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Abstract

This paper presents a novel approach to fingerprint retrieval for personal identi-
fication by joining three image retrieval tasks, namely, feature extraction, similarity
measurement, and feature indexing, into a wavelet-based fingerprint retrieval system.

We propose the use of different types of Wavelets for representing and describing
the textural information present in fingerprint images. For that purposes, the feature
vectors used to characterize the fingerprints are obtained by computing the mean and
the standard deviation of the decomposed images in the Wavelet domain. These feature
vectors are used to retrieve the most similar fingerprints given a query image, while their
indexation is used to reduce the search spaces of image candidates. The different types
of Wavelets used in our study include: Gabor Wavelets (GWs), Tree-Structured Wavelet
Decomposition using both Orthogonal Filter Banks (TOWT) and Bi-orthogonal Filter
Banks (TBOWT), as well as the Steerable Wavelets.

To evaluate the retrieval accuracy of the proposed approach, a total number of eight
different data sets were used. Experiments also evaluated different combinations of
Wavelets with six similarity measures. The results show that the Gabor Wavelets com-
bined with the Square Chord similarity measure achieves the best retrieval effectiveness.

1 Introduction

Fingerprints are considered nowadays one of the most reliable biometric characteristic for
human identification among other physical and behavioral characteristics, such as face [2],
iris [3], voice [12], and gait [13]. Several fingerprint recognition applications in civilian, com-
mercial and forensic systems are usually based on two basic fingerprint properties: [26] (1)
persistence: basic fingerprint characteristics do not change with time and (2) individuality:
each person has a unique fingerprint.

Automatic fingerprint recognition often involves four important steps [28, 29]: (1) ac-
quisition, (2) classification, (3) identification, and (4) verification. Fingerprint acquisition is
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refered to the capture and representation of fingerprints. Fingerprint classification consists
in assigning a fingerprint to a pre-defined class, whereas fingerprint identification is referred
to the retrieval of fingerprints that correspond to a given fingerprint query image (one-to-
many comparisons). Fingerprint verification is used to determine whether two fingerprint
images are the same or not (one-to-one comparisons). Note that, considering the large size
of fingerprint databases and the computational cost of fingerprint verification algorithms,
it is necessary to reduce the number of one-to-many comparisons during fingerprint identi-
fication, seeking both accuracy and retrieval speed.

In this context, we propose an original approach to guide the search and the retrieval in
fingerprint image databases. Our approach uses feature extraction and indexing methods
based on texture information found in fingerprint images. For that purpose, we exploit the
capability of the Wavelet transform to integrate both multiresolution and space-frequency
properties in a natural manner [40]. By using the Wavelet decomposition property, the
fingerprint images are decomposed into different spatial/frequency sub-images and some
statistical analysis is performed to generate feature vectors. The extracted texture feature
vectors are used to compute the similarity among images and, then to retrieve the most
similar ones given a fingerprint query image.

In our approach, the texture features are extracted by different types of the Wavelet
Transform, which include: Gabor Wavelet transform [23, 19] and Tree-Structured Wavelet
Transform (TSWT) using both Orthogonal- and Bi-orthogonal Filterbanks [24, 20, 22, 21].
In the Gabor Wavelet transform, different scales and orientations are used to capture rele-
vant texture information. In the case of the TSWT, the image texture content is captured
on the low frequency subband, while the high frequency subbands are used to capture the
image variations in different directions.

Similarity measures play an important role in the system’s retrieval accuracy. There-
fore, we have also evaluated several different similarity measures (Bray Curtis, Canberra,
Euclidean, Manhattan, Square Chord and Square Chi-Squared distances) to be used for
calculating the distances between the wavelet-based feature vectors.

Considering that the query processing time should only depend on the number of images
that are similar to the fingerprint image query and not on the total number of fingerprints
in the database, we employ the dynamic Metric Access Method (MAM) known as Slim-tree
[38] for feature indexing purposes.

The main contributions of this work are summarized below:

1. A description of a texture-based retrieval system for fingerprint identification that can
tolerate distorted fingerprint images and can be adapted according the user require-
ments.

2. A detailed comparison of the retrieval effectiveness achieved by different types of
Wavelet-based multi-scale texture feature extraction mechanisms.
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3. A comparative study of different similarity measures.

The remainder of this paper is organized as follows. Next section summarizes some
related concepts, while section 3 reviews some approaches related to our work. Section
4 presents the architecture of our system. The various features extracting algorithms are
described in section 6. Different similarity metrics and the feature indexing method are
described in section 7. The experimental setup and the results of our tests are discussed in
section 8. Finally, our conclusions and future work are described in section 9.

2 Background

In this section, we formalize the main terms related along this paper.

2.1 Image Descriptors

Definition 1. An image descriptor D is defined as a pair (ep,dp), where ep : I — R"
is a function that extract a feature vector v7 from a given image I, and dp : R"xR" — R"
denotes the distance function used to computed similarity between two images considering
their feature vectors. The smaller the distance is, the more similar the images are.

Definition 2. A feature vector v; of an image I is a point in R™ space, such that:
U7 = (v1,v2,...,v,) and where n denotes the dimension of the vector.
2.2 Metric Spaces

Definition 3. A metric distance function d() is a function that has the following prop-
erties:

(i) Symmetry: d(O1,02) = d(O2,01)
(ii) Positiveness: 0 < d(O1,02) < 00, O7 # Oz and d(0O1,02) =0
(iii) Triangle inequality: d(O1,03) < d(O1,02) + d(O2,03)

where O denotes the domain of a set of objects O = (O1,03,...,0,). The pair (O,d) is
known as metric space. The similarity functions of the image descriptors are special cases
of metric spaces.

Definition 4. A Metric Access Method(MAM) is a class of Access Method (AM) that
is used to manage large volumes of metric data allowing insertions, deletions and searches
[38].

2.3 Similarity Queries

In metric spaces it is possible to perform, among others, two kinds of similarity queries:
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Definition 5. Given the query object O, and the maximum search distance 74, the range
query Ry(Oq,1q) is used to retrieve all the objects in O that satisfy the following condition:
d(Oy,0y) < 1q.

Definition 6. Given the query object O, and the value k € Z7, the k-Nearest Neighbor
Query (kNN (Oy, k)) retrieve the k-closest objects in O that satisfy the following properties:
|Oy| = k and d(Og, O,) < d(O4, O5)VOs € O.

3 Related Work

The most common way to reduce the number of one-to-many comparisons during fingerprint
retrieval is to partitionate the database using fingerprint classification techniques. They can
be divided into two main categories: exclusive and continuous classification.

The former uses information related to the pattern of ridges and valleys that can be
found in fingerprints to partitionate the fingerprint database into mutual exclusive bins. In
this sense, once the fingerprint query image is classified, the image candidates are searched
in the corresponding bin. Further, this kind of approach can be subdivided into four subcat-
egories depending on the type of information used for exclusive classification, namely, ridge-,
orientation field-, singularity-, and structural-based information. In continuous classifica-
tion approaches, fingerprint images are represented by feature vectors. Similarities among
fingerprint images are established by the distance in the feature space of their corresponding
feature vectors. This approach is closely related to a fingerprint database indexing problem.

Ridge-based approaches use traditionally the information of the structure’s frequency of
the fingerprint ridges for classification purposes. The work proposed by Fitz et al. [5] uses
the frequency spectrum of fingerprints, obtained by applying a hexagonal Fourier Transform,
to classify fingerprints into three classes: whorl, loops, and arches. A wedge-ring detector
is used to partitione the frequency domain images into non-overlapping areas where the
pixel values were summed up to form a feature vector. Once the feature vector was found,
it was compared to the reference feature vectors of each class and further classification is
performed by using a nearest neighbor method.

To capture the structure of fingerprint ridges, some works develop mathematical models
to characterize the fingerprint images [7, 6]. Chong et al. [6] use, for example, B-splines
curves to approximate the shape of each of the fingerprint ridges. Then, similar orientation
ridges are grouped together to obtain a global shape representation of fingerprints, which
is used for classification.

Approaches based on orientation field use the local average orientations of fingerprint
ridges to classify fingerprints. Halici et al. [8] use the block orientation fields of fingerprints
and certainty measures to generate the fingerprint feature vectors. For the sake of feature
dimensionality reduction, they used a SOM neuronal network. Moreover, a second layer was
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added to the neuronal network’s architecture to improve the overall classification accuracy.

Fingerprint singularities have been widely used for classification [9, 10]. They can be
defined as the local regions where the fingerprint ridges present some physical properties.
Karu et al. [10] extract the singularities that can be found in the fingerprints to classify
them, considering the location and the number of detected singularities.

Structural approaches use topology information of fingerprints for classification pur-
poses. Maio et al. [11] segment the orientational field of fingerprint images to represent
the fingerprints as relational graphs. For each class of fingerprints, a model relational graph
is created. An inexact graph matching algorithm is used to classify fingerprint images.

Although the search spaces can be reduced in exclusive classification approaches, there
are some shortcomings that should be considered: (1) some fingerprints present properties
of more than one class and therefore they cannot be assigned into just one bin, (2) natural
distribution of fingerprints is not uniform and therefore, even performing binning in the
original database, the number of one-to-many comparisons can still be high !, and (3) some
of the characteristics used for binning are not easy to detect due to the presence of noise,
ambient conditions, etc.

On the other hand, Germain et al. [35] proposed a continuous system to index fingerprint
databases using flash hashing. For that purposes, the location and orientation of minutiaes,
as well as the number of ridges among them are used to generate feature vectors. Some
information related to the feature vectors is obtained and used to create the image indices
that are added to a multi map memory structure and used latter during fingerprint retrieval.

More recently, Tan et al. [34] compared two fingerprint identification approaches based
on: (a) classification followed by verification, and (b) indexing followed by verification.
Their classification approach uses Genetic Programming to generate compositor operators
applied to some features extracted of the fingerprint orientation fields. A Bayesian classifier
is them used to classify fingerprints. Their indexing approach is based on the work of Ger-
main [35]. However, as a result of the retrieval process, a list of N fingerprint candidates
is retrieved for the verification phase. The idea is to determine the correspondence degree
between the query image and the database images. They concluded that the indexing-based
approach outperforms the classification considering the size of the search spaces.

Although the search spaces are reduced in both approaches ([35, 34]), they are mainly
based on some singularities that can be found in fingerprint images. Furthermore, the ac-
curate detection of these singularities depend highly on the quality of fingerprint images.
Moreover, their computation often involves high computational costs, that will affect di-
rectly the fingerprint recognition time. In addition, they both use flash hashing for indexing

LCappelli et al. [27] proved that the distribution of fingerprint classes is not uniform (93.4% of fingerprints
are among a set of three classes)
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purposes and we believe that by using metric access methods the query processing time will
be improved. Thus, we will consider more specifically textural information presented in
fingerprints for feature extraction purposes, since they retain the discriminating power of
fingerprints and Metric Access Methods (MAM) for their indexing. The description of the
MAM used in our approach is beyond the scope of this paper, however a brief description
is presented in section 7.

4 System Overview

The architecture of our system, shown in Figure 1, provides the necessary functionality for
the fingerprint-image retrieval application. The system itself can be divided into two main
subsystems, namely, the enrollment- and the query-subsystem. The enrollment-subsystem
is responsible for acquiring the information that will be stored in the database for later use.
On the other side, the query subsystem is responsible for retrieving similar fingerprints from
the database according to the user’s query image. Our system operates as follows:

1. Enrollment-subsystem: several fingerprint images are first captured (arrow labeled
1 in Figure 1) and then processed by a center point area detection module, which
finds and marks a Region of Interest (ROI) within the fingerprint (module 1, arrow
2). The fingerprint ROI is represented by its central part, since most of the category
information is contained in it. A region of 64 x 64 pixels is used for marking the ROL.
The feature extraction module uses the feature extraction algorithms in the descriptor
library (module B, arrow 3) for extracting the features (arrow 4) that are indexed by
a metric access method for later use.

2. Query-subsystem: it receives as input a fingerprint query image from the user (ar-
row 1). The fingerprint ROI is then detected (module A, arrow 2) and the feature
extraction module uses the feature extraction algorithms in the descriptor library to
extract the feature vectors from the query image (module B with arrows 3 and 4,
respectively). The query image feature vector is used to rank the database images
according to their similarity to the query image (module C). For that purposes, a
distance computation algorithm is selected from the descriptor library (arrow 5) and
the metric access method is used to speed up the retrieval (arrow 6). Finally, the
most similar database images are ranked (arrow 7) and returned to the user (arrow
8).

Subsequent sections will also describe the details of the system components.

5 Center Point Area Detection

In our approach, we have considered the core point as the center point for selecting a
singular point area from which the feature vectors will be computed. The steps used for
core detection are [14]:

1. Estimation and smoothing of the directional fields of the fingerprint input image.
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Figure 1: Architecture of the proposed system.

2. Computation of the Poincaré index, in each (8 x 8) block. This index is defined as

follows:
1 N-1
Poincare(i,j) =5 Ak (1)
k=0
i(k) if|o(k)| <

A(k)= ¢ 7+ (k) ifo(k) < —

m—0(k) otherwise

5(k) = 0(X(K), Y (k) — 0(X (k), Y (k) (3)

where k' = (k+1) mod (N) and 6(4, j) is the directional field of the fingerprint image.
X (k) and Y (k) are the coordinates of the blocks that are in the closed curve with N
blocks. If the Poincaré index has a value of 1/2, then the current block is the core
block. The center of this block is then the core point. If more than two cores are

detected go back to step 1 using a larger smoothing parameter for the directional
fields.

(2)

NERVE

Once the center point is obtained, a center point area can be easily defined. An image of
size 64 by 64 pixels around the core point is then cropped, as shown in Figure 2.

6 Feature Extraction

Wavelets have proved their efficiency in image retrieval problems due to their capability in
capturing both texture and shape information [40, 41]. The Wavelet subband and multi-
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AR CRIRG/N

Figure 2: Some image samples of the center point area detected of 8 different fingerprints
from FVC-2002 Database [31].

resolution decomposition are extremely adapted to compute relevant information about the
structure of data, and thus it allows describing images, preserving their basic content [1]. In
this section, we present the wavelet-based feature extraction approaches we have considered
in our system.

6.1 Texture Feature Extraction

The texture found in images represents a powerful discriminating feature for both image
classification and retrieval. Although there does not exist a formal definition of texture,
it can be understood as the basic primitives in images, whose spatial distribution creates
some visual patterns. Thus, the goal of a texture feature extraction method is to create a
feature vector that captures the image texture information and preserves, at the same time,
its content.

Considering that the ridges and valleys of fingerprints form a textural pattern, it is
then possible to capture discriminatory information trough their textural representations.
Further, the feature vectors are indexed and stored for image retrieval purposes.

6.2 Wavelet-based Feature Extraction

The use of the Wavelet transform for texture description is motivated by two reasons [40]:
(1) it integrates both multiresolution and space-frequency properties naturally, and (2) has
demonstrated good accuracy for texture analysis and classification [40].

6.2.1 Wavelet Transform Review

The Wavelet Transform decomposes a signal f(z) with a family of functions that are
obtained through dilations and translations of a kernel function ¢(z), called the mother
wavelet, which is localized in both spatial and frequency domains. This family of functions
is denoted by:

—m

Yman(@) =272 2"z —n) (4)

where m, n € ZT indicate the dilations and translations, respectively. To construct the
mother wavelet ¥(z) a so-called scaling function ¢(z) is needed:

=V2) h(k) 62z — k) (5)
k
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Then, the wavelet kernel ¢)(z) is determined as follows:

Y(@) = V2 g(k) ¢(2x — k) (6)
k

where:
g(k) = (=1)* h(1 — k) (7)

The explicit forms of ¢(z) and ¥ (z) are not required to perform the wavelet trans-
form, because it only depends on the coefficients h(k) and g(k) with low- and high-pass
characteristics, respectively. The L-level decomposition of the signal f(x) can be written

' f@) =Y o 6. ()

L+1 (8)
f(x) = Z Cron ¢L,n ((/E) + Z Zdl,n ¢l,n (k)

=1

where the coefficients ¢, , are given and the coefficients c
obtained by the coefficients ¢ at scale [ — 1 trough:

and d, , both at scale [, are

L,n l,n?

—1,n
Cl,n = Z lel,n h(k - 2”)

¢ (9)
dl,n - Z lel,n g(k - 2”)
k

where 1 <1 < L+ 1. A recursive wavelet decomposition can be obtained through h(k) and

g(k) in Equation 9. The same process can be viewed as the convolution of signal ¢y, with
the impulse responses h(n) = h(—n) and g(n) = g(—n) of the low- and high-pass filters
H and G, respectively (also known as quadrature filters), and then by downsampling the
filtered signals by a factor of 2. The 2-D wavelet and scaling functions can be expressed as

the tensor products of their 1-D complements:

orr(x,y) =o(x)o(y)  Yrm(r,y) = ¢(x)Y(y)
YuL(z,y) =¢v(@)ely)  Yuu(z,y) =Y(@)P(y) (10)

where ¢rr, Y, ¥y and Yy represent the Low-Low, Low-High, High-Low, and High-
High subbands, respectively.

6.2.2 The Tree-Structured Wavelet Transform

The Tree-Structured Wavelet Transform decomposes recursively the output of each of the
subbands. This kind of decomposition is based on the fact that for some kinds of texture the
most relevant information exist in the middle subbands. To avoid a full recursive decompo-
sition, Chang et al. [24] proposed an energy-based criterion to decide which image should
be further decomposed. If the energy in a subband is very similar to the maximum energy
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of a subband at the same level, the further decomposition is not applied. However, for the
sake of image retrieval, a fixed tree decomposition is convenient, since it facilitates distance
computations and hence data browsing. Considering that the subband HH often leads to
unstable features, recursively decomposition is done only in the LL, LH, HL subbands.

6.2.3 Gabor Wavelets

A general 2-D Gabor function v (z,y) is defined as:
1 1 2 2
P(x,y) = < ) exp [—5 <$ + %) + ijW:U] (11)

52
2wo 0y oz Y

where the spatial coordinates (z,y) denote the centroid localization of the elliptical Gaussian
window. The parameters o, and o, are the space constants of the Gaussian envelop along
the x- and y-axes, respectively. The Fourier transform G(u,v) of the Gabor function ¢ (z,y)

can be written as: ( 2 )
1/ (u—W v
Gu,v)=exrp|— | ——+ — 12
wi=em |5 (Mo )| "
where W represents the frequency of the sinusoidal plane along the horizontal axis and
the frequency components in x- and y-direction are denoted by the pair (u,v), while o, =
1/2n0, and o, = 1/2mo,. Considering the non-orthogonal basis set formed by the Gabor
functions, a localized frequency description can be obtained by expanding a signal with this
basis.
Self-similar class functions, known as Gabor Wavelets, can be generated by dilations and
rotations of the mother wavelet ¢ (x,y), i.e.:

mn(@,y) = ™0y, a> 1 (13)

considering m = 1,...S and n = 1,... K. S and K denote the total number of dilations
and orientations, respectively, and:

[mi} R [ co§0n sz’n@n] [m} (14)
Yy —sinby, cosb, | |y

where § = nm/K and 6 is the rotation angle. To ensure that the energy is independent of
m, a scale factor a=™ is introduced. Considering the redundant information presented in
the filtered images due to the non-orthogonality of the Gabor Wavelets, Manjunath et al.

[19] designed a strategy to reduce the redundancy of the Gabor Wavelets Filterbank, where
the half-peak magnitude of the filter responses touch each other in the frequency spectrum:

1
Uh> 51 (a —1)Up
_ (Y S C it/ 2 15
¢ <Ul 7T e+ Dv2in2 (15)
1
T o2 (2in2)%027 "2

where W = Uj,. The parameters U, and U; are used, respectively, to denote the upper and
lower center frequencies of interest.
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6.2.4 Feature Representation

Considering the spatial homogeneity present in fingerprint images, the mean (fi,,,) and the
standard deviation (o,,y,) of the energy distribution are used to form the feature vector f:

1
b = 57 | [ Wonn )] dndy a7)

Tmn = \/// (Wonn(,9) = pimnn)? dzdy (18)

For the Tree-Structured Wavelet Transform the values of |W,,,,(x,y)| correspond to the
energy distribution in one of the three subbands: LL, LH, and HL. Thus, the subindices
m and n are integers that stand for the decomposition level and the current subband
(m=1,2,...,L and n = 1,2, 3), respectively. The feature vector f is formed as follows:

Frowe = (111,011, 12, 012, (13, 0135 - - - 5 [LL1, OL1, UL2, OL2, [LL3, OL3) (19)

In the case of the Gabor Wavelet Transform, the values of |W,,,,(z,y)| denote the energy
distribution of the transform coefficients after convolving an image I with the Gabor Wavelet
Ym,n. Considering a total number of S = 6 scales and K = 16 orientations, the resulting
feature vector is computed as follows:

JFGW = (11, 0115 112, 012; - - - 11616, 06 16] (20)

7 Feature Indexing

In this section, we present the different similarity measures studied in our work and the
Metric Access Method used for feature indexing.

7.1 Similarity Measures

A key component of a CBIR system are the similarity measure functions used for computing
the similarity among images. This affirmation is valid because the retrieval performance
depends not only on the effectiveness of the image features, but also on how good the
similarity measures are. Thus, different similarity measures should be explored in order
to improve the retrieval effectiveness. Let & = (z1,x9,...,2,) and ¥ = (y1,¥y2,...,Yn) be
two feature vectors of dimension n, Table 1 presents the similarity measures studied in our
work.

7.2 Metric Access Method

To speed-up the retrieval we have used a dynamic MAM known as Slim-tree [38]. The
use of the Slim-tree in the fingerprint domain is attractive, since: (1) fringerprints can be
inserted and deleted even after its creation, due to their dynamicity, (2) similarity queries
such kNN and range queries are supported and therefore CBIR applications are possible,
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‘ Evaluated Similarity Measures ‘

‘ Measure ‘ Equation ‘
n
. lz; — il
Bray Curtis dpc = —_—
; Ti + Yi
n
lz; — yil
Canberra do = —
2 T ¥
n
Euclidean dp = Z(ﬂiz —y;)?
i=1
n
Manhattan dy = Z |25 — il
i=1
n
Squared Chord dsc = Z (Vi — \/E)Z
i=1 )
n
Square Chi-Squared | dgopn; = Z M
— TitVYi

Table 1: Evaluated Similarity Measures

(3) overlapping between nodes is minimized and thus the retrieval speed is increased and (4)
it can handle large amount of data in an efficient manner even after growing the database
size due to the scalability property. Furthermore, the Slim-tree has outperformed the well
known M-tree indexing structure [36].

8 Experiments

In this section we present the experimental setup we conducted in our study, as well as the
effectiveness of the discussed feature extraction methods using the precision versus recall
curves.

8.1 Databases

We used for our experiments the Bologna FVC-2002 database [31]. The use of these
database was attractive because of its peculiarities. It consists in four different databases
(DB1, DB2, DB3, and DB4) collected by different sensors/technologies. Each database
contains 8 impressions per fingerdeep (d) and is 110 fingers wide (w). The size of each
fingerprint image, as well as its resolution, vary in these collections. In the case of the DB1,
fingerprints are of size 388x374 pixels with a resolution of 500 dpi. For the DB2, images
are 296x560 pixels and have a resolution of 569 dpi. In the DB3, each fingerprint image
has 300x300 pixels and a resolution of 500 dpi. The DB4 was created using a software for
generating synthetic fingerprints [42, 43]. In this case, images have a size of 288x384 pixels
and about 500 dpi. These datasets are challenging since there are some variations within
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fingerprints of the same individuals finger. These variations include: rotations, translations,
and the presence of low quality in images.

8.2 Effectiveness Evaluation

The retrieval effectiveness of our system was measured in terms of precision and recall [15],
since they have been widely used to evaluate retrieval effectiveness. Precision is defined as
the fraction of the retrieved images that are relevant to the given query, while the recall
represents the proportion of relevant images among the retrieved ones. Thus, retrieved
images are considered as a match if they belong to the same class of the query image.
Considering the query image ¢, and the number of correct, missed, and false candidates
(ne, nm, and ny, respectively ), the precision p, in the first R retrieved images is defined as
follows:

e Ne

=__° = 21
Pq Ne+ng R (21)
The recall 7, of the such similar candidates S of the query image ¢ is defined as:
Ne Ne
- ¢ 22
"a Ne+ N S (22)

8.3 Experiments

Our system was tested independently in each of the four databases and each of the database
images was considered as a query image. Thus, a total number of 880 fingerprint queries
were performed per database. The experiments were carried out by using a total number
of 36 different image descriptors. To generate them we have combined six different wavelet-
based feature extraction functions with the six similarity measures presented in subsection
7.1. The six different types of Wavelets include: Gabor Wavelets, TSWT using Haar, Daub
4-Tap, Daub 8-Tap, Daub 16-Tap, and Spline Wavelets.

The first group of experiments were conducted to determine which combination of
wavelet-based feature extraction algorithms with similarity measures presents the high-
est retrieval effectiveness in each of the four databases. Thus, six different figures were
generated (Figures 3, 4, 5, 6, 7, and 8). Each of them present the averaged recall achieved
per fingerprint extraction algorithm with each of the six different similarity measures.

From Figure 3 we can observe that for each of the four databases, the highest retrieval
effectiveness for the the Gabor Wavelets was obtained by using the Square Chord similarity
measure. The fact that the distance in each dimension is first obtained by performing the
square root and then by applying the power of two, before summation, reduces the emphasis
on those features with large dissimilarity.

Observing Figure 4, one can conclude that the best similarity measures for the TSWT
using Spline Wavelets are the Manhattan and the Euclidean distances. That is because both
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of them measure the absolute differences in each feature dimension in order to increase the
retrieval effectiveness. However, one benefit of the Manhattan distance is that it requires
less computational operations than the Euclidean distance.

For the case of the TSW'T using Haar Wavelets the best retrieval indices were obtained
by using the Mahattan distance, as seen in Figure 5. In the case of the TSWT using
Daubechies 4-Tap, 8-Tap, and 16-Tap the best retrieval effectiveness was achieved by using
the Square Chi-Squared similarity measure, as shown in Figures 6, -7, and 8.

The main objective of the fingerprint identification approach proposted in this paper is
to ensure that the relevant image databases are retrieved, and not to determine whether
fingerprint images are the same. Therefore, our system is suitable for both fingerprint image
indexing and retrieval. Note also that the databases used in these experiments do not have
been acquired in real environments [31], being, therefore, useful for testing our system in
extreme conditions. In fact, we do believe that the retrieval accuracy can be increased if
we consider real world fingerprint collections.

Gabor Wavelets

0.5

0.4

0.3

0.2

Average Recall

0.1

0
Bray-Curtis Canberra Euclidean Manhattan S. Chi-Sq. S. Chord

Figure 3: Average Recall using Gabor Wavelets.

The goal of the second group of experiments is to determine the best pair of feature
extraction algorithms and similarity measures. Thus, for each of the four databases we
have considered the average retrieval effectiveness of all 36 image descriptors. The best
combinations are then found and for each of the 4 databases, we found the best wavelet
feature extraction algorithms with their respective similarity measures. Considering the
Figures 9, 10, 11, and 12 it is clear that Gabor Wavelets outperformed the other approaches
in terms of retrieval accuracy. This is due to the fact that the Gabor Wavelets capture much
useful information at different orientations if compared with the traditional Tree-Structured
Wavelet Transforms, which does not take into account this specific information. Thus, a
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Figure 4: Average Recall using a TSWT Bi-orthogonal Filter Bank (Spline Wavelets).
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Figure 5: Average Recall using a TSWT Orthogonal Filter Bank (Haar Wavelets).
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TSWT Orthogonal Filter Bank (Daubechies 4-Tap Wavelets)
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Figure 6: Average Recall using a TSWT Orthogonal Filter Bank (Daubechies 4-Tap).
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Figure 7: Average Recall using a TSWT Orthogonal Filter Bank (Daubechies 8-Tap).
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TSWT Orthogonal Filter Bank (Daubechies 16-Tap Wavelets)
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Figure 8: Average Recall using a TSWT Orthogonal Filter Bank (Daubechies 16-Tap).

more precise retrieval was performed due to the Gabor Wavelets flexibility in controlling
the orientation information.

9 Conclusions

This paper has investigated the possibility of applying texture-based image retrieval tech-
niques to reduce the search space for fingerprint identification. More specifically, we have
proposed a novel approach to characterize fingerprint images by using different types of
Wavelet transforms and similarity measures.

The retrieval effectiveness of the different image descriptors was compared by analyzing
the results in terms of precision and recall. For all experiments, the best result was achieved
by the Gabor Wavelet Transform combined with the Square Chord similarity measure. This
fact relies basically on its flexibility to model the orientation and the scale information in
images. Moreover, depending on the desired accuracy the descriptor parameter values can
be adapted. The lack of this flexibility has influenced the retrieval performance of the Tree-
Structured Wavelet Transform (TSWT), since it is not able to capture relevant information
in different orientations.

It is important to notice that the databases used in our experiments do not reflect real
acquisition conditions in the sense that image present abnormal distortions, including noise,
significant rotations, and translations [31]. In this context, future work includes the use of
databases containing more realistic fingerprint images. In this case, we expect that the
retrieval effectiveness of our image descriptors will be considerably improved. In addition,
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Figure 9: Averaged Precision vs. Recall curves of the best image descriptors for the DBI1.
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Figure 10: Averaged Precision vs. Recall curves of the best image descriptors for the DB2.
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Figure 11: Averaged Precision vs. Recall curves of the best image descriptors for the DB3.
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Figure 12: Averaged Precision vs. Recall curves of the best image descriptors for the DB4.
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we also plan to study the impact of using different metric access methods for fingerprint
identification.
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