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Abstract. Biodiversity scientists often need to define and detect scenarios of
interest from data streams concern meteorological sensors. Such streams are
characterized by their heterogeneity across spatial and temporal scales, which
hampers construction of scenarios. To help them in this task, this paper proposes
the use of the theory of Complex Event Processing (CEP) to detect complex event
patterns in this context.

1. Introduction

Biodiversity broadly means the abundance, distributions and interactions across geno-
types, species, communities, ecosystems and biomes. Countless problems in biodiversity
studies require data collected and analyzed at multiple space and time scales, correlating
environmental variables, living beings and their habitats [Hardisty and Roberts 2013]. An
open problem in this context is how to specify and detect patterns from environmental
variables in multiple scales to help scientists to analyze phenomena and correlate results
with data collected on the field.

To help solving the problem, this work proposes to use Complex Event Process-
ing (CEP), the technology to process data streams concern meteorological sensors via
event detection. The main goal is to detect event patterns in near real-time, in order to
signal situations of interest [Sen et al. 2010]. The idea is to allow researchers to specify
and combine events that characterize such situations, in the context of biodiversity appli-
cations. For now, scenarios of interest are usually built case-by-case; sensor events are
sometimes captured by customized software. The paper extends the framework proposed
by [Koga 2013] for this purpose.

2. Basic Concepts

In CEP, the word event means the programming entity that records an occurrence of some-
thing in a domain [Etzion and Niblett 2010]. Events are classified into primitive and com-
plex. Primitive events represent an occurrence at a given place and time. Complex events
are formed by combinations of primitive or complex events.

The main task of CEP is to detect complex events, in order to identify within a
set of events those that are significant to an application domain. Such a detection occurs
through matching events with patterns. Patterns represent models of scenario of interest
composed by specification of events and their relationships. Patterns can be defined on a
hierarchy of events in which the highest level events are formed by inferences from lower
level events.



3. Related Work

Depending on the context, the structure and components of events can change.
[Koga 2013] defines 4 attributes to specify events in environmental applications:
measured-value, nature, spatial-variable, and timestamp. However, this representation
only describes primitive events. The description of complex events must define rela-
tionships between events. For example, [Sen et al. 2010] represents complex events in
business applications by a model based on semantics which, besides the basic attributes,
has reference to operators that connects events.

Patterns are specified by event processing languages. These languages are
mainly defined using approaches based on logics (logic-based) or automata (automata-
based). Many research efforts in defining more powerful languages. For instance,
[Barga and Caituiro-Monge 2006] describe the language Complex Event Detection and
Response (CERD) for expressing patterns that filter, generate and correlate complex
events in business applications.

Logic-based patterns are defined as combinations of predicates on events.
Examples of works using this approach are [Motakis and Zaniolo 1995] and
[Obweger et al. 2010]. The first authors define a model for active databases in which
the pattern composition is described by Datalog,s rules. For biodiversity applications,
our target, this model is limited because Datalog,s only supports one temporal operator.
Scenarios that have more complex temporal relationships and/or have spatial relationships
cannot be represented. On the other hand, [Obweger et al. 2010] do not limit the pred-
icate to the use of specific operators. In addition, their model allows users to compose
hierarchical patterns using an interface that abstracts the definition of sub-patterns.

In automata-based approaches, regular expression operators are used to com-
pose patterns. This approach limits the temporal relationships to the notion of prece-
dence and does not support spatial operators. Examples of papers in this line are
[Pietzuch et al. 2004] and [Agrawal et al. 2008]. The first one performs event detection in
distributed systems. The latter focuses on improving the runtime performance of pattern
queries over event streams, for business applications.

4. Partial Results

This work has two main parts. The first one aims at formalizing specification of
events on biodiversity, inspired by literature proposals applied to different domains (e.g.,
[Etzion and Niblett 2010, Barga and Caituiro-Monge 2006, Sen et al. 2010]). It must: al-
low the hierarchical events composition, such as [Sen et al. 2010]; combine heteroge-
neous data sources, such as [Koga 2013]; and consider the place where the event occurs,
such as [Koga 2013]. It must also extend the semantics of operators to support spatial and
temporal multiscale data. This specification can express biodiversity scenarios of differ-
ent complexity, from excessive rain to situations combining river data with vegetation and
relief data;

The second contribution of this work is the development of a mechanism that
allows patterns composition and detection in order to assist biodiversity applications. This
step extends the work of [Koga 2013], which allows integrating data from heterogeneous
sources; however, it is limited to the detection of primitive event patterns. The Figure 1



illustrates the adapted architecture, horizontally drawn, of the extended framework. The
architecture has two main aspects: the use of Enterprise Service Bus (ESB) to process
data streams uniformly and the use of CEP to detect patterns. Environmental data are
pre-processed and translated into events, which pass through the ESB and are processed
by CEP.
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Figure 1. Adapted architecture from [Koga 2013]

From bottom to top, steps 1 and 2 filter data according to the goal of applica-
tion. At step 3, the data are encapsulated into messages that are standardized by chan-
nel adapters (ESB template). Steps 4 and 5 correspond to the translation of messages
into events and their processing by CEP. If a pattern is detected, step 6 encapsulates the
matched event into a new message. At the steps 7 and 8, this message is standardized and
sent to the interested user.

Our work complements the architecture adding complex pattern composition and
detection, illustrated by the red arrow from step 6 to step 4 in Figure 1. This adaptation
provides more representative patterns. The detected composition of events is sent back to
the ESB bus, and forwarded back into the pipeline, creating a hierarchical structure. The
output of a complex event may become part of more complex compositions, generating
composite events at a higher level.

Using the architecture, biodiversity scientists can represent scenarios (as defor-
estations and forest fires) by complex patterns and detect them. For instance, detecting
climatic changes as the arrival of a cold front in Campinas involves the monitoring of
several environmental variables. A short logic-based pattern for this scenario can be:

JEt1|Etl.temp < 5°C A dist(Etl.space, Campinas) < 200km A

JEt2|Et2.temp > 20 °C A touch(Etl.space, Et2.space) A

JEw|EBw.windSpeed > 60km/h N overlap( Ew.space, Etl.space) A movDir( Ew) = Campinas
overlap(Etl.time, Et2.time, Ew.time)



This pattern searches for a composition of event Ftl signaling low tempera-
ture (cold air mass), “meeting” with £12 signaling high temperature in Campinas (hot
air mass), and /w which shows the presence of strong wind carrying the cold front to
Campinas. The detection process finds events Ft1 and Et2, generating complex event
C'E1. This event is fed back to the bus. Next, C E'1 and Fw are detected, generating the
complex event C'E'2 that confirms the cold front. At the detection hierarchy, when C'E'1
and C'E2 are generated, they form a higher hierarchical level.

This framework will be validated over sensor data, provided by Cooxupé, coop-
erative of coffee farmers, from 14 weather stations in Minas Gerais and Sao Paulo, data
used to validate the work of [Koga 2013]. Each weather station continuously collects at
least 26 types of measurements, e.g., temperature, humidity, barometric pressure and so
on.

5. Conclusions

This paper proposes a software framework to help biodiversity scientists to quickly detect
scenarios of interest. These scenarios are specified by event patterns. The expressiveness
of patterns and events is considered in their specification, and the handling of multiscale
data is considered. The detection is made by a hierarchical and logic-based approach.
Future directions include defining the pattern language and partial implementation.

Acknowledgements Work partially financed by FAPESP (2013/02269-7),
FAPESP/Cepid in Computational Engineering and Sciences (2013/08293-7), the
MSR-FAPESP Virtual Institute (NavScales project), CNPq (MuZOO Project), FAPESP-
PRONEX (eScience project), INCT in Web Science, and grants from CNPq.

References

Agrawal, J., Diao, Y., Gyllstrom, D., and Immerman, N. (2008). Efficient pattern match-
ing over event streams. In ACM SIGMOD, pages 147-160.

Barga, R. S. and Caituiro-Monge, H. (2006). Event correlation and pattern detection in
cedr. In EBDT, pages 919-930.

Etzion, O. and Niblett, P. (2010). Event Processing in Action. Manning Publications Co.

Hardisty, A. and Roberts, D. (2013). A decadal view of biodiversity informatics: chal-
lenges and priorities. BMC Ecology, 13(1).

Koga, 1. K. (2013). An Event-Based Approach to Process Environmental Data. PhD
thesis, Instituto de Computagdo - Unicamp. Supervisor Claudia Bauzer Medeiros.

Motakis, I. and Zaniolo, C. (1995). Composite temporal events in active database rules:
A logic-oriented approach. In DOOD, volume 1013 of LNCS, pages 19-37.

Obweger, H., Schiefer, J., Kepplinger, P., and Suntinger, M. (2010). Discovering hierar-
chical patterns in event-based systems. In SCC, pages 329-336.

Pietzuch, P., Shand, B., and Bacon, J. (2004). Composite event detection as a generic
middleware extension. IEEE Network, 18(1):44-55.

Sen, S., Stojanovic, N., and Stojanovic, L. (2010). An approach for iterative event pattern
recommendation. In DEBS, pages 196-205.



