
Noname manuscript No.
(will be inserted by the editor)

Managing sensor traffic data and forecasting unusual
behaviour propagation

Claudia Bauzer Medeiros · Marc Joliveau ·
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Abstract Sensor data on traffic events have prompted a wide range of research issues, re-
lated with the so-called ITS (Intelligent Transportation Systems). Data are delivered for
both static (fixed) and mobile (embedded) sensors, generating large and complex spatio-
temporal series. This scenario presents several research challenges, in spatio-temporal data
management and data analysis. Management issues involve, for instance, data cleaning and
data fusion to support queries at distinct spatial and temporal granularities. Analysis issues
include the characterization of traffic behavior for given space and/or time windows, and
detection of anomalous behavior (either due to sensor malfunction, or to traffic events).

This paper contributes to the solution of some of these issues through a new kind of
framework to manage static sensor data. Our work is based on combining research on ana-
lytical methods to process sensor data, and data managementstrategies to query these data.
The first component is geared towards supporting pattern matching. This leads to a model to
study and predict unusual traffic behavior along an urban road network. The second compo-
nent deals with spatio-temporal database issues, taking into account information produced
by the model. This allows distinct granularities and modalities of analysis of sensor data
in space and time. This work was conducted within a project that uses real data, with tests
conducted on 1000 sensors, during 3 years, in a large French city.
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Grande Voie des Vignes 92295 Chatenay-Malabry cedex, France E-mail: florian.de-vuyst@ecp.fr· Geneviève
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1 Introduction

Geospatial data are the basis for countless applications ina wide range of domains. This
paper is concerned with one such domain – transportation systems. As pointed out by [34],
”one of the important innovations in transportation in recent years is the combination of
advanced sensor, computer, electronics and communications technologies to the operation
of the transportation system”. The generic term associatedwith this domain isIntelligent
Transportation Systems, or ITS.

ITS research is multidisciplinary, encompassing people from many distinct areas – from
computer scientists and mathematicians to sociologists and environmentalists. The final goal
is to improve the overall transportation infrastructure offered to all kinds of travelers – from
those who need to cross a street to overseas flight passengers. The design and development
of software embedded in intelligent vehicles, sensitive toGPS positioning, is another area
in which geospatial information management is adopted.

This paper is concerned with the problems involved in the analysis of a specific kind
of spatio-temporal data, obtained at real time from a large network of urban traffic sensors.
These sensors continuously capture distinct kinds of data on traffic, to be used for analysis
in traffic management and planning. At all times, experts must also take into account sensor
failures, to avoid incorrect decisions.

Rather than manipulating the original sensor spatio-temporal data series, we first prepro-
cess these data, eliminating noise, filling missing values,and reducing their dimensionality.
The result are clean (spatio-temporal) series with nice properties. These series are used to
feed our model, which supports forecasting of traffic behavior, including atypical events and
congestion patterns.

Cleaned data are stored in a DBMS, on which ITS queries and pattern analyses can
be performed, following a mix of standard (time series) database queries and new kinds of
queries that invoke the analysis functions of our model. While related work either concen-
trates on models or in database issues, ours combines both approaches. We do moreover take
into account the influence of human activity in urban areas (e.g., street markets, or accidents)
to derive better evaluation of traffic conditions.

Section 2 presents an overview of the context of our work. Section 3 presents our solu-
tion for preprocessing and summarizing sensor produced data. Section 4 introduces a new
traffic variable – congestion – which summarizes traffic behavior along spatio-temporal
axes. Section 5 presents propagation graphs – a novel way of examining atypical traffic
behavior, and its spatio-temporal propagation along a roadnetwork. Section 6 discusses the
spatio-temporal queries that can be posed in our framework.Section 7 comments on re-
lated work, showing how our work relates to research on spatio-temporal series processing,
pattern matching and traffic trend analysis. Finally, section 8 concludes the paper.

2 Overview of the Problem

Our research was conducted within the CADDY project (Control of the Acquisition and
storage of massive temporal Data volumes and DYnamic models) [2]. CADDY involved
a multidisciplinary research team composed of computer scientists and experts in traffic
management and planning. The goal was to develop a computational framework for decision
support in urban traffic management.

The sensors used in our research are fixed along street networks, and continuously col-
lect and broadcast several kinds of data on traffic movement.Each sensor is a magnetic loop
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that detects the presence of large metalic objects (e.g., cars). Values measured indicated the
proportion of metal detected. Data are sent to stations, andforwarded to a central data stor-
age facility. Two major traffic variables are used by expertsin this context, producing two
distinct (but interdependent) spatio-temporal series – see section 3 for their relationship:

– the vehicle flow rate (q), i.e., the number of vehicles that have passed in front of the
sensor for a given time period, usually minute or hour;

– the occupancy rate (τ ), i.e., the average space between vehicles in a given time period.
Thus, an occupancy rate of100% means vehicles are bump to bump, while0% means
no vehicles have been observed.

Our source data cover 1000 sensors for 3 years, where each sensor collects data every three
minutes. Each day is delivered in a separate set of files (forq andτ ), for a grand total of
approximately 480x106 values1. Our data were provided by the CLAIRE traffic supervi-
sion system [30] from INRETS (the French National Transportation Research Institute).
CLAIRE models an urban street network through an oriented graph, where each edge cor-
responds to a street segment. Sensor data are provided on each edge, associated with the
corresponding spatial location.

Figure 1 shows the flow rate and average occupancy in a weekday, over a 24 hour pe-
riod, for one sensor that is installed in a specific street segment. If this is a ”typical” day, one
expects that this sensor will produce similar series throughout the year – i.e., for the sensor
portrayed, low traffic in the early hours, with a peak between8 and 10 AM, another peak
at noon and so on, petering out in the evening. The occupancy graph, on the right, shows
that the 8-10 AM period is the one where there is a higher density of cars in the correspond-
ing street segment being monitored. Such patterns are used by experts to detect anomalous
traffic behavior. There are, however, several kinds of temporal behavior for a given area,
depending on the context and human activity associated – e.g., weekends or festivals will
provide different patterns.
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Fig. 1: Flow and occupancy rates, for one sensor, in a given street segment. The horizontal axis corresponds
to time, while the y-axis portrays the values measured by thesensor.

Processing these data presents several challenges, sinceq andτ must be combined to
allow experts an overall view, complicating the mathematical analysis. Given the potentially
very large number of series and sensors, this gives rise to the so-calleddimensionality prob-
lem, in which experts must handle multidimensional data (here,the set of time series), whose
dimensions must be reduced in order to allow them to perform their analyses.

1 I.e., (3 x 365) x 1000 sensors x (480 measures per day)
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At INRETS, data are kept separate for each sensor and each day. This means that there
are at least two kinds of long series that can be constructed –(a) per sensor, over time, and
(b) per timestamp, for all sensors. Each kind – (a) or (b) – supports a distinct analysis. The
first allows studying the behavior, for one sensor, through time (fixed point in space, varying
time), while the second presents a snapshot of the entire network, at a given timestamp (fixed
time, varying space). Joint analyses need to correlate these factors, resulting in a complex
multidimensional data space, as will be seen in section 3.

The relationship betweenq andτ is defined in the fundamental car-traffic law of trans-
portation theory. This correlation can be graphically represented by the fundamental diagram
– see figure 2, which shows the inherent relationship betweenτ (vertical) andq (horizontal)
rates, for one sensor, over one day.
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Fig. 2: Illustration of the fundamental car-traffic law of transportation theory – Fundamental diagram for one
sensor, on a given day.

Another issue is quality – the data transmitted by the sensors are very noisy, and contain
many gaps, mainly due to sensor failures and/or network breakdowns. Thus, the data must
be cleaned before they can be processed. The next section presents our solution for the di-
mensionality and missing value problems. It shows how thesetwo series can be cleaned, and
represented with very small errors by a compact descriptor (thus reducing dimensionality).

3 Summarizing Sensor-based Data

This section presents our solution to pre-process the spatio-temporal sensor data series, sum-
marizing them and reducing their dimensionality. It startsby presenting a method that dra-
matically reduces the dimensionality of each series (q andτ ), for all sensors, while managing
to maintain almost all the original information. Next, it shows how to derive missing values.
Finally, it combines both kinds of series (flow rate and occupancy), to describe the overall
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state of each sensor per day, mapped to the interval [0,1]. This interval can be divided into
several classes, which represent specific traffic states defined by experts (e.g., “heavy”, “bot-
tleneck”), thus supporting subsequent queries not only on values but also on semantically
meaningful states.

3.1 Reducing Dimensionality – the STPCA Method

In [15], we introduced the Space-Time Component Analysis (STPCA), a new method to de-
velop descriptors of spatio-temporal data series. This method is based on applying Principal
Component Analysis (PCA) [19] to both spatial and temporal dimensions, as follows.

Assume that there are sensor data available forN days, for a total ofS sensors, and
that there are no missing or invalid values2. Let I be the number of instants in a day for
which sensors collect data (in our case,I=480). Data collected on the flow rate or occupancy
rate are stored in a matrixXd, whered symbolizes a date. The time series corresponding
to measurements collected by sensori at dayd is given by rowxd

i . The following steps
are applied separately to flow rate and to occupancy rate, obtaining two sets of time series
processed by STPCA.

1. Assemble day matrices horizontally (i.e., concatenate them one beside the other), for
spatial analysis, in a single matrixY, and vertically (i.e., concatenate them on top of
each other) for temporal analysis in a matrixZ. In matrixY, each column contains all
values obtained in a timestamp, and each row corresponds to one sensor, with values
varying through time, through all days (fixed location). In matrix Z, columns are the
instants of one day and each row corresponds to data from one sensor, for one single
date (fixed time); there are as many rows for each sensor as there are capture dates.
Matrix Y is S by (IxN), while Z is (SxI) by N .

2. Compute singular value decomposition for matricesY andZ, as follows
For spatial correlation matrixMs = YYT , compute the K first spatial eigenvec-
tors (Ψ k)k=1...S , with K ≪ S , storing them in matrixP. For temporal correlation
matrixMt = ZT Z, compute theL first temporal eigenvectors, withL ≪ I, (Φl)l=1...I ,
storing them in matrixQ.

P = col
“

Ψ
1, Ψ2, . . . , ΨK

”

.

Q = col
“

Φ
1, Φ2, . . . , ΦL

”

.

3. Finally, the STPCA estimatêXd of a day matrixXd is defined by:

X̂
d = PP

T
X

d
QQ

T .

We point out that the reduced order matrix is given by:

X
r
d = P

T
X

d
Q,

of sizeK × L whereK andL are chosen to be small. Experiments done with very small
values of these parameters, namely,K = L = 3, corresponding to a reduction factor of
order104, demonstrate the ability of STPCA to compute a good approximation. – see [15]
for details.

2 As will be seen, STPCA is preceded by an error-correction procedure, described later in the paper
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Fig. 3: Illustration of the flow rate time series, for one day,of 8 randomly chosen sensors - horizontal axis
represents time. Original and STPCA time series usingK = 3 andL = 3. The STPCA approximation is
portrayed in bold, while actual raw data is in gray.

Intuitively, STPCA summarizes the “average” typical traffic behavior for a sensor, over
all days in a period. Figure 3 illustrates flow rate time series measured by8 sensors randomly
chosen (grey curves), and their STPCA estimate (black curves), for K = L = 3. Domain
experts considered such approximations adequate for traffic analysis and trend forecasting,
in spite of divergences at specific points – e.g., the case of sensor 5, between 8 and 10
AM, for this specific day. These differences are due to the fact that, for these cases, STPCA
uses approximations based on an entire day. We might also have just considered shorter
periods, for every day, in which case the results would be more precise. As will be seen,
these variations can be analyzed and accounted for.

3.2 Filling missing values

STPCA cannot be directly applied to a data set containing missing values. Our solution to
this problem [18] is the following. We use the Expectation Maximization (EM) [5] algo-
rithm to estimate separately the spatial correlation matrix Ms and the temporal correlation
matrix Mt. We compute a complete estimation of the data set by using thek nearest time
series of each time series. We then project this estimation on the principal component of
Ms andMt approximations. Our experiments [18] show that results obtained by STPCA
on data sets – even those with an incompleteness degree that can go as high as40% – stay
very close to those obtained by STPCA on the corresponding complete data sets.



7

4 Attaching Semantics to Traffic Variables

4.1 Computing Traffic Congestion

We now introduce a new variable to support traffic analysis, the traffic congestion(E), de-
rived from the fundamental diagram, and computed for each timestamp. To better illustrate
how it is computed, we reproduce the fundamental diagram shown in figure 2 in a schematic
way – the black curve on figure 4, which shows the relation betweenτ (vertical) andq (hor-
izontal) rates, for one sensor, over one day. This new variable is based on computing two
kinds of value for each sensori, per day:

– the average maximum flow rate (q̃i), given by the mean of the maximum flow rate mea-
sured at sensori for each day. It corresponds to a near optimal flow rate value with
respect to traffic in front of sensori ;

– variableτ̃i, which computes the daily average occupancy rate value whentraffic reaches
its maximum flow rate in a day.

Fig. 4: Fundamental diagram with traffic congestion variable E, for sensori

At a fixed timet for day d, the vehicle flow rate and the occupancy rate of a sensori

are respectively given byqd
i,t andτd

i,t. For each measurement, we computeθd
i,t – the angle

between the line given byy = τ̃i and the line linking the points(0, τ̃i) and (qd
i,t, τ

d
i,t).

From θd
i,t, we defineed

i (t) – the value of the traffic congestionE at sensori at dayd and
time t:

ed
i (t) = 1/2 + 1/π × arctg

“ (τd
i,t − τ̃i)

100
×

q̃i

qd
i,t

”

.

This formula is based on first computing angleθd
i,t using trigonometric properties – i.e.,

θd
i,t = arctg

“ (τd
i,t − τ̃i)

100
×

q̃i

qd
i,t

”

where there is a division by100 because it is the maximum value ofτ . The resulting angle
(which is between−π/2 andπ/2) is transformed into a value between 0 and 1.
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4.2 Applying STPCA to congestion

We now proceed to apply STPCA to our congestion function. We can mathematically show
that STPCA is able to produce accurate approximations, taking advantage of the otion of
energyof a vectorial space. Total energy is equal to the trace of thecorrelation matricesM,
and is given by:

tr(M) =
PN

i=1 λi(M),

whereλi(M) represents theith eigenvalue of matrixM, and N represents the number
of eigenmodes. As correlation matricesMs (spatial correlation matrix) andMt (temporal
correlation matrix) are determined while applying STPCA, energy captured by the firstm
spatial and temporal eigenmodes are respectively given by:

∑m

i=1
λi(M

s)
tr(Ms) and

∑m

i=1
λi(M

t)
tr(Mt)

Intuitively, the original data set corresponds to a vectorial space containing100% energy.
Hence, the more a set of eigenmodes captures energy, the moreaccurate the estimation
obtained when projecting data on the vectorial space definedby these eigenmodes (and thus
the better the dimensionality reduction).

Our experiments, discussed in [15], show that on both (spatial and temporal) dimensions,
the first eigenmode contain more than98% of the energy. Moreover, theK = 4 first spatial
eigenmodes andL = 6 first temporal eigenmodes capture more than99.5% of the energy.
This allows us to reproduce very accurately the typical traffic behaviour of each sensor with
a reduced dimensional space.

4.3 Interpreting congestion states – symbolic representation

We recall that the values ofed
i (t) are normalized between0 and1. If values are close to0,

traffic is very fluid (low flow and occupancy rates), while values close to1 represent a
large bottleneck. Values close to0.5 correspond to nearly optimal traffic, with high flow
rate. Traffic congestionE thus combines two different variables into one without lossof
information. Moreover, it gives a normalized and intelligible view of traffic.

In order to work with traffic congestion, this function was discretized with help of ex-
perts into seven intervals, each of which corresponding to adifferent traffic state. These
intervals were assigned symbols, thereby introducing a symbolic description of traffic con-
gestion curves (for symbolic representation, see [14], anddiscussion on related work at
section 7):

– ”C”: Sparse - few vehicles, typically night traffic;
– ”TH”: Tendency to heavy traffic – intermediate state betweenC and H, tending to

increase in traffic;
– ”H”: Heavy traffic – state corresponding to quasi-optimal traffic congestion, with high

flow but no bottleneck;
– ”RC”: Return to sparse – intermediate state betweenC andTH, where traffic moves

from heavy towards sparse;
– ”S1”: Saturation level 1 – corresponds to a light density, with slow flow and increase in

occupancy level;
– ”S2”: Saturation level 2 – severe traffic bottleneck, very slow flow and heavy traffic;
– ”S3”: Saturation level 3 – bottleneck, vehicles are almost static;
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These traffic states are computed from thresholds applied toE, as well as to the sign of
the derivative of the congestion function. Table 1 shows howto compute these symbolic
variables at every timestampt. Each symbol is associated with a value between1 and7,
to facilitate computation of pattern similarity. Symbolicrepresentation is thus mapped to
a step-wise function. Figure 5 represents temporal series of traffic congestions and the
corresponding symbolic representation.

Table 1: Discretization ofed
i
(t) into seven intervals.

Symbolic state Associated value Range ofed
i
(t) Derivative fored

i
(t)

C 1 en
i
(t) < 0.2 /

RC 2 0.2 ≤ en
i
(t) < 0.45 negative

TH 3 0.2 ≤ en
i
(t) < 0.45 positive

H 4 0.45 ≤ en
i
(t) < 0.52 /

S1 5 0.52 ≤ en
i
(t) < 0.6 /

S2 6 0.6 ≤ en
i
(t) < 0.7 /

S3 7 en
i
(t) ≥ 0.7 /

Besides helping reducing the problem dimensionality and helping user visualization, the
use of symbolic representation helps data discretization.This is also useful for subsequent
computations across time and space, such as mutual information – see next.
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Fig. 5: Traffic congestion graphs for two distinct sensors (at the top) and corresponding symbolic representa-
tion: C = 1, RC = 2, TH = 3, H = 4, S1 = 5, S2 = 6, S3 = 7.
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5 Handling atypical traffic behavior

Up to now, this paper has applied the STPCA method to time series to summarize and
forecast typical behavior. However, it can also be a means todetect atypical situations. We
say that traffic behavior isatypical if the distance between measured traffic congestion and
its STPCA estimation is beyond a given threshold defined by the user – i.e., the activity
measured by the sensor is not representative of the usual behaviour computed by STPCA.

Atypical behavior means that STPCA has either provided an underestimation of an over-
estimation or traffic congestion. In the first case, traffic ismore intense than forecast by
STPCA; in the second, it is more fluid. Once atypical situations are detected, we provide a
new kind of mechanism to study and describe spatio-temporalpropagation of such behavior
– thepropagation graphs3

5.1 Propagation graphs

A propagation graph describes how local traffic perturbations at a given instant propagate to
other areas in subsequent periods. As such, these graphs portray spatio-temporal propagation
of atypical traffic events, computed with respect to congestion.

Figure 6 gives a short illustration of such a graph. Verticesrepresent sensors, and edges
represent propagation of atypical behavior. The figure shows, for instance, that some atypical
event detected at sensor 1 at timet persists at the same location at timet+1 (i.e., the situation
was propagated through time, for the same spatial reference). It also shows that the event
detected at sensor2 did not persist. Also in the figure, we can see that at timet + 1 sensor
1 is also affected by the atypical event detected at sensor5 at timet (i.e., the problem was
propagated in time and space). Events at sensors3 and5 at t + 1 affect each other att + 2.
The rest of the figure can be interpreted the same way.

Fig. 6: Example of a propagation graph on three successive timestamps.

These graphs are constructed from appropriate subsets of the measured data, using an al-
gorithm based on the combination of Isomap and Mutual information (see [16] for details on
this algorithm). Mutual information [31] is provided by probability theory and information
theory, and measures the mutual dependence of two variables. It is given by :

I(X, Y ) = H(X) + H(Y ) − H(X, Y ),

3 The work of [16] uses the term ”pattern” to refer to propagation graphs. Here, we adopt the name ”graph”
to avoid confusion with pattern matching in time series.
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Input: Symbolic representation congestion time series for a set ofsensors

Step 1- Compute embeddings

For each timestampt:
1.1 Compute mutual information Compute mutual informationI(i, j) at time t be-

tween each pair of sensorsi, j

1.2 Construct neighborhood graph Connect verticesi andj by an edge if distance
(Isomap step 1) dx(i, j) = 1− I(i, j) is smaller than thresholdǫ or

if j is one of the K nearest neighbors ofi usingdx.
Edge weights are given bydx(i, j) values.

1.3 Compute shortest paths Initialize dG(i, j) = dx(i, j) if i andj are linked
(Isomap step 2) by an edge,dG(i, j) = ∞ else. Then for pa-

rameter k = 1 . . . N replace dG(i, j) by
min{dG(i, j), dG(i, k)+dG(k, j)}. Construct ma-
trix DG = {dG(i, j)} containing shortest path dis-
tances for each pair of points inG.

1.4 Construct embedding Apply multidimensional scaling to matrixDG

(Isomap step 3) to obtain a n-dimensional embeddingYt at each
timestampt.

EndFor

Step 2- Create propagation graph Create an edge between each sensori on embedding
Y

t and i’s K nearest neighbors restricted to anǫ
maximum distance radius on embeddingY

t+1 ac-
cording to Euclidean distance. Keep only edges with
high propagation probability.

Fig. 7: Algorithm to construct propagation graphs.

whereH(X) andH(Y ) respectively measure the entropy of variablesX andY , andH(X,Y )

corresponds to the cross entropy for these variables. Mutual information values are defined
between0 and1. The higher its value, the stronger the relationship among events. When its
value is zero, the events are independent.

Isomap [35] is an approach to solve dimensionality reduction problems that uses lo-
cal metric information to derive the underlying global geometry of a data set. This method
can be decomposed in three steps. The first step determines which points are neighbors,
based on the distancesdx(i, j) between pairs of pointsi and j from the data set. Neigh-
borhood relations are then represented as edges in a weighted graphG. The second step of
Isomap estimates the geodesic distancesdG(i, j) between all pairs of points by computing
their shortest path inG. The final step applies classical multidimensional scaling(MDS) to
the geodesic distances matrixDG, reducing its dimensionality. This last step projects the
original data into an-dimensional Euclidean space that best preserves the data’s estimated
intrinsic geometry. We call this projection an-dimensional embedding– an Euclidean space
of dimensionn, in which the Euclidean distance between its points is representative of their
similarity.

Figure 7 presents a high level view of our algorithm to construct propagation graphs.
It receives as input congestion information, computed frommeasured data, and reduced to
a symbolic representation. The key in our approach is to compute mutual information on a
symbolic description of the traffic congestion and then use it as distance in the first step of
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Isomap. Each point in the data set corresponds to a specific sensor, and an-dimensional em-
bedding is computed for each timestamp. Generally, even very small values ofn (e.g.,n = 2

or n = 3) are enough to capture data’s geometry. The distance between two points on the
embedding is used to compute the similarity of traffic behavior for the corresponding sensors
(the smaller the distance, the more similar traffic is).

To construct propagation graphs, we link points between consecutive embeddings. Our
hypothesis is that, if traffic congestion is atypical on sensor i at timet, traffic at this same
sensor will still be atypical att + 1 – obviously depending on the time interval between two
successive timestamps. Moreover, an atypical event at sensor i and timet will affect all of
is neighbors in the correspondingn-dimensional embedding at timet + 1.

To increase readability, we introduce the following notation, used in the rest of the text

(i, t) – node in a propagation graph, denoting sensori at timet;
< (i, t), (j, t + 1) > – an edge in the propagation graph – notice that edges always link

embeddings at consecutive timestamps, i.e., there are no edges within an embedding,
and no edges linking embeddings which are separated by more than one timestamp;

Ai,t – an atypical event detected at sensori at timet – i.e., at graph node(i, t). We recall
that atypical events are detected whenever the congestion measured at(i, t) is different
(over some threshold) from its STPCA average behavior estimate.

P (Aj,t+1|Ai,t) – probability that, if atypical eventAi,t is detected at(i, t), then there will
be an atypical eventAj,t+1 at (j, t + 1).

Step 2 starts by creating edges< (i, t), (j, t + 1) > – i.e., linking each sensori in
an embedding at timet with the same sensori and all its neighbors at timestampt + 1.
Graph edges are next assigned weightsP (Aj,t+1|Ai,t). These probabilities are computable
from available information. Finally, graph edges with weights below a certain threshold are
eliminated.
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Fig. 8: Prediction accuracy depending on the data sample size for (a) predictions within 3 minutes (consecu-
tive timestamps) and (b) predictions for a 15 minute interval.

Numeric experiments showed the accuracy of propagation graphs. If all data are used,
they manage to foretell approximately80% of atypical event propagations in a 3 minute
period, and68% of atypical event propagation in a15 minute period – see figure 8. Moreover,
as shown in the figure, graphs constructed using only30% of the available data predict up
to 75% and61% of the propagation respectively for 3 and 15 minute periods.This confirms
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the hypothesis that atypical situations at(i, t) propagate in spatio-temporal patterns in the
neighborhood of sensori.

5.2 Graphical representation of propagation graphs

Fig. 9: Illustration of spatio temporal propagation pattern extract.

In order to help traffic experts to quickly grasp atypical propagation patterns, we de-
signed a graphical representation of propagation graphs – see the right side of Figure 9. The
left part of the figure represents the traffic network’s topology. Sensors are illustrated by
squares, roads by gray lines, and rivers by thin black lines.The right part of the figure is the
graphical representation itself, corresponding to the period between7h48 and7h58. Edge
directions indicate propagation sense, and edge thicknessrepresents propagation probabil-
ity P (Aj,t+1|Ai,t). The highest this value, the thickest the corresponding arrow.

The graphical notation helps visual identification of situations which seem logically
acceptable – for instance, an atypical event at sensor83 (at 7h48) lasting for 6 minutes at
its site, though decreasing in intensity after the first 3 minutes. We can also see in the graph
that traffic on sensor83 affects traffic on sensor17 after 3 minutes – again, a seemingly
reasonable situation if one considers the network topology, since these sensors lie along the
same route. However, the graph also shows surprising cause-effect abnormalities – e.g., from
sensor18 to sensor87, though they are not directly connected in the network. Looking at
such a graphical representation, experts are able to derivespatio-temporal traffic propagation
behavior patterns that can help them set up traffic control strategies. We now proceed to show
how experts can use our model to detect anomalous events and study their propagation.

5.3 Distinguishing atypical events - spatio-temporal propagation of overestimation and
underestimation events

An atypical situation is detected when the difference between traffic congestion measured at
a sensor and the STPCA estimate for the congestion (based on average historical behavior)
is above a certain threshold, which is defined by experts after preliminary simulations. Two
kinds of atypical events can be distinguished:

– traffic underestimation (STPCA underestimates congestion): traffic is more intense than
usual. It corresponds to atypical situations for which measured congestion is greater
than its STPCA estimate.Ui,t denotes the detection of a traffic underestimation event at
sensori and timet.



14

– traffic overestimation (STPCA overestimates congestion):traffic flows more smoothly
than usual. It corresponds to atypical situations in which measured congestion is smaller
than its STPCA estimate.Oi,t denotes the detection of a traffic overestimation event at
sensori and timet.

Hence,


{Oi,t} ∪ {Ui,t} = {Ai,t}

{Oi,t} ∩ {Ui,t} = ∅.

We now proceed to identify two kinds of propagation situations:

– underestimation graph (GU ): For each underestimation event detected at(i, t), it shows
the events propagation. Edges are weighted by probabilities P (Aj,t+1|Oi,t), that we
refer to as trafficunderestimation propagation tendency.

– overestimation graph (GO): For each overestimation event detected at(i, t), it shows the
events propagation. Edges are weighted by probabilitiesP (Aj,t+1|U i,t), that we refer
to as trafficoverestimation propagation tendency.

GU andGO are computed independently using the algorithm of Figure 7,applying either
underestimation propagation tendencyP (Aj,t+1|U i,t) (for GU ), or overestimation propaga-
tion tendencyP (Aj,t+1|Oi,t) to constructGO.

Remark that the nature of the propagation is unknown – i.e., an underestimation event
observed at node(i, t) can trigger over- or underestimation events at node(j, t + 1) – the
graph will only show some kind of propagation has a high probability. We can only tell what
kind of atypical situation was observed at the beginning (the nodes at the graph source). We
call these eventscausal atypical events, to denote they are at the origin of propagation of
some kind of atypical behavior.

To compare underestimation and overestimation propagations, we introduce the notion
of differentiation rateτD(GU ,GO). It computes the proportion of edges that appear in either
the overestimation or the underestimation graph, but not onboth:

τD(GU ,GO) =
1

|T|

X

t∈T

1

|It|

X

i∈It

ExclusiveNeighi,t

TotalNeighi,t

where

T is the set of time periods considered to construct the graph;
It contains all graph nodes(i, t) which are connected to at least one node(j, t + 1) in

eitherGU or GO;
ExclusiveNeighi,t is the total number of edges< (i, t), (j, t + 1) > which appear in

eitherGU or GO, bot not in both ;
TotalNeighi,t is the number of distinct edges< (i, t), (j, t+1) > that appear inGU orGO.

The goal of the differentiation rate is to check whether a causal atypical event triggers dif-
ferent propagations, depending on whether it is an under- oroverestimation; High values of
this rate indicate that a causal underestimation event doesnot propagate to the same sensors
as a causal overestimation event – i.e., the graphs are different depending on the nature of
the causal event.

In fact, if we separately consider the two kinds of causal atypical events, the graphs
become slightly more accurate (i.e.,81% for a 3 minute interval, and69% for a 15 minute
interval, with slightly less false positives). If all available data are used, the graphs show
that the differentiation rate reached75% for 3 minute predictions, and86% for a 15 minute
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Fig. 10: Prediction accuracy (solid line) and differentiation rate (dashed line) evolution depending on the
amount of data used to create the graph (a) for a 3 minute interval prediction and (b) for 15 minute interval
predictions, when causal atypical situations are differentiated.

prediction. Such values indicate that, on the average,75% of the sensors affected after 3
minutes by an underestimation event are not the same as thoseaffected by an overestimation
event. If graphs are constructed using only30% of the data, then they are able to predict72%

of propagations for 3 minute intervals, and60% at 15 minute intervals, with differentiation
rates of respectively76% and87% (figure 10).

Hence, the distinction between causal over- and underestimation events allows more
precise analysis and forecast of traffic anomalies. The level of quality of the prediction is
the same, while at the same time taking into account the nature of the causal situation and
its propagation throughout the traffic network.

5.4 Cause-consequence relations

Intuitively, an atypical event at(i, t) can propagate throughout the network and provoke
atypical events (of either kind, under- or overestimation)at subsequent timestamps. Let us
illustrate this idea. Consider3 sensorsi, j andk that are placed in this spatial order along
some traffic axis, distant from each other by a few kilometers. Let us suppose that an accident
occurs just in front of sensorj, thereby creating traffic problems - i.e., congestion decreases
(an underestimation event, in which actual traffic conditions will be worse than the average
forecast byed

i (t)). This may block traffic atj, and thus the traffic flowing from its position
will diminish in the subsequent periods. This will cause an overestimation event atk (there
will be less vehicles than expected). Moreover, if the bottleneck atj takes longer, the atypical
situation may extend back to sensori that precedesj spatially, also halting traffic ati. This
is an example that shows that an underestimation atj propagates an overestimation tok, and
as underestimation toi.

Sensor spatial configuration thus allows forecasting the kinds of propagation relations
that can be established among sensors. Underestimation andoverestimation graphs (resp.
GU andGO) are constructed according to probability computations (resp.P (Aj,t+1|U i,t)

andP (Aj,t+1|Oi,t)). As mentioned before, these graphs do not consider the nature of the
propagation – they just show propagation of a causal atypical event. Experts may want to
know more about the type of propagation – i.e., specific cause-effect edges. This does not
require building new graphs – rather, we will perform a distinct graph analysis.
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In more detail, we now compute probability valuesP (Uj,t+1|U i,t) andP (Oj,t+1|U i,t)

for edges inGU ; and probability valuesP (Uj,t+1|Oi,t) andP (Oj,t+1|Oi,t) for the edges
in GO. For instance,P (Oj,t+1|U i,t) is the probability that an underestimation event at(i, t)

is propagated as an overestimation event to(j, t + 1).
Propagation ofAi,t to Aj,t+1 may have the following outcomes:

– Aj,t+1 is an overestimation;
– Aj,t+1 is an underestimation;
– there is no propagation (atypical event is restricted to(i, t)).

Our cause-effect study will only consider the first two outcomes, since we are interested
in finding out whether propagation types are predictable or not. In this simplification, we ig-
nore the fact that atypical events may not propagate to all their neighbors in an-embedding.
Let us simulate a context in which propagation prediction is100% correct, i.e.,

P (Aj,t+1|Ai,t) = 1;

which is equivalent to:

∀ < (i, t), (j, t + 1) >∈ GO, P (Aj,t+1|Oi,t) = P (Oj,t+1|Oi,t) + P (Uj,t+1|Oi,t) = 1,

∀ < (i, t), (j, t + 1) >∈ GU , P (Aj,t+1|U i,t) = P (Oj,t+1|U i,t) + P (Uj,t+1|U i,t) = 1.

Under these conditions, and for the time intervals considered (3 and 15 minutes) we
observed the following from our experiments:

– ForGU , more than95% of edges< (i, t), (j, t + 1) > obey eitherP (Uj,t+1|U i,t) ≥ 0.9

or P (Oj,t+1|U i,t) ≥ 0.9 ;
– ForGO, more than95% of edges< (i, t), (j, t + 1) > obey eitherP (Uj,t+1|Oi,t) ≥ 0.9

or P (Oj,t+1|Oi,t) ≥ 0.9 ;

In other words, for more than95% of the time, we can predict the type of atypical event
propagated to(j, t + 1) with an error margin inferior to10% (since all probabilities are
superior to0.9). This leads to the conclusion that propagation is not random, and that we
can even develop very reasonable propagation forecasts.

Nevertheless, propagation may not always happen. Thus, to finish this study, we now
consider the third case – when there is no propagation. Propagation probability can also be
used to compute estimation errors. For instance, ifP (Uj,t+1|Oi,t) = 0.88 (probability that
overestimation at(i, t) propagates as underestimation at(j, t + 1)), then this means that the
underestimation event at(t + 1) is predicted with an error margin of12%.

Figure 11 shows curves that indicate prediction accuracy. For instance, figure 11(a)
shows that, for a 3 minute period, if is possible to predict over 30% of cause-effect propa-
gations with an error margin below10%. If we accept an error margin of20% or less, more
than50% of the situations can be predicted. For 15 minute periods, results show that our pre-
dictions are slightly less reliable (see part (b) of the figure) – for an error margin of20%, we
are able to correctly predict more than33% of cause-effect propagations. Given our results
for perfect prediction, we can safely say that these errors are mainly due to the difficulty of
forecasting the presence of any kind of propagation, than ofdetermining the nature of the
propagation itself.
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Fig. 11: Evolution of prediction accuracy depending on the accepted error rate for predictions on (a) a 3
minute and (b) a 15 minute period.

6 Querying and Mining Traffic Data

In [29] we described the structure of a data warehouse to store the raw sensor data. The
design of this warehouse took into consideration the multiple spatial and temporal aspects
that must be considered when dealing with traffic data, henceallowing aggregation along
several dimensions.

We now extend this proposal by supporting the storage of all kinds of data discussed
previously together with the raw data – i.e., the series withmissing values filled, traffic
congestion (E) as well as STPCA summarizations (forq, τ andE), as well as their symbolic
discretization. This multitude of data representations allows several kinds of analyses not
reported elsewhere. This section indicates the classes of queries that can be posed. Though
not implemented, they exemplify new kinds of analyses we canobtain.

6.1 Pattern Analysis

Pattern analysis is deeply related with similarity search.The goal of similarity search is to
find, in a database, all series which are similar to another series provided as input.

Let I be an input series, which can representτ , q or E series.Q1 shows standard pattern
analyses, whose implementation can be solved by similarityprocessing algorithms typical
of data mining processes – see section 7. Thus, such queries can be processed on the cleaned
data set using these standard procedures.

– Q1 - Retrieve all series which are similar toI , but only for sensori and/or dayd

Q2 throughQ5, however, are new kinds of query. They can only be answered due to our
spatio-temporal representations, e.g., a query on “typical behavior” requires STPCA.

– Q2 - What is the traffic congestion behavior of sensori for dayd

This query returns the symbolic representation ofE

– Q3 - What is the typical flow rateq behavior of sensori
This query returns the STPCA estimate forq, capturing its behavior over time

– Q4 - Show the sensors whose typical traffic congestion behavior is closest to that of
sensori on dayd
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This query is processed in three steps. First, the congestion function is computed; next,
its STPCA approximation is calculated. Finally, the sensors returned are those whose
STPCA approximation (ofE) is closest to measured values. The notion of ”close” is a
threshold defined by the user.

– Q5 Show all sensors with a high margin of outliers for dayd

Here, the goal is to retrieve sensors where there is a high percentage (user defined) of
overestimated or underestimated values.

Outliers can be detected by comparing a curve created by applying STPCA toq or τ , and
the original series, for a given day and sensor. Figure 12 shows examples of such a difference
– values computed for a typical day, for a sensor, and values captured on Christmas. The
possibility of describing typical behavior allows checking for anomalies, and also detecting
for which kinds of day an approximation must be tuned – e.g., eliminating these days from
global matricesY andZ, and computing STPCA for them alone.

We point out that our work does not differentiate between regular and special days (e.g.,
holidays). Hence, normal behavior in a special day would appear as atypical. This kind of
differentiated analysis is left for future work.
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Fig. 12: Comparison of actual measured values for a sensor series (gray) and their STPCA estimate (black),
for an atypical date - outliers.

6.2 Spatio-temporal Database Queries

Two kinds of spatio-temporal database queries can be considered – those on the different
numeric (measured) series, and those on symbolic representations applied toE. The first
can be divided into two basic situations – temporal and spatial queries; spatio-temporal
queries are classically a result of the combination of both.Examples on queries on numeric
series are

– Q6 - Spatial information – retrieve all series onq (or τ , or E) for sensors within a given
region.
Standard spatial window query, returning data on all sensors whose coordinates fall
within the input region. It returns a set of series (assumingeach day is stored separately)

– Q7 - Temporal information – retrieve all series onq (or τ , or E) within a given period
Standard temporal query where the predicate will be checkedagainst sensor timestamps.
Screen copy on figure 13 is an example of the kind of output display of this query.
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– Q8 – Spatio-temporal information – a combination of Q6 and Q7.

We finally come to queries on symbolic data. This allows usersto retrieve information
with associated semantics, closer to the user mental framework.

– Q9 – What are the sensors that on dayd had more than 30% ofHeavy traffic congestion
values

– Q10 – What are the sensors within a given region that in at least one day had more
than 30% ofHeavy traffic congestion values (spatial restriction to a region,and then
executingQ9 repeatedly for each sensor in that region)

7 Comparison to Related Work

This paper concerns methods and mathematical tools to summarize and interpret time series,
captured by traffic sensors, which can be subsequently submitted to distinct kinds of manip-
ulation. Our research thus combines work on time series summarization, management and
pattern mining, and work on spatio-temporal databases for handling sensor data for traf-
fic management. This paper extends our work in [17] by introducing propagation graphs,
and discussing the kinds of propagation patterns that may beanalyzed. This section briefly
comments on related work in time series, and research on traffic variables as a whole.

7.1 Intelligent Transportation Systems

Spatio-temporal database research on traffic networks involves countless issues. In many
cases, the network is transformed into a (spatial) graph, which is used as a basis for planning
maintenance and expansion of the network. A large percentage of the graph structures ana-
lyzed in the context of traffic databases concern road topology - and are thus a spatial (but
not necessarily temporal) structure. Our propagation graphs, instead, are spatio-temporal
constructs. This kind of formalism is more common to work in transportation sciences -
however, in such a domain, the main concern is temporal evolution within a fixed region
(and thus the emphasis is on time, but not necessarily space).

Graphs are either theoretical constructs (i.e., the interest is to analyze algorithm perfor-
mance for arbitrary complex topologies) or correspond - like ours - to actual road topol-
ogy. However, in these graphs, nodes are street intersections, and edges are road segments,
whereas our nodes are sensor positions and edges are traffic propagation links. Thus, our
propagation graphs must be always analyzed in conjunction with network topology graphs.

Operations research and graph theory play important roles –e.g., [28] is concerned
with routing models, using computation of flow in the networkgraph. The work of [24]
also takes advantage of network graphs and graph propertiesto optimize kNN and distance
range queries in traffic, while [4] perform continuous kNN queries on a network, for mobile
objects.

Graphs and network structures are furthermore used to forecast and analyze trajectories
of mobile objects (e.g.,[23] in indexing trajectories). There is also extensive research on
models for mobile objects and trajectories – e.g., [9,33]. These models assume that the
identity of each object is known, and that the sensors are placed on the moving objects.

Several other problems give rise to database-related research on traffic issues. For in-
stance, the work of [12] concerns detecting specific spatialrelationships among moving
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vehicles along a trajectory (e.g., ”in-front-of” relationship). This kind of research is con-
cerned with small granularity details, considering individual vehicles whose data, collected
periodically, are stored in databases.

Our work is based on using traffic estimates computed on average sensor-provided data,
which is used to predict traffic congestion. In this sense, itcan be contrasted, for instance, to
[36], in which historical data on trajectories along given routes is used to forecast real-time
trajectories. Though the idea is the same, the latter is concerned with individual vehicles (and
their historical data); in this research, real-time data isused to update trajectory forecast,
and thus improve future trajectory studies. Since our historical data is on global flow and
occupancy (and not on individual car behavior), we can save considerable storage space. On
the other hand, we cannot provide information on individualvehicles.

Computer networks is another area in computer science in which there is extensive in-
vestigation in combining research in network properties and sensor traffic information. In
particular, in the area ofVA-NET- Vehicular Ad Hoc Networks - all vehicles gather data on
traffic conditions, and broadcast it to other vehicles, thereby providing real-time informa-
tion to drivers. Problems therefore involve filtering relevant information, providing decision
tools, and managing mobile telecommunications (e.g., whatdata are relevant to which set
of vehicles – see, for instance [26]). Additional issues consider sensor placement and infor-
mation aggregation (to optimize use of bandwidth). Though our work is not directly related
to this kind of research, it can be applied in solving some of the problems investigated, in
particular when it comes to propagation of atypical behavior.

Last but not least, in transportation sciences, there is extensive research on Intelligent
Transportation Systems from the point of view of traffic experts. In such research, traffic
flow can be schematized on top of roads, or use digraphs for study of variables – e.g., see
[32]. This also includes work on propagation of phenomena. However, to the best of our
knowledge, none of these papers have considered atypical event propagations like us, in
special when it comes to considering our research on propagation graphs.

7.2 Summarization of time series

Many techniques are used to perform summarization and search operations on time series,
such as machine learning (supervised and non-supervised training), linear regression, dy-
namic programming and signal decomposition [10,11,8,37,20]. According to Faloutsos
[6], many of these operations are tightly interconnected. Hence, there have been propos-
als to construct a basic set of primitives to be used to perform them – e.g., the combination
of pattern discovery and similarity search can be used to predict values. All functionalities
require some sort of comparison, to recognize patterns, where exact matching is virtually
impossible.

A recent research direction concernsdynamicseries, in which data sets may be updated
during the summarization and mining activity, in particular concerning stream data (e.g.,
from sensors). Our work is concerned only with static series(where data are collected and
stored in a database), and thus stream data analysis and dynamic summarization will not be
considered here.

When dealing with data containing time series, the main concern is usually to reduce
the temporal dimension, preserving the original information within some predefined error
threshold.
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Signal processing methods include DFT -Discrete Fourier Transform[1,7] and DWT
- Discrete Wavelet Transform, proposed by [3]. Each such method is based on representing
the series by coefficients that summarize it at some granularity.

SVD - Singular Value Decompositionis based on considering the time series as a set
of n-dimensional vectors. The goal is to project these vectors into ak-dimensional space,
wherek < n, maximizing the energy (i.e., conserving information). Each series is next
represented by coefficients applied to thek different functions, thus defining the basis for
the projections.

Segmentation methods approximate a series by a set of linearsegments. Examples in-
clude PAA -Piecewise Aggregate Approximation[20,37], APCA -Adaptive Piecewise Con-
stant Approximation[21] and PLA -Piecewise Linear Approximation. The first approxi-
mates a time series withk elements intom intervals of the same size, wherek is a multiple
of m. The series is next represented by a set of segments (step function), where they-value
for each segment is given by the average of the values for thattime interval. The second
improves PAA - the difference is that, instead of regular intervals, the number and length
of intervals varies according to the series. In PLA, insteadof step functions, segments con-
nect the actual measured points. [22,13] propose several algorithms to determine segment
extremities.

In symbolic representation - e.g., [25,14], the series is somehow converted into a se-
quence of symbols, i.e., a series of values is transformed into a string. This representation
allows the use of text matching algorithms to compare series. Symbols are obtained by clas-
sification. Symbolic representation can also be based on intervals adapted to data profiles –
see [13] for an overview of symbolic representation algorithms and models.

Several representations are a result of composing distinctkinds of methods. TIDES [27]
is an example of an approximation that combines more than oneof the previous techniques.
It first reduces the original series using PLA. Next, it represents each segment by its angle
with respect to they axis, and associates symbols to classes of angles (thus combining
symbolic representation and PLA).

STPCA and SVD both sumarize time series while maximizing energy. We now compare
both. Comparisons are done according to two criteria: (a) estimation error, given by the
average Euclidean distance between the real and the estimated time series and (b) reduction
factor. It is very interesting to compare their respective accuracy, since their parameters
as tuned according to the same conditions. SVD is not really aspatio-temporal method
– it applies a PCA either on the spatial or the temporal dimension. SVD performed on the
spatial dimension is also known as S-mode PCA, while SVD applied on temporal dimension
is named T-mode PCA.

In this comparison, T(S)-mode PCA is applied with parameterL = 3 and STPCA is
applied with parametersK = 3 andL = 3. STPCA totally outperforms the other methods
while producing an estimation error of0.29 which is the same order of those obtained by
S-mode PCA (0.28) and T-mode PCA (0.25) with a 104 reduction factor – far greater than
those obtained with S-mode PCA (160) and T-mode PCA (60).

8 Conclusions and Ongoing Work

This paper presented research conducted within a multidisciplinary project, in the domain of
spatio-temporal sensor data processing for urban traffic. It combines research on analytical
methods to pre-process, clean and summarize multiple sensor data sources, and research on
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spatio-temporal database management. As part of the work inCADDY, we have constructed
a prototype that allows the visual exploration of sensor data, shown in figure 13.

Different kinds of time series can be processed by STPCA, a method that improves data
analysis considering the spatio temporal aspect of the dataset. This method allows a consid-
erable reduction of the dimensionality of data sets, while at the same time preserving the
original information, as shown by our energy experiments. Moreover, it offers a compres-
sion factor which outperforms those obtain by classical S-mode PCA and T-mode PCA with
an equivalent reconstruction error. STPCA also dominates these methods when it comes to
estimating missing values.

Fig. 13: Screen copy of prototype.

Another contribution is the introduction of the notion of traffic congestion, a new kind
of traffic variable which combines flow and occupancy information. The paper shows how
one can use symbolic representation to describe congestion, thereby helping experts analyze
traffic conditions.

One major contribution is our study on propagation of atypical traffic events (character-
ized by deviations from STPCA estimates). The use of propagation graphs, and the analysis
described on these graphs, show that they are a promising andeffective tool to support deci-
sion making in traffic management, and thus intelligent transportation systems. Our studies
backed up several empirical observations. However, they also show some unexpected traffic
behavior. In particular, our experiments with propagationgraphs indicate that the urban areas
affected by an atypical traffic event differ according to thenature of the causal event – i.e.,
atypically slow traffic does not propagate in the same spatio-temporal patterns as atypically
smooth traffic.

Finally, we describe new kinds of queries and analyses that can be performed using all
these new methods and analytical tools. Though some of thesequeries are common in time
series databases, most of them provide support to novel spatio-temporal analyses.

Future work involves theoretical and implementation issues. The latter mainly concern
developing more tools within the prototype to directly support the classes of queries de-
scribed. This will require, among others, linking the prototype to pattern recognition algo-
rithms. An interesting kind of query that we are consideringconcerns exploration of prop-
agation graphs. In fact, these directed graphs can be storedusing some kind of linear stor-
age structure (e.g., linked lists). Such structures can also be queried and mined, to analyze
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propagation effects, and eventually trigger alerts to experts. Since these are probabilistic
structures, this will require work on statistical databases.

We furthermore need to explore other extensions to STPCA. This method is geared
towards studying individual sensors, for specific patterns, to determine an average typical
behavior for each sensor. STPCA can be extended to spatial aggregation (several sensors)
over an area. Another issue concerns deriving other kinds oftraffic behavior description –
e.g., for atypical days, due to variation in human activity in a given area, such as holidays
or festivals. A combination of these two extensions would support a wider variety of traf-
fic pattern descriptions – e.g., for distinct events. This, in turn, would allow new kinds of
decision support in real time traffic management, includinginteraction with intelligent car
systems.

AcknowledgementsThis work was partially financed by CNPq (Brazil) and by the
French Research Program ”ACI Masse de Données 2003”.

References

1. R. Agrawal, C. Faloustos, and A. Swami. Efficient similarity search in sequence databases. InProc. 4th
International Conference on Foundations of Data Organization and Algorithms, pages 69 – 84, 1993.

2. CADDY. The CADDY Website - http://norma.mas.ecp.fr/wikimas/Caddy, 2007.
3. K. Chan and A.W. Fu. Efficient time series matching by wavelets. InProc. 15th IEEE International

Conference on Data Engineering, pages 126 – 133, 1999.
4. H.-J. Cho and C.-W. Chung. An Efficient and Scalable Approach to CNN Queries in a Road Network.

In Proceedings 31st VLDB conference, pages 865–876, 2005.
5. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood for incomplete data via the em algo-

rithm. Journal of the Royal Statistical Society series B, 39:1–38, 1977.
6. C. Faloutsos. Tutorial: Sensor Data Mining: Similarity search and pattern analysis. In28th International

Conference on Very Large Data Bases, Hong Kong, China, August 2002.
7. C. Faloutsos, H. Jagadish, A. Mendelzon, and T. Milo. A signature technique for similarity based queries.

In Proc. of the International Conference on Compression and Complexity of Sequences, pages 2–20,
1993.

8. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series
databases. InProceedings 1994 ACM SIGMOD Conference, Mineapolis, MN, pages 419–429, 1994.

9. R. Guting, M. Bohlen, E. Erwig, C. Jensen, N. Lorentzos, M.Schneider, and M. Vazirgianis. A Founda-
tion for Representing and Querying Moving Objects.ACM Transactions on Database Systems, 25(2):1–
42, 2000.

10. J. Han and M. Kamber. Data mining: Concepts and techniques. In ACM SIGMOD, volume 31, June
2002.

11. J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.Hsu. Freespan: frequent pattern-projected
sequential pattern mining. InKDD ’00: Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 355–359, New York, NY, USA, 2000. ACM Press.

12. K. S. Hornsby and K. King. Modeling Motion Relations for Moving Objects on Road Networks.GeoIn-
formatica, 12(4):477–495, 2008.

13. B. Hugueney.Representations symboliques de longues series temporelles (Symbolic representations of
long temporal series). PhD thesis, University Paris 6, 2003.

14. B. Hugueney. Adaptive Segmentation-Based Symbolic Representations of Time Series for Better Mod-
eling and Lower Bounding Distance Measures. InProc. 10th European Conference on Principles and
Practice of Knowledge Discovery in Databases, pages 542–552, 2006.

15. M. Joliveau. Reduction of Urban Traffic Time Series from Georeferenced Sensors, and extraction of
Spatio-temporal series - in French. PhD thesis, Ecole Centrale Des Arts Et Manufactures (EcoleCentrale
de Paris, 2008.

16. M. Joliveau and F. De Vuyst. Recherche de motifs spatio-temporels de cas atypiques pour le trafic
routier urbain. InExtraction et Gestion de Connaissances EGC 08, Revue des Nouvelles Technologies
de l’Information - RNTI - E11, F. Guillet et B. Trousse, pages 523–534. Cépaduès, 2008.
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