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Abstract. This paper proposes a new texture classification system, which is dis-
tinguished by: (1) a new rotation-invariant image descriptor based on Steerable
Pyramid Decomposition, and (2) by a novel multi-class recognition method based
on Optimum Path Forest. By combining the discriminating power of our image
descriptor and classifier, our system uses small size feature vectors to characterize
texture images without compromising overall classification rates. State-of-the-art
recognition results are further presented on the Brodatz dataset. High classifica-
tion rates demonstrate the superiority of the proposed method.

1 Introduction

In the last years, several image recognition systems have been proposed in the literature
as a result of many research efforts [1, 2]. Although those approaches have achieved
high classification rates, most of them have not been widely evaluated in texture image
databases. Traditionally, texture images may be characterized by: (1) small inter-class
variations, i.e, textures belonging to different classes may appear quite similar, espe-
cially in terms of their global patterns (coarseness, smoothness, etc.), and (2) the pres-
ence of image distortions such as rotations. In this sense, texture pattern recognition
is a still open task. The next challenge in texture classification should be, therefore,
to achieve rotation-invariant feature representations for non-controlled environments.
To address some of these limitations, this work proposes a new texture classification
method, which is characterized by: (1) a new texture image descriptor based on Steer-
able Pyramid Decomposition, which encodes the relevant texture information in small
size feature vectors including rotation-invariant characterization, and (2) a novel multi-
class object recognition method based on the Optimum Path Forest classifier [3].

Roughly speaking, a Steerable Pyramid is a method by which images are decom-
posed into a set of multi-scale, and multi-orientation image subbands, where the basis
functions are directional derivative operators [4]. Our motivation in using Steerable
Pyramids relies on that, unlike other image decomposition methods, the feature coef-
ficients are less affected by image distortions. Furthermore, the Optimum Path Forest
Classifier is a recent approach that handles non separable classes, without the neces-
sity of using boosting procedures to increase its performance, resulting thus in a faster
and more accurate classifier for object recognition. By combining the discriminating
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power of our image descriptor and classifier, our system uses small size feature vectors
to characterize texture images without compromising overall classification rates. In this
way, texture classification applications, where data storage capacity is a limitation, are
further facilitated.

The outline of this paper is as follows. In the next section, we briefly review the
fundamentals of the Steerable Pyramid Decomposition. Section 3 describes how tex-
ture images are characterized to obtain rotation-invariant representations. Section 4 in-
troduces the Optimum Path Forest classifier method. The experimental setup conducted
in our study is presented in Section 5. In section 6, experimental results on several
datasets are given and are used to demonstrate the recognition accuracy improvement
of our approach. Comparisons with other texture feature representations and classifiers
are further discussed. Finally, some conclusions are drawn in Section 7.

2 Steerable Pyramid Decomposition

The Steerable Pyramid Decomposition is a linear multi-resolution image decomposition
method, by which an image is subdivided into a collection of subbands localized at
different scales and orientations [4]. Using a high-, and low-pass filter (H0, L0) the
input image is initially decomposed into two subbands: a high-, and a low-pass subband,
respectively. Further, the low-pass subband is decomposed into K-oriented band-pass
portions B0, . . . , BK−1, and into a lowpass subband L1. The decomposition is done
recursively by subsampling the lower low-pass subband (LS) by a factor of 2 along the
rows and columns. Each recursive step captures different directional information at a
given scale. Considering the polar-separability of the filters in the Fourier domain, the
first low-, and high-pass filters, are defined as [5]:
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Bk(r, θ) = H(r)Gk(θ), k ∈ [0,K − 1] (3)

Bk(r, θ) represents the K directional bandpass filters used in the iterative stages, with
radial and angular parts, defined as:
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3 Texture feature representation

This section describes the proposed modification of Steerable Pyramid Decomposition
to obtain rotation-invariant representations, used to characterize the texture images.

3.1 Texture representation

Roughly speaking, texture images can be seen as a set of basic repetitive primitives
characterized by their spatial homogeneity [6]. By applying statistical measures, this
information is extracted, and used to capture the relevant image content into feature
vectors. More precisely, by considering the presence of homogeneous regions in tex-
ture images, we use the mean (µmn) and standard deviation (σmn) of the energy dis-
tribution of the filtered images (Smn). Given an image I(x, y), its Steerable Pyramid
Decomposition is defined as:

Smn(x, y) =
∑
x1

∑
y1

I(x1, y1)Bmn(x− x1, y − y1) (6)

where Bmn denotes the directional bandpass filters at stage m = 0, 1, . . . , S − 1, and
orientation n = 0, 1, . . . , K − 1. The energy distribution (E(m,n)) of the filtered im-
ages at scale m, and at orientation n is defined as:

E(m,n) =
∑

x

∑
y

|Smn(x, y)| (7)

Additionally, the mean (µmn) and standard deviation (σmn) of the energy distribu-
tions are found as follows:

µmn =
1

MN
Emn(x, y) σmn =

√
1

MN

∑
x

∑
y

(|Smn(x, y)| − µmn)2 (8)

The corresponding feature vector (f ) is defined by using the mean and standard
deviation as feature elements. It is denoted as:

f = [µ00, σ00,µ01, σ01, . . . ,µS−1K−1, σS−1K−1] (9)

3.2 Rotation-invariant representation

Rotation-invariant representation is achieved by computing the dominant orientation of
the texture images followed by feature alignment. The dominant orientation (DO) is
defined as the orientation with the highest total energy across the different scales con-
sidered during image decomposition. It is computed by finding the highest accumulated
energy for the K different orientations considered during image decomposition:

DOi = max
{

E
(R)
0 , E

(R)
1 , . . . , E

(R)
K−1

}
(10)
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where i is the index where the dominant orientation is found, and:

E(R)
n =

S−1∑
m=0

E(m,n), n = 0, 1, . . . , K − 1. (11)

Note that each E
(R)
n covers a set of filtered images at different scales but at same ori-

entation. Finally, rotation-invariance is obtained by shifting circularly feature elements
within the same scales, so that first elements at each scale correspond to dominant ori-
entations. This process is based on the assumption that to classify textures, they should
be rotated so that their dominant directions are the same. Further, it has been proved
that image rotation in spatial domain is equivalent to circular shift of feature vector
elements [7].

4 Texture feature recognition

This section aims to present the new approach to pattern recognition called OPF (Op-
timum Path Forest), which has been demonstrated to be generally more efficient than
Artificial Neural Networks and Support Vector Machines [3]. The OPF approach works
by modeling the patterns as being nodes of a graph in the feature space, where every
pair of nodes are connected by an arc (complete graph). This classifier creates a discrete
optimal partition of the feature space such that any unknown sample can be classified
according to this partition. This partition is an optimum path forest computed in <n by
the image foresting transform (IFT) algorithm [8].

Let Z1, Z2, and Z3 be training, evaluation, and test sets with |Z1|, |Z2|, and |Z3|
samples such as feature vectors. Let λ(s) be the function that assigns the correct label
i, i = 1, 2, . . . , c, from class i to any sample s ∈ Z1 ∪ Z2 ∪ Z3. Z1 and Z2 are labeled
sets used to the design of the classifier and the unseen set Z3 is used to compute the
final accuracy of the classifier. Let S ⊂ Z1 be a set of prototypes of all classes (i.e.,
key samples that best represent the classes). Let v be an algorithm which extracts n
attributes (texture properties) from any sample s ∈ Z1 ∪ Z2 ∪ Z3 and returns a vector
v(s) ∈ <n. The distance d(s, t) between two samples, s and t, is the one between their
feature vectors v(s) and v(t) (e.g., Euclidean or any valid metric).

Let (Z1, A) be a complete graph whose the nodes are the samples in Z1. We define a
path as being a sequence of distinct samples π = 〈s1, s2, . . . , sk〉, where (si, si+1) ∈ A
for 1 ≤ i ≤ k − 1. A path is said trivial if π = 〈s1〉. We assign to each path π a cost
f(π) given by a path-cost function f . A path π is said optimum if f(π) ≤ f(π′) for
any other path π′, where π and π′ end at a same sample sk. We also denote by π · 〈s, t〉
the concatenation of a path π with terminus at s and an arc (s, t). The OPF algorithm
uses the path-cost function fmax, because of its theoretical properties for estimating
optimum prototypes:

fmax(〈s〉) =
{

0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)} (12)
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We can observe that fmax(π) computes the maximum distance between adjacent
samples in π, when π is not a trivial path.

The OPF algorithm assigns one optimum path P ∗(s) from S to every sample s ∈
Z1, forming an optimum path forest P (a function with no cycles which assigns to each
s ∈ Z1\S its predecessor P (s) in P ∗(s) or a marker nil when s ∈ S. Let R(s) ∈ S be
the root of P ∗(s) which can be reached from P (s). The OPF algorithm computes for
each s ∈ Z1, the cost C(s) of P ∗(s), the label L(s) = λ(R(s)), and the predecessor
P (s), as follows.

Algorithm 1 – OPF ALGORITHM

INPUT: A λ-labeled training set Z1, prototypes S ⊂ Z1 and the pair (v, d) for feature
vector and distance computations.

OUTPUT: Optimum path forest P , cost map C and label map L.
AUXILIARY: Priority queue Q and cost variable cst.

1. For each s ∈ Z1\S, set C(s)← +∞.
2. For each s ∈ S, do
3. C(s)← 0, P (s)← nil, L(s)← λ(s), and insert s in Q.
4. While Q is not empty, do
5. Remove from Q a sample s such that C(s) is minimum.
6. For each t ∈ Z1 such that t 6= s and C(t) > C(s), do
7. Compute cst← max{C(s), d(s, t)}.
8. If cst < C(t), then
9. If t ∈ Q, then remove t from Q.
10. P (t)← s, L(t)← L(s), C(t)← cst, and insert t in Q.

Lines 1 − 3 initialize maps and insert prototypes in Q. The main loop computes
an optimum path from S to every sample s in a non-decreasing order of cost (Lines
4 − 10). At each iteration, a path of minimum cost C(s) is obtained in P when we
remove its last node s from Q (Line 5). Lines 8− 10 evaluate if the path that reaches an
adjacent node t through s is cheaper than the current path with terminus t and update the
position of t in Q, C(t), L(t) and P (t) accordingly. The label L(s) may be different
from λ(s), leading to classification errors in Z1. The training finds prototypes with
none classification errors in Z1. The OPF algorithm works with two phases: training
and classification (test), as follows.

4.1 Training phase

We say that S∗ is an optimum set of prototypes when Algorithm 1 propagates the labels
L(s) = λ(s) for every s ∈ Z1. Set S∗ can be found by exploiting the theoretical
relation between Minimum Spanning Tree (MST) [9] and optimum path tree for fmax.
The training essentially consists of finding S∗ and an OPF classifier rooted at S∗.

By computing an MST in the complete graph (Z1, A), we obtain a connected acyclic
graph whose nodes are all samples in Z1 and the arcs are undirected and weighted by
the distance d between the adjacent sample feature vectors. This spanning tree is opti-
mum in the sense that the sum of its arc weights is minimum as compared to any other
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spanning tree in the complete graph. In the MST, every pair of samples is connected by a
single path which is optimum according to fmax. That is, for any given sample s ∈ Z1,
it is possible to direct the arcs of the MST such that the result will be an optimum path
tree P for fmax rooted at s. The optimum prototypes are the closest elements in the
MST with different labels in Z1. By removing the arcs between different classes, their
adjacent samples become prototypes in S∗ and Algorithm 1 can compute an optimum
path forest with none classification errors in Z1 without data overfitting [10].

4.2 Classification

For any sample t ∈ Z3, the OPF consider all arcs connecting t with samples s ∈ Z1, as
though t were part of the graph. Considering all possible paths from S∗ to t, we wish
to find the optimum path P ∗(t) from S∗ and label t with the class λ(R(t)) of its most
strongly connected prototype R(t) ∈ S∗. This path can be identified incrementally, by
evaluating the optimum cost C(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (13)

Let the node s∗ ∈ Z1 be the one that satisfies the above equation (i.e., the predeces-
sor P (t) in the optimum path P ∗(t)). Given that L(s∗) = λ(R(t)), the classification
simply assigns L(s∗) as the class of t. An error occurs when L(s∗) 6= λ(t).

4.3 Learning algorithm

The performance of the OPF classifier improves when the closest samples from dif-
ferent classes are included in Z1, because the method finds prototypes that will work
as sentinels in the frontier between classes. The learning algorithm replaces irrelevant
samples of Z1 by errors in Z2, and secondly other samples of Z2 are replaced by ir-
relevant samples of Z1. In both cases, the algorithm never let a sample of Z2 return
to Z1. The learning algorithm essentially tries to identify these prototypes from a few
iterations of classification over Z2.

In order to define irrelevant samples, the OPF algorithm can identify all samples in
Z1 that participated in the classification task of any node t ∈ Z2. The OPF consider all
right and wrong classifications in Z2. When t ∈ Z2 is correctly/incorrectly classified,
we add one to the number of right/wrong classifications, of every sample r ∈ Z1 in the
optimum path P ∗(t) from R(t) ∈ S∗ to s∗. In that way, the learning algorithm outputs
the final projected classifier, which can be now used to predict the labels of Z3.

5 Experimental setup

5.1 Datasets

To evaluate the accuracy of our approach, we selected thirteen texture images obtained
from the standard Brodatz database. Before being digitized, each of the 512 × 512
texture images was rotated at different degrees [11]. Figure 1 displays the non-rotated
version of each of the texture images.
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Fig. 1. Texture images from the Brodatz dataset used in our experiments. From left to right, and
from top to bottom, they include: Bark, Brick, Bubbles, Grass, Leather, Pigskin, Raffia, Sand,
Straw, Water, Weave, Wood, and Wool.

From this database, three different image datasets were generated: non-distorted,
rotated-set A, and rotated-set B. The non-distorted image dataset was constructed just
from the original input textures (i.e. texture patterns at 0 degrees). Each texture image
was partitioned into sixteen 128 × 128 non-overlapping subimages. Thus, this dataset
comprises 208 (13×16) different images. Furthermore, images belonging to this dataset
will be used in the learning stage of our classifier. The second image dataset is referred
to as rotated image dataset A, and was generated by selecting the four 128× 128 inner-
most subimages from texture images at 0, 30, 60, and 120 degrees. A total number of
208 images were generated (13× 4× 4). Finally, in the rotated image dataset B, we se-
lected the four 128×128 innermost subimages of the rotated image textures (512×512
) at 0, 30, 60, 90, 120, 150 and 200 degrees. This led to 364 (13×4×4) dataset images.
Rotated image dataset A, as well as rotated image dataset B will be used for recognition
purposes.

5.2 Classification evaluation

In our experiments, the accuracy was measured by taking into account the possibility
of having classes with different cardinalities. Let N(i), i = 1, 2, . . . , c, be the number
of samples in each class i and N = N(1) ∪N(2) . . . ∪N(c) be the whole dataset. We
define the partial errors ei,1 and ei,2 as follows:

ei,1 =
FP (i)

|N | − |N(i)| and ei,2 =
FN(i)
|N(i)| , i = 1, . . . , c. (14)

where FP (i) and FN(i) denote both false positives and false negatives, respectively.
That is, FP (i) represents the number of samples of other classes that were classified as
being from the class i. In addition, FN(i) represents the number of samples in class i
that were misclassified. The errors ei,1 and ei,2 are then used to define the accumulated
partial error of class i as:

E(i) = ei,1 + ei,2. (15)
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Finally, the resulting classification accuracy L is found:

L =
2c−∑c

i=1 E(i)
2c

= 1−
∑c

i=1 E(i)
2c

. (16)

6 Experimental results

To demonstrate the discriminating power of our proposed method for recognizing ro-
tated texture patterns, we conducted two series of experiments. In the first series of
experiments (Subsection 6.1), we evaluated the effectiveness of the proposed rotation-
invariant representation against two other approaches: the conventional Pyramid De-
composition [12] and with a recent proposal based on Gabor Wavelets [13]. Further-
more, the second series of experiments (Subsection 6.2), were used to evaluate the
recognition accuracy of the novel OPF multi-class classifier. Note that, both series of
experiments were conducted using rotated-sets A and B. The rotated-set A was used
to analyze the recognition accuracy of our method under the presence of few rotated
versions of texture patterns. In addition, experiments conducted in the rotated-set B
consider several rotated versions of different texture patterns.

In both series of experiments, we used Steerable Pyramids having different decom-
position levels (S = 2, 3, 4) at several orientations (K = 4, 5, 6, 7, 8). Our experiments
agree with [14] in that, the most relevant textural information in images is contained in
the first two levels of decomposition, since little recognition improvement is achieved
by varying the number of scales during image decomposition. Therefore, we focus our
discussions on image decompositions having (S = 2, 3) scales. The dimensionality
of the feature vectors depends on the number of scales (S) and on the number of ori-
entations (O) considered during image decomposition and it is computed as follows:
2×O×S. Furthermore, an important motivation in our study was to use small size fea-
ture vectors, in order: (1) to show that the recognition accuracy of our approach is not
compromised, and (2) to facilitate texture recognition applications where data storage
capacity is a limitation.

6.1 Effectiveness of the rotation invariance representation

To analyze the texture characterization capabilities of our method against the conve-
tional Pyramid Decomposition [12] and the Gabor Wavelets [13], we used Gaussian-
kernel Support Vector Machines (SVMs) as texture classification mechanisms. Note
that, the SVM parameters were optimized by using the cross-validation method 1.

Figure 2 compares the recognition accuracy obtained by those three methods in the
rotated-set A, whereas Figure 3 depicts the recognition accuracy obtained in the rotated-
set B. From both figures, it can be seen that our image descriptor outperforms the other
two approaches, regardless of the number of scales or orientations used for extracting
the feature vectors.

In the case of the rotated-set A, the higher classification accuracies achieved by our
method were obtained by using 7 orientations, which corresponds to image rotations in

1 We used the well known LIBSVM package [15]
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steps of 25.71◦. Those accuracies are respectively 100% and 97.31% for two and three
decomposition levels (s = 2, 3). The corresponing classification accuracies obtained by
the Gabor Wavelets are: 90.36% and 93.90% (s = 2, 3;o = 7), whereas for the conven-
tional Steerable Pyramid those accuracies are: 89.67% and 90.36%. Furthermore, the
accuracies using o = 6, 7, 8 orientations are very close to each other. Therefore, s = 2
and o = 6 are the most appropiate parameter combinations for our rotation-invariant
image descriptor, and at the same time, low dimensionality feature vectors are obtained.

In the case of the rotated-set B, the higher classification accuracies achieved by our
descriptor, were again obtained by using 7 orientations. Classification rates of 95.86%
and 95.73% correspond respectively to feature vectors with s = 2, 3 scales and o = 7
orientations. Further, it is found that both Gabor Wavelets and Conventional Steerable
Pyramid Decomposition present lower classification rates, being respectively 91.05%
and 95.35% for the first method, and 84.22%, 84.23% for the second one. As in the re-
sults obtained in rotated-set A, we can notice that the achieved classification accuracies
are very close to each other, when using o = 6, 7 or o = 8 orientations. From these
results, we can reinforce that the most appropriate parameter settings for our descriptor
are s = 2 scales and o = 6 orientations.

Furthermore, from the bar graphs shown in Figures 2 and 3, the best performance
obtained by the rotation-invariant Gabor method is as good as our descriptor. However,
this rate is obtained at s = 3 scales, whereas the proposed descriptor achieves the same
performance using only s = 2 scales. In this sense, an important advantage of our
method is its high performance rate at low size feature vectors. It is worth to mention
that in our experiments the OPF classifier was at least 10 times faster than the SVM
classifier2.
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Fig. 2. Classification accuracy comparison using the SVM clas-
sifier obtained in rotated-set A using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor Wavelets, conven-
tional Steerable Pyramid decomposition and our method.

Fig. 3. Classification accuracy comparison using the SVM clas-
sifier obtained in rotated-set B using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor Wavelets, conven-
tional Steerable Pyramid decomposition and our method.

2 Due to the lack of space, we could not present a detailed study of the execution time
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6.2 Effectiveness of the multiclass recognition method

In the previous subsection, we showed that our proposed rotation-invariant image de-
scriptor outperforms the other two methods. Therefore, our objective now is to show
the recognition improvement of our classifier over the SVM approach. It can be seen
from Figure 4, that for almost all feature extraction configurations, the recognition rates
of the OPF classifier are higher than those of the SVM classifier. However, the latter
method presents the same recognition rates as the OPF classifier when using s = 2
scales and o = 6, 7 orientations. In the case of the image rotated-set B, our classifier
yields better recognition rates for all feature extraction configurations (See Figure 5).
By considering that it was found, that the most appropriate parameter settings for our
descriptor are s = 2 scales and o = 6 orientations, it is worth to mention, that by using
this configuration, the recognition accuracy obtained by the OPF classifier is 98.49% in
comparison with the corresponding accuracy of 95.48% obtained by the SVM classifier.
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Fig. 4. Recognition accuracy comparison of the OPF and SVM
classifiers in rotated-set A using (S = 2, 3) scales with (K =
4, 5, 6, 7, 8) orientations for our rotation-invariant image de-
scriptor.

Fig. 5. Recognition accuracy comparison of the OPF and SVM
classifiers in rotated-set B using (S = 2, 3) scales with (K =
4, 5, 6, 7, 8) orientations for our rotation-invariant image de-
scriptor.

6.3 Results Summarization

A summary of our experimental results is provided in Tables 1, and 2. Table 1 compares
for each dataset, the mean recognition rates obtained by the three texture image descrip-
tors using different scales (s = 2, 3) and different orientations (o = 4, 5, 6, 7, 8). In this
set of experiments, we used Gaussian-kernel Support Vector Machines (SVMs) as tex-
ture classification mechanisms. From our results, it can be noticed that our texture image
descriptor performs better regardless of the dataset used, or the image decomposition
parameters considered during feature extraction (number of scales and orientations).
Furthermore, the second series of experiments are summarized in Table 2. As it can be
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seen, the OPF classifier improves the recognition accuracies obtained by the SVM clas-
sifier in all of our experiments. By considering the summarized results, it can be shown
that our proposed recognition system performs better than the previously mentioned
approaches, which represent state-of-the-art methods.

Rotated
Image Dataset

Feature vectors with different
scales (s) and orientations (o)

Proposed Image
Descriptor

Conventional Steerable
Pyramid Decomposition

Gabor Wavelets

A (s=2;o=4,5,6,7,8) 98.89% 93.19% 93.19%
A (s=3;o=4,5,6,7,8) 98.61% 92.36% 97.92%
B (s=2;o=4,5,6,7,8) 97.35% 85.30% 91.29%
B (s=3;o=4,5,6,7,8) 96.74% 85.76% 96.67%

Table 1. Mean recognition rates for the three different texture image descriptors using Gaussian-
kernel Support Vector Machines as classifiers.

Rotated
Image Dataset

Feature vectors with different
scales (s) and orientations (o)

Proposed Image
Descriptor using OPF

Proposed Image
Descriptor using SVM

A (s=2;o=4,5,6,7,8) 98.89% 95.89%
A (s=3;o=4,5,6,7,8) 98.61% 97.99%
B (s=2;o=4,5,6,7,8) 97.35% 92.30%
B (s=3;o=4,5,6,7,8) 96.74% 96.70%

Table 2. Mean recognition rates for the proposed rotation-invariant texture image descriptor using
both OPF and SVM classifiers.

7 Conclusions

In this paper a new novel texture classification system was proposed. Its main features
include: (1) a new rotation-invariant image descriptor, and (2) a novel multi-class recog-
nition method based on Optimum Path Forest. The proposed image descriptor exploits
the discriminability properties of the Steerable Pyramid Decomposition for texture char-
acterization. To obtain rotation-invariance, the dominant orientation of the input tex-
tures is found, so that feature elements are aligned according to this value. By doing
this, a more reliable feature extraction process can be performed, since corresponding
feature elements of distinct feature vectors, coincide with images at same orientations.
In addition, our system adopted a novel approach for pattern classification based on
Optimum Path Forest, which finds prototypes with none zero classification errors in the
training sets and learns from errors in evaluation sets. By combining the discriminating
power of our image descriptor and classifier, our system uses small size feature vectors
to characterize texture images without compromising overall classification rates, being
ideally for real-time applications.
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Furthermore, we have demonstrated state-of-the-art results on two image datasets
derived from the standard Brodatz database. For the first image dataset, our method
obtained a mean classification rate of 98.89% in comparision with a mean accuracy
of 93.19% obtained by both conventional Steerable Pyramid decomposition [12] and
Gabor Wavelets [13]. For the second image dataset, our method achieved a mean clas-
sification of 97.35%, whereas the other two methods obtained respectively classification
rates of 85.30% and 91.29%.

On the other side, the OPF multi-class classifier outperformed the SVM in the two
datasets. It is a new promising graph tool for pattern recognition, which differs from
traditional approaches, in that, it does not use the idea of feature space space geometry,
therefore, better results in overlapped databases are achieved. Future work will include
extending this method for scale-invariant texture recognition.

This work is partially supported by Microsoft Escience and Tablet PC Technol-
ogy and Higher Education projects, CNPq (Proc. 134990/2005-6, 477039/2006-5 and
311309/2006-2), FAPESP, CAPES, and FAEPEX.
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