
A View Handler for Semantic Graphs

Jaudete Daltio

Institute of Computing - UNICAMP

Campinas - SP, Brazil

Email: jaudete@ic.unicamp.br

Claudia M. Bauzer Medeiros

Institute of Computing - UNICAMP

Campinas - SP, Brazil

Email: cmbm@ic.unicamp.br

Abstract—Scientific data often come from networks with com-
plex relationships between their entities and can be properly
modeled as semantic graphs. However, once designed, there is no
simple way to cross through different designs in graph databases.
The goal of this research is to specify and implement a framework
to overcome these limitations, allowing users to build and explore
arbitrary perspectives in graphs. The framework uses the concept
of views to represent a perspective. The main contribution is to
help scientists run models and analyze network (graph) data
according to their specific design needs. The framework is under
implementation and validation using a case study on water
resource data.

I. INTRODUCTION AND MOTIVATION

Graph databases are the most suitable approach to deal

with datasets where data and the relations among them have

the same importance level [1], handling data networks with

complex relationships between their entities [2]. A graph

data model adopts variations on the mathematical definition

of a graph and is relationship driven (i.e., does not require

expensive operations to infer connections between data items).

The most common graph data model adopted is the semantic

graph. A semantic graph is a heterogeneous network in which

every vertex and edge is typed and attributed [3]. The power

of this data model lies in that semantic information resides on

types and attributes [4].

The motivation for our research comes from our experience

in designing semantic graphs. Usually, graph design is query-

driven. The problem appears when it is necessary to provide

multiple perspectives of the same semantic graph to meet

different ends. There is no simple way to cross through

different designs in graph databases. Ultimately, the current

approach would require multiple graphs to be designed.

This challenge is the topic of our research [5], namely,

to construct a framework to build and explore arbitrary per-

spectives for semantic graphs. The framework assumes graph

databases as the storage model and offers operators to allow

users to “see” a graph otherwise. The hypothesis that underlies

this research is that the concept of view – from relational

databases – is suitable to represent a perspective and that this

concept can be adapted and extended to graph databases. Each

view specification has its specific design and its mapping to

the underlying graph database elements. Once a view is built,

it can be used in network-driven analysis and exploration.

A case study about Brazilian Water Resources is also under

implementation to validate our framework. Water resources are

usually represented as drainage networks – their physical ele-

ments being drainage points connected by drainage stretches.

There are many logical elements that can be extracted from

this database and each of these elements can be handled as a

view over the drainage network.

This work will contribute to help scientists run models and

analyze networked (graph) data according to their needs, by

presenting a framework characterized by: (i) the use of graph

databases as persistence model for large and heterogeneous

datasets; (ii) providing different designs over semantic graphs;

and (iii) support of network-driven analysis according to users’

needs. To produce these results, we propose a new way

of formalizing operations on graphs, which is inspired by

relational database theory.

II. THEORETICAL FOUNDATIONS AND RELATED WORK

A. Graph Data Management Paradigm

The graph data management paradigm is defined by the

use of graphs as data models and the use of graph-based

operations to express data manipulation [1]. A graph data

model is relationship driven [6]. In this model, queries are

performed through graph traversals, pattern matching or graph

algorithms.

The formal foundation of graph data models is based on

variations on the mathematical definition of a graph: G is

a data structure composed by a pair (V,E), where V is a

finite nonempty set of vertices and E is a finite set of edges

connecting pairs of vertices. On top of this basic layer, several

graph data structures were proposed, attempting to improve

expressiveness. The most popular data model is the semantic

graph (also called property graph) [7], which tries to arrange

vertex and edge features in a flexible structure through types

and key-value pairs.

Although graph databases have no explicit schema, we

claim there is an implicit schema defined by the data design,

which describes the semantic organization of all modeled

information – i.e., specifying entities, which relations are valid

for each entity and which are not, or what kinds of attributes

are relevant. There are usually many alternative ways of storing

the same data and even simple network-driven knowledge

discovery depends on the design [8]. The usual approach is

to design a graph that tries to meet most queries. Vertices are

normalized and edge types should be meaningful. Connected

vertices and edges are interpreted as paths and queries are

expressed as graph patterns. The challenge arises when it



is necessary to provide multiple perspectives of the same

semantic graph. There is no simple way to accommodate

different design decisions in a graph database.

Our solution is to apply the concept of view – adapted

from relational databases – to represent a perspective on top

of a graph. Each view specification has its specific design

and mapping to the underlying graph database elements. The

concept of view adopted in this research is presented next.

B. Views

From the relational databases perspective, a view can be

regarded as a temporary relation against which database re-

quests may be issued [9]. Extended to our work, a graph

view is a virtual perspective that “redesigns” part of a graph

database. A view can be used to achieve different purposes: (i)

simplify the use, extracting a portion of a database and hiding

unnecessary details not relevant to the application; (ii) provide

data protection and privacy policies, blocking the access to

non-authorized information; or (iii) redesign data, creating

virtual units derived from arrangements and aggregations of

database objects [10].

Relational views are usually built by a combination of oper-

ations applied on the underlying relations, creating alternative

or composite representations of existing database objects. The

sequence of operations that creates a particular view is called

view generating function (VGF). In relational theory, these

operators are those used to construct queries, e.g., selection,

projection, join and aggregate functions. Each view may

expose the same database in a different way. Usually, a view

definition is stored in the data dictionary and only materialized

when a query which involves the view is requested.

III. SEMANTIC VIEW HANDLER FRAMEWORK

Our framework supports the definition of view on semantic

graphs on graph databases. In general terms, our view spec-

ification has two important elements: the graph view design

and the mapping between the view design and source graph

database elements. These two elements are represented in the

framework through a graph view generating function (GVGF).

One important difference between relational and graph data

models is the existence of more than one kind of basic element

– i.e., instead of relations, graph data models have vertices and

edges. Thus, the regular expression of a GVGF, defined by our

research, reflects this difference:

GVGF =
(

{

V +
spec, E

+
spec

}

∗

∪ {Gspec}
∗

)

As can be seen in this expression, a GVGF has two main

parts, where the ∗ notation indicates zero or more occurrences
of each part. In the first part, the generating function is applied

to vertex and edge sets and the + notation indicates at least one

occurrence of each part. There are two possible scenarios: (i)

using an element of the original graph under a unary operator

or (ii) create a new element (e.g., vertex or edge). In the second

part, the generating function is applied in terms of defining

graph pattern or graph traversal, usually starting from a central

concept. The graph view is the union of all elements returned

by the GVGF.

Figure 1 gives a general overview of our framework

architecture. It receives the specification of a GVGF as input

and provides the graph view – a virtual perspective of the

graph database – as output. The persistence layer of the

framework is composed by several graph databases and it

provides management mechanisms to store view definitions.

Fig. 1. Semantic View Framework Architecture

The central engine is inspired by the steps of a query

processor of database systems. It is composed by four modules

(following the sequence of Figure 1): (A) Analyze Function

/ Operators; (B) Perform Data Access; (C) Perform Data

Processing and (D) Check View Integrity.

Module (A) parsers the generating function and builds an

intermediary data structure – a tree of “plan nodes” – whose

nodes represent the operators and their parameters. The frame-

work provides an extensible set of operators that can be used to

compose a view generating function. Subsequently, modules

(B) and (C) work together to process each node, from the

leaves to the root, accessing the required graph databases and

execute each operator. These modules are executed repeatedly

until the view generating function has been fully processed.

Module (D) is responsible for ensuring that the result of the

generating function is a valid semantic graph.

The first challenge addressed by our framework is to

determine the graph operations that can be combined in the

GVGF and specify their behavior in a high level definition.

Considering a graph instead of a relation, some adaptations

are necessary on classical operators: not only concerning

the type of the elements (i.e., instead of relations, vertices

and edges) but also dealing with edge types, vertex labels

and attributes of both. We organize our graph operators as

follows, combining the classical relational operators and graph

operators. This organization is one of the main contributions

of our research.

Projection Operator is a unary operation, represented by the

symbol Π, to restrict the amount of element attributes. In

relational theory, the operator is written as Πa1,...,an
(R) where

a1, . . . , an is a set of attribute names of relation R. The result

of such projection is the set from all tuples in R restricted



to the attributes {a1, . . . , an}. A graph projection operator is

written as:

Π(Va1,...,an )(Eb1,...,bn :t)(V,E) where a1, . . . , an is a set of

attribute names of the vertices of V and b1, . . . , bn is a

set of attribute names of the edges of E with type t.

Restriction Operator is a unary operator, represented by

the symbol σ, to select elements which satisfy conditions. In

relational theory, the operator is written as σϕ(R), where ϕ

is a propositional formula to be applied on all tuples of R.

The restriction selects a subset of tuples of R that satisfy the

conditions ϕ. A graph restriction operator is written as:

σϕ,ϕv,ϕe:t
(V,E) where ϕv is a propositional formula on

vertex attributes, ϕe:t is a propositional formula on edge

attributes with type t and ϕ is a path condition on vertex

and edges elements – i.e., a pattern of triples vertex–

edge–vertex which describes conditions over how these

elements are connected.

Set Operators: refer to a category of binary operations which

came from set theory: union (∪), difference (\), intersection
(∩) and Cartesian product (×). The main difference is that, in
relational theory, these operators must be applied to compatible

relations (i.e., with the same schema). In terms of semantic

graphs, it is unusual to deal with two different graphs with

exactly the same “schema” – i.e., same vertex labels (i.e.,

representing the same real world entity), edge types, vertex and

edge attributes. In this unlikely scenario, Ga∩Gb and Ga \Gb

have the same behavior as in relational algebra. The union

operator, however, can be applied on not-compatible graphs,

resulting in the union of all elements involved. Cartesian

product has been discarded by us, since it potentially generates

too many useless semantic “garbage”.

Extended Projection Operators: it refers to a broad range

of operations that allow computations on the data domains. In

terms of primitive domains, for example a number, we have

mathematical operators. In terms of vertices or edges, we have

graph properties, such as a vertex degree. These operators can

be used to generate a set of values, used as attribute to existent

or new elements on graph view or to generate an aggregate

value, such as sum, count, average, max, min, etc.

Graph Traversal and Other Operators: The graph traversal

operator allows visiting all vertices in a graph according to

some criteria, updating or checking their attribute values along

the way. The detailed specification of this operator and the

addition of other operators are still under specification and

are outside the scope of this paper.

A. Implementation Aspects

A framework prototype is under implementation. The graph

database management system chosen was Neo4j 1 – a labeled

property multigraph [7]. Neo4j implements a native disk-based

storage manager for graphs [11]. In Neo4j, every edge must

have a relationship type and there are no restrictions about

the number of edges between two nodes. Both vertices and

edges can have properties (key-value pairs). Neo4j offers tools,

1neo4j.com

drivers and libraries, including an object-oriented API for Java,

currently used in our implementation. The graph operators

are being mapped to Cypher commands, according read and

write query structures. Cypher is a pattern-oriented, declarative

graph query language available on Neo4j.

To clarify the understanding of the framework, section IV

presents a case study using real data in which different views

are demanded.

IV. CASE STUDY - BRAZILIAN WATER RESOURCES

DATABASE

In Brazil, the National Water Agency (ANA) is legally

responsible for ensuring the sustainable use of fresh water.

To organize the required data and support management tasks,

ANA constructed a water resources relational database, repre-

senting the hydrography as a drainage network composed by

620.280 drainage points and 620.279 drainage stretches. There

are at least three important logical elements computed on top

of this database: rivers, watersheds and main watercourses.

Several functions are routinely performed on this database,

some based on the original drainage network and others based

on the logical elements. Most might take advantage of the

network structure. However, since the data is stored in a

relational database, they are performed using recursive join

operators. Our proposal is based on changing the storage

solution, transforming this stored data into a stored graph,

here denoted by GHydro = (Vdp, Eds). All vertices in Vdp are

labeled with DrainagePoint and all edges in Eds have type

DrainageStretch. Both elements keep their original attributes

from the relational database. Details about the transformation

process between relational and graph data model can be found

in [12].

Once GHydro is created, we can apply our operators. For in-

stance, validation tests should ensure that the drainage network

is a binary tree-graph, connected and acyclic, whose edges go

from the leaves to the root. The binary tree structure is checked

selecting all vertices whose degree values are different from 1

(start or end points) or 3 (confluences), applying our extended

projection operation. The database is inconsistent if at least

one vertex is found. This task do not require generating of a

specific view (i.e., they can be performed over GHydro).

A recurrent task is to determine the “most important” river

in a watershed. This cannot be computed in the original

hydrographic network and thus requires a graph redesign

and, hence, a graph view. The logical element “river” is

composed by all drainage stretches that are connected and

have the same hydronym. This view is built as follows. First,

it transforms each river (a set of connected edges) in one

vertex. This information is generated using our projection op-

eration: Πdistinct(hydronym)(E : Drainage Stretch). Next,
it constructs a graph in which edges represent connections

between rivers. Each pair of rivers that has at least on drainage

point in common are connected. An “important” river will be

highly connected (i.e., a vertex with many edges) whereas less

important rivers will have few connections. The graph view



result is GRiver = (Vr, Ec), in which the vertices in Vr are

labeled with River and all edges in Ec have type Connection.

Although rivers are the most popular concept, the official

territorial unit adopted by ANA for the management of water

resources is the watershed. A watershed delimits a drainage

system channel and comprises the entire area that separates

different water flows. Every watershed has a main watercourse:

a set of connected drainage stretches selected by performing

traversal in the sub drainage network. Following the water-

course layout, the watershed can be split in a set of sub-

watersheds and the process is applied recursively, as shown

in Figure 2. Each watershed receives a numeric ottocode and

the sub-watersheds have the same ottocode as prefix (e.g.,

as shown in Figure 2 watershed 454 has 9 sub-watersheds

ottocoded as 4542, 4543,..., 4549). More details about this

methodology can be found in [13].

Fig. 2. Ottocoded Watersheds

An important analysis in this scenario is to identify the

most influential sub-watershed of a watershed. The influence

of a watershed is measured by it hydrographic catchment area

upstream (from the mouth to the spring). Each drainage stretch

has a hydrographic catchment area (HCA); the “upstream

area” summarizes this attribute from a set of connected edges.

This analysis cannot be computed in the original hydro-

graphic network too and thus requires a graph view. This

view is built as follows. First, it transforms each water-

shed (a subset of the drainage network) in one vertex.

This information is generated using our projection operation:

Πdistinct(ottocode)(E : Drainage Stretch). This step results

in a set of vertices Vw, labeled with Watershed, whose

vertices have an ottocode identifier.

Next, it constructs a graph in which edges repre-

sent the watershed hierarchy using our restriction opera-

tor: σsubstring(v.ottocode,length(v.ottocode−1))=(vw.ottocode)(V :
Watershed). This step results in a set of edges Eh with type

PartOf connecting only direct sub-watersheds (i.e., ottocodes

that only differ on the last digit).

Finally, we have to calculate the upstream HCA of each

watershed. This is done using our extended projection oper-

ator to sum the HCA of the subset drainage network. The

operator is an aggregate function over a numeric attribute

applied to each vw ∈ Vw: SUM(σe.ottocode=vw.ottocode(E :
Drainage Stretch).

The graph view result is GWatershed = (Vw, Eh) in which

the influence of each watershed can be easily analyzed. It is

enough to query the adjacent vertex of a given watershed and

their (calculated) attributes.

V. CONCLUSIONS

This paper presented the specification of a framework to

build and explore arbitrary perspectives in semantic graphs,

using graph databases as the basis of data management. The

approach extends the concept of views to represent a virtual

graph, which redesigns the original data. The definition of

a graph view is based on a graph view generated function,

composed by a set of graph operators, inspired by relational al-

gebra. To complement these operators, our framework defines

other operators based on classical graph algorithms. Besides

executing and to combining the results of all operators, the

proposed framework check the consistency of the generated

view to ensure that it is a valid graph.

The implementation and validation of the framework are in

progress. The internals of the framework were explained via

examples of functions performed in a real database of water

resources, pointing out some of challenges faced.

ACKNOWLEDGMENT

Work partially financed by FAPESP/CCES (2013/08293-7),

FAPESP-PRONEX (eScience project), INCT in Web Science,

and individual grants from CNPq.

REFERENCES

[1] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM
Comput. Surv., vol. 40, no. 1, pp. 1:1–1:39, Feb. 2008.

[2] V. Dhar, “Data science and prediction,” Commun. ACM, vol. 56, no. 12,
pp. 64–73, Dec. 2013.

[3] J. F. Sow, Conceptual Structures: Information Processing in Mind and
Machine. Reading: Addison-Wesley, 1984.

[4] M. Barthelemy, E. Chow, and T. Eliassi-Rad, “Knowledge representation
issues in semantic graphs for relationship detection,” in AAAI Spring
Symposium: AI Technologies for Homeland Security, 2005, pp. 91–98.

[5] J. Daltio and C. B. Medeiros, “Handling multiple foci in graph
databases,” in Lecture Notes in Bioinformatics (LNBI) - Proceedings of
10th International Conference on Data Integration in the Life Sciences,
S. I. P. Switzerland, Ed., vol. 8574, Lisboa, Portugal, 2014, pp. 58–65.

[6] T. Goodwin and S. M. Harabagiu, “Automatic generation of a qualified
medical knowledge graph and its usage for retrieving patient cohorts
from electronic medical records,” in Semantic Computing (ICSC), 2013
IEEE Seventh International Conference on, 2013, pp. 363–370.

[7] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly
Media, Incorporated, 2013.

[8] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M.
Patel, R. Ramakrishnan, and C. Shahabi, “Big data and its technical
challenges,” Commun. ACM, vol. 57, no. 7, pp. 86–94, Jul. 2014.

[9] A. Furtado, K. Sevcik, and C. Santos, “Permitting updates through views
of databases,” Informations Systems, vol. 4, pp. 269–283, 1979.

[10] C. B. Medeiros, M.-J. Bellosta, and G. Jomier, “Multiversion views:
Constructing views in a multiversion database.” Data Knowl. Eng.,
vol. 33, no. 3, pp. 277–306, 2000.

[11] P. Kivikangas and M. Ishizuka, “Improving semantic queries by utilizing
unl ontology and a graph database,” in Semantic Computing (ICSC),
2012 IEEE Sixth International Conference on, Sept 2012, pp. 83–86.

[12] J. Daltio and C. B. Medeiros, “HydroGraph: Exploring Geographic Data
in Graph Databases,” in Proc XVI GEOINFO, 2015, pp. 44–55.

[13] O. Pfafstetter, “Classificao de bacias hidrogrficas: metodologia de cod-
ificao.” Departamento Nacional de Obras de Saneamento (DNOS). Rio
de Janeiro, RJ, 1989.


