes the contour points
as seed pixels and an EDLP algorithm [4] is performed
to determine the influence area (discrete Voronoi regions)
of them. The influence areas of higher curvature points,
namely salience points, are expected to be greater than the
influence areas of the other points of the shape (see Fig-
ure 1). Moreover, in the case of a contour, the influence
area of a convex point (point A) is greater outside the con-
tour than inside it, and the other way around for a concave
point (point B). The influence area of each salience point
relates to the aperture angle � , illustrated in figure 1, by the
formula:

	�

�
��� �������� � (1)

where � is a dilation radius. Costa et al. [4] proposed
to estimate the salience points by thresholding the highest
influence area, computed for low values of � (e.g. 10) in
order to avoid cross-influence of opposite parts which come
close to each other.
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Figure 1. Internal and external influence areas
of a convex (A) and a concave (B) point.

2.1 Shape saliences by image foresting transform

The shape saliences extraction algorithm, proposed
in [4] can be more efficiently (in time proportional to the
number of pixels) implemented by using the Image Forest-
ing Transform (IFT) framework [10, 20]. The IFT is a re-
cently introduced technique to the design of image process-
ing operators based on connectivity [7–10, 15].

The image foresting transform (IFT) reduces image par-
tition problems based on a given seed set to the computation
of a minimum-cost path forest in a directed graph, whose
nodes are the pixels and whose arcs are defined by an ad-
jacency relation between pixels. The cost of a path in this
graph is determined by a suitable path cost function, which
usually depends on local image properties along the path
— such as color, gradient, and pixel position. For suitable
path-cost functions, one can choose the optimal paths so
that their union is an oriented forest, spanning the whole
image. The nodes of each rooted tree in the forest are by
definition the influence zone of the corresponding root. The
IFT assigns to each pixel three attributes: its predecessor in
the optimum path, the cost of that path, and the correspond-
ing root.

Algorithm 1 below presents the IFT procedures to com-
pute the discrete Voronoi regions for a particular contour.
Each contour pixel is considered a labeled seed. They are la-
beled sequentially by increasing values, starting at 1, while
circumscribing the contour. This IFT generates a cost map�

that outputs the squared Euclidean distance values, repre-
senting the exact dilations of the root set; a root label map �
in the place of the root map which represents the influence
areas of the root pixels; and the optimum-paths connecting
each pixel to its corresponding root which are encoded in
the predecessor map ! .

Algorithm 1: Input: A contour " in an image # ; an adja-
cency relation

	
; a labeling function $ defined on the pixel

set of # which assigns subsequent integer values, starting
at % , for each contour point and & to the remaining pixels
of # . Output: An optimum-path forest ! , and the corre-
sponding cost map

�
and root label map � . Auxiliary Data

structures: A priority queue ' and two 2D arrays (�) and
(+* that accumulate the positive increments along , and -
directions.

1. For all pixels � of the image # , set (�) � ���/. 021 ,
(+* � ���3.4021 and

��� ���3.5021 .

2. For all �76�" , set ! � ���3.98;:=< , � � ���>.?$ � ��� , ��� ���3.@& ,
(+) � ���>.?& , and (+* � ���3.@& and insert � in ' .

3. While ' is not empty, do

3.1. Remove from ' a pixel A � � ,CB � -DBE� such that��� A
� is minimum.



3.2. For each pixel � � � ,�� � -��=� such that � is adjacent
to A according to

	
, and

��� ����� ��� A
� , do

3.2.1. Set �D, � ( ) � A
� 0�� ,��
	 , B�� and �D- �
( * � A � 0�� -��
	 -DB�� .

3.2.2. Compute
�
� � �D, � 0��D- � .

3.2.3. If
� ��� ��� ��� , then

3.2.3.1. If
��� ������ 021 , remove � from ' .

In any case, set ! � ��� . A , ��� ��� .���
, � � ��� . � � A � , ( ) � ��� . �D, and

( * � ���>.��D- . Insert � in ' .

A natural extension of this algorithm to compute contour
saliences consists of obtaining a histogram of the resulting
root label map for each side of the contour and restricting
to a small neighborhood of the curve in order to eliminate
the influence of other parts of the curve. Each bin of the
histogram indicates the area of influence of the respective
root inside (or outside) the contour. It is classified as convex
when the external area is greater than the internal area, and
on the other way around, it is concave.

Again, a point of the curve is classified as salient by
thresholding its highest influence area. This approach, how-
ever, can miss important salience points in opposite parts of
the shape which come close to each other. It has otherwise
been particularly effective for skeletons and for simple con-
tours, such as convex polygons, but it fails in finding the
salience points of more complex and intricate contours. A
robust approach to solve the problem is described next.

3 The use of skeletons for contour saliences

The proposed method for computing shape saliences
uses skeleton saliences to determine contour saliences.
First, a skeletonization process is performed to gener-
ate multiscale skeletons (Section 3.1); second, skeleton
saliences are found (Section 3.2); and finally, the localiza-
tion of contour saliences (Section 3.3) are determined. All
steps are based on the IFT algorithm presented in the previ-
ous section.

3.1 Multiscale skeletonization

Given a contour with � pixels, the present method aims
at assigning to each pixel inside and outside the contour
the maximum length of the shortest contour segment be-
tween two roots equidistant to the pixel according to the
cost map [5, 7, 9]. When a pixel has only one closest root in
the contour, the assigned value is zero. This process works
as follows [21].

A seed set is the labeled contour points as described in
Algorithm 1 (Figure 2a). Then, Algorithm 1 is performed,

(a) (b) (c)

(d) (e) (f)

Figure 2. Multiscale skeletonization by label
propagation inside a contour. (a) Labeled
contour, (b) label map, (c) difference image,
and (d-f) internal skeletons at three different
scales.

generating a label root map � (Figure 2b). Next, a differ-
ence image � is created from � by computing the following
for each pixel � inside (and outside) the contour (Figure 2c):

� � � � � ��������! �"$#&%('*),+ �.-0/ +21 � � �43 � � �5	 1 � � �63 �87�7 � (2)

where 1 � � �63 � � � � 3 �
	 � � � � and �:9 � �C� is the set of pixels
3 that are 4-neighbors of � . The difference image repre-
sents the multiscale internal and external skeletons by label
propagation. One-pixel wide and connected skeletons can
be obtained by thresholding the difference image at subse-
quent integer values (Figure 2d-f). The higher the thresh-
old value, the more simplified the skeletons become, with
smaller details being progressively removed as the thresh-
old increases.

3.2 Skeleton saliences

For a given contour, multiscale skeletons are obtained
as exposed in the previous section. For small scales (low



thresholds – e.g. 5% of the number of points of the contour),
each salience point of the internal skeleton corresponds to
one convex point of the contour and each salience point of
the external skeleton corresponds to one concave point of
the contour (see Figure 3). The salience points of the skele-
tons are determined as described in Section 2.1. Here, the
skeleton points are taken as seed pixels, and the Algorithm
1 is executed for each skeleton separately, and for a small
dilation radius ( � � % & ). The histogram of the root label
map gives the influence areas of each skeleton point. The
salience points of the skeletons are those with influence area
greater than the area threshold obtained by setting � ��� &
in Equation 1.

(a) (b) (c)

Figure 3. (a) Saliences of the contour of a leaf
and (b-c) saliences of its internal and external
skeletons.

3.3 Contour saliences via skeletons

Algorithm 1, applied to a seed set composed by the con-
tour points, also allows a natural, simple and direct way to
extract the relation between the contour and its internal and
external skeletons. Equation 2 assigns to each pixel inside
and outside the contour the maximum length of the short-
est contour segment between two roots equidistant to the
pixel according to the cost map. Figure 4a illustrates this
situation for a salience point � in the skeleton, which is re-
lated to a salience point

�
in the contour. The difference

value � � � � is the length of the segment � ��� . Suppose
�

is
the root pixel of � in the IFT presented in Algorithm 1, the
point

�
can be reached from the point � by skipping � ����� �

pixels in the anti-clockwise orientation along the contour
starting from

�
. Similarly, the point

�
could be found from

� through � following the clockwise orientation, when � is
the root pixel of � . The method needs only to determine
which is the root pixel, either

�
or � . If the contour pixels

are labeled in clockwise orientation, the root pixel of � will
be
�

whenever
� 1 � � �43 ��� ��� 	 � 1 � � �43 ��� in Equation 2 for

� � 3 � � � � � � and � � � � � � � � � . Otherwise, the root pixel

of � will be � for � � 3 � � � � � � and � � �C� � � � � � . The
same rule is applied for the external skeleton. Figure 4b-c
illustrates the same concept applied to a real shape.

c

b

d

a

(a) (b) (c)

Figure 4. (a) Relation between skeleton and
contour saliences. (b) The same concept ap-
plied to a real shape. (c) A zoomed region of
Figure in (b).

The correct orientation (clockwise or anti-clockwise) is
encoded in the difference image � by signaling it. To do
this, Equation 2 was substituted by the following algorithm
applied to all pixels � of image � :

Algorithm 2: Input: A root label map � . Output: A signed
difference image � .

1. For all pixels � of image � , do

1.1. Set �
� , . 	 1 .

1.2. For all pixels 3 6 � 9 � �C� , do

1.2.1. Set � : 8 . � -0/ + � 1 � � �63 � � � ��	 � 1 � � �43 ���!7
and A . % .

1.2.2. If � : 8 � �5	 � 1 � � �43 ��� , then
1.2.2.1. Set A . 	2% .

1.2.3. If � : 8 ��� � , , then
1.2.3.1. Set �

� , .	� : 8 and A :�
 8�.?A .
1.3. Set � � � � .?A :�
 8 �
� � , .

Although the influence areas (saliences) of the contour
points do not provide a completely robust method to lo-
cate the salience points, they encode important local and
global information about the contour. The saliences are also
signed negative for concave points and positive for convex
points. An arbitrary point of the contour is taken as refer-
ence point and the method computes the relative position



of each salience point with respect to the reference point
along the contour. Finally, the proposed contour saliences
descriptor consists of two vectors of the same size: one with
the saliences and another with the relative position of the
salience points along the contour. Note that the dimension
of these vectors may be different for different contours as
well as the reference points. A special algorithm has been
designed for matching this descriptor between two contours
taking into account these differences. This algorithm is de-
scribed in Section 3.4.

Figure 5 illustrates the contour saliences descriptor for
a polygon. The contour of the polygon, its reference
point, the internal and external skeletons, and the respec-
tive salience points are indicated in Figure 5a. The curve
shown in Figure 5b indicates the saliences by the relative
position of the points along the contour.
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Figure 5. (a) Contour and skeletons of a poly-
gon, where salience points are indicated by
dots. (b) The salience curve of the polygon
contour.

3.4 Matching algorithm for contour saliences

Whenever two contours of the same object appear in
different positions and scales, they should be represented

by the same salience points along the contour. There-
fore the pairwise comparison between objects using contour
saliences requires matching between contours.

The contour salience descriptor considered in the cur-
rent work preserves the salience values of the points along
the contour and their relative position regarding to a ref-
erence point. These characteristics encode a lot of infor-
mation about the shape. The reference point is used only
for correction of the relative positions after the matching.
The matching algorithm proposed in this paper is based on
the matching algorithm proposed to match Curvature Scale
Space (CSS) images presented in [1, 18].

Let ��� � + ��� ��� � A���� � ���	��� � ��� ��
 � A���
 �87 and ��� �
+ �
� ��� � A���� � �����	� � ��� ��� � A���� �87 be two salience descriptors
of shapes

	
and
�

, where
��� ��� � A���� � stands for the : �
�

salience value A ��� at the position
� ��� 6�� & � %�� along the

contour of the shape
	

. Output: distance � .

1. Create � �� � + �
������ � A ���� � �	���	� � �
�����
 � A ���
 �!7 and
� �� � + �
� ���� � A ���� � ���	��� � ��� ���� � A ���� �87 by sorting ���
and ��� according to the decreasing order of salience
values.

2. Create a list � containing a pair of matching candidates
points from � �� and � �� .

A pair
� ��� ���� � A ���� � � ��� ���� � A ���� � � belongs to the list � if

� A ���� 	�A ���� ��� & � � A ���� . A pair
� ��� ���� � A ���� � � �
������ � A ���� ���

belongs to the list � if � A ���� 	 A ���� ��� & � � A ���� .
3. For each pair of matching candidates in the form !���� ����
������ � A ���� � � �
������ � A ���� ��� in � , find the shift parameter� as � � � ���� 	 � ���� .

Next, shift � � salience points by � , yielding � � �� �
+ �
� � ���� � A � ���� � � ��� � �� � � A � �� � � �����	� � �
� � ���
 � A � ���
 �!7 .

4. The distance � between � � �� and ��� is given as:

� � ��! "�# 
�$ �&%'
(*) � � ( �

where

� ( �
+,,- ,,.
/ ��� � �� ( 	 � � ( � � 0 � A � �� ( 	/A � ( � � �
if 0 132 246587 1:9 5 0	;=<�> ?
A � �� ( 0 A�� ( �
otherwise.

Finally, if 8 �� � , it is added to � the height A of the
non matched points.

5. Repeat the steps 3 and 4 by considering matching can-
didate pair in the form !���� � ���
������ � A ���� � � �
������ � A ���� ���
in � .

6. Select the lowest distance � as the distance between
��� and ���



(a) (b) (c) (d) (e)

Figure 6. Fish images used for descriptor evaluation. The concave points were determined through
the salience points of the external skeleton, not shown in this figure.

4 Evaluation

This section compares the proposed descriptors to com-
monly used shape descriptors.

4.1 Evaluated descriptors

Even though the external skeleton can be used to de-
termine the correct location of a concave salience along
a contour (see Figure 6), preliminary results showed that
the contour salience presents the best behavior if we con-
sider only the convex saliences. We have found out that the
choice of the best threshold to determine the external skele-
ton salience is particularly sensitive with respect to the rota-
tion and scaling transformations. In fact, different threshold
values were used to estimate the concave saliences in Fig-
ure 6.

Table 1 shows the set of implemented shape descrip-
tors. Moment Invariants, Fourier Descriptors and Curva-
ture Scale Space have been widely used as shape descrip-
tors [13, 18, 22]. Many versions of these methods have been
proposed, but, in this work, we consider conventional im-
plementations.

Fourier Descriptors: We have implemented the method
described in [11, 16] to represent a shape with Fourier De-
scriptors applied to a contour. Each original object and its
transformed versions have been represented by the most sig-
nificant 126 components. The Euclidean distance has been
used to measure the similarity between two Fourier-based
representations.

Moment Invariants: For Moment Invariants, each ob-
ject has been represented by a 14 dimensional feature vec-
tor, including two sets of normalized Moment Invariants [6,

Descriptor Id Descriptor Name
D1 Contour Saliences
D2 Fourier Descriptor
D3 Moment Invariants
D4 Curvature Scale Space

Table 1. List of evaluated descriptors.

12], one from object boundary and another from solid sil-
houette. Again, the Euclidean distance has been used to
measure the similarity between different shapes represented
by their Moment Invariants.

Curvature Scale Space Descriptor: The CSS descrip-
tor extraction algorithm is described in [1, 18]. The CSS
descriptor vector represents a multiscale organization of the
curvature zero-crossing points of a planar curve. In this
sense, the descriptor dimension varies for different shapes,
thus a special matching algorithm is necessary to compare
two CSS descriptors (e.g. the algorithm presented in Sec-
tion 3.4). We implemented a C version of the Matlab proto-
type presented in [17].

4.2 Shape database

We are using as reference a set containing one thousand
and one hundred fish contours obtained from the database
available at www.ee.surrey.ac.uk/Research/VSSP/imagedb/
demo.html. Figure 6 shows some examples of fish contours
and their respective skeletons.

Since there is no semantic definition of classes for the
fish contours in this database, we defined a class as consist-
ing of 10 different manifestations of each contour by rota-



tion and scaling. Then, the problem consists of 1100 classes
with 10 shapes each.

4.3 Effectiveness measures

Our experiments adopted the query-by-example
(QBE) [2] paradigm . This paradigm, in the image retrieval
context, is based on providing an image as an input,
extracting its visual features (e.g. contour saliences),
measuring the distance between the query image and the
images stored in the image database and, finally, ranking
the images in increasing order of their distance of the query
image (similarity).

The purpose of our experiments is to evaluate the ef-
fectiveness of the similarity-search of different descriptors
in retrieving relevant images. Effectiveness evaluation is a
very complex task, involving questions related to the def-
inition of a collection of images, a set of query images, a
set of relevant images for each query image, and adequate
retrieval effectiveness measures. In our case, we use each
original image as query image and we consider its manifes-
tations as relevant images.

In our experiments, we use two graphical measures: Pre-
cision vs. Recall and � vs. Recall. Precision vs. Recall
( ! � � ) curves are the commonest evaluation measure used
in CBIR domain. Precision is defined as the fraction of re-
trieved images which is relevant to a query. In contrast,
recall measures the fraction of the relevant images which
has been retrieved. A recall is a non-decreasing function of
rank, while precision can be regarded as a function of recall
rather than rank. In general, the curve closest to the top of
the chart indicates the best performance.

A � � � � � � < < curve can be seen as a variation of the
! � � . We define � as the average of the precision values
measured whenever a relevant image is retrieved. For 100%
of recall, the � value is equivalent to the average precision.
The main difference between the measures is that, unlike
precision, � value is accumulative, i.e. its computation con-
siders not only the precision at a specific recall but also the
precision at previous recall levels.

4.4 Experimental results

This section discusses our experimental results related
to the effectiveness of the proposed Contour Saliences ap-
proach. We compare Contour Salience Descriptor and the
CBIR approaches reviewed in Section 4.1, showing that
Contour Salience Descriptor outperforms them. Figure 7
and Figures 7 and 8 show respectively the ! �+� and �����
curves obtained for all descriptors.

Observe that the Contour Salience Descriptor presents
the best ! � � curve (Figure 7), just having an inferior
behavior for � � & � � . For the � � � curve (Figure 8), a
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Figure 7. Precision versus Recall curve.

similar result can be verified. Again, the Contour Salience
Descriptor outperforms the others.
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Figure 8. � versus Recall curve.

5 Conclusion

This paper has presented an effective shape descriptor,
contour saliences, using the framework of the IFT to en-
code the location and the value of saliences along the con-
tour. The IFT provides a more efficient and more robust
computation of the location of salience points as summa-
rized in Section 3, as compared to the original algorithm
published in [4]. The proposed method to locate salience
points along the contour exploits the relation between con-
tour and skeletons [14], which is naturally obtained via IFT.
The contour salience descriptor, which encodes saliences
and relative position of the points along the contour, and the
use of a matching algorithm for it are totally new contribu-
tions.

The paper shows evaluation experiments involving the
contour saliences in comparison with three broadly used
descriptors, Fourier Descriptors [11, 22], Moment Invari-
ants [6, 12] and Curvature Scale Space [1, 18]. The effec-



tiveness of the proposed descriptors is evident regarding the
Precision vs. Recall and � vs. Recall curves. The presence
of manifestations, obtained by rotating and scaling opera-
tions, in the relevant sets suggests that the salience descrip-
tor is more robust to these kind of transformations than the
others. More experiments are necessary to evaluate these
descriptors considering relevant sets composed by different
shapes.

Ongoing developments consider the creation of shape
descriptors, which combine the salience features with color-
and texture-based descriptors. Moreover, we are currently
considering applications in content-based image retrieval,
using the proposed shape descriptors as effective indexing
vectors. We also intend to incorporate concave saliences in
the composition of the contour salience descriptor.
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