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Managing sensor traffic data and forecasting unusual
behaviour propagation
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Abstract Sensor data on traffic events have prompted a wide range ednadsissues, re-

lated with the so-called ITS (Intelligent Transportatiopst@ms). Data are delivered for
both static (fixed) and mobile (embedded) sensors, gengriirge and complex spatio-
temporal series. This scenario presents several resdaatibriges, in spatio-temporal data
management and data analysis. Management issues invalviasfance, data cleaning and
data fusion to support queries at distinct spatial and teatgpanularities. Analysis issues
include the characterization of traffic behavior for givggace and/or time windows, and
detection of anomalous behavior (either due to sensor malfin, or to traffic events).

This paper contributes to the solution of some of these s#u®ugh a new kind of
framework to manage static sensor data. Our work is basedrabining research on ana-
lytical methods to process sensor data, and data managstraegies to query these data.
The first component is geared towards supporting patterohimgt. This leads to a model to
study and predict unusual traffic behavior along an urbad nedwork. The second compo-
nent deals with spatio-temporal database issues, takingotount information produced
by the model. This allows distinct granularities and madegi of analysis of sensor data
in space and time. This work was conducted within a projeat tises real data, with tests
conducted on 1000 sensors, during 3 years, in a large Frétych ¢
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1 Introduction

Geospatial data are the basis for countless applicatioaswide range of domains. This
paper is concerned with one such domain — transportatidersgs As pointed out by [34],
"one of the important innovations in transportation in mcgears is the combination of
advanced sensor, computer, electronics and communisagahnologies to the operation
of the transportation system”. The generic term associaitdthis domain isintelligent
Transportation Systemer ITS.

ITS research is multidisciplinary, encompassing peogmfmany distinct areas — from
computer scientists and mathematicians to sociologisteavironmentalists. The final goal
is to improve the overall transportation infrastructuredd to all kinds of travelers — from
those who need to cross a street to overseas flight passefgerdesign and development
of software embedded in intelligent vehicles, sensitiv&RS positioning, is another area
in which geospatial information management is adopted.

This paper is concerned with the problems involved in thdyaigof a specific kind
of spatio-temporal data, obtained at real time from a lasgevark of urban traffic sensors.
These sensors continuously capture distinct kinds of datsadfic, to be used for analysis
in traffic management and planning. At all times, expertstrals® take into account sensor
failures, to avoid incorrect decisions.

Rather than manipulating the original sensor spatio-teaigata series, we first prepro-
cess these data, eliminating noise, filling missing valaed,reducing their dimensionality.
The result are clean (spatio-temporal) series with nicpgnttes. These series are used to
feed our model, which supports forecasting of traffic betiavincluding atypical events and
congestion patterns.

Cleaned data are stored in a DBMS, on which ITS queries artérpatnalyses can
be performed, following a mix of standard (time series) dat® queries and new kinds of
gueries that invoke the analysis functions of our model. [@&vkelated work either concen-
trates on models or in database issues, ours combines hptheapes. We do moreover take
into account the influence of human activity in urban areas (street markets, or accidents)
to derive better evaluation of traffic conditions.

Section 2 presents an overview of the context of our workti@e8 presents our solu-
tion for preprocessing and summarizing sensor produced 8aiction 4 introduces a new
traffic variable — congestion — which summarizes traffic b@raalong spatio-temporal
axes. Section 5 presents propagation graphs — a novel waxaafieing atypical traffic
behavior, and its spatio-temporal propagation along a neadork. Section 6 discusses the
spatio-temporal queries that can be posed in our framewsektion 7 comments on re-
lated work, showing how our work relates to research on sgatnporal series processing,
pattern matching and traffic trend analysis. Finally, £ec8 concludes the paper.

2 Overview of the Problem

Our research was conducted within the CADDY project (Cdnvfathe Acquisition and
storage of massive temporal Data volumes and DYnamic mp{gIsCADDY involved
a multidisciplinary research team composed of computangisits and experts in traffic
management and planning. The goal was to develop a conymaatiamework for decision
support in urban traffic management.

The sensors used in our research are fixed along street ks{vamid continuously col-
lect and broadcast several kinds of data on traffic moverk@&mh sensor is a magnetic loop



that detects the presence of large metalic objects (erg). &alues measured indicated the
proportion of metal detected. Data are sent to stationsf@amdirded to a central data stor-
age facility. Two major traffic variables are used by expertthis context, producing two
distinct (but interdependent) spatio-temporal seriese-sgeetion 3 for their relationship:

— the vehicle flow rated), i.e., the number of vehicles that have passed in front ef th
sensor for a given time period, usually minute or hour;

— the occupancy rater], i.e., the average space between vehicles in a given timedpe
Thus, an occupancy rate ©90% means vehicles are bump to bump, wliité means
no vehicles have been observed.

Our source data cover 1000 sensors for 3 years, where easir tlects data every three
minutes. Each day is delivered in a separate set of filesg(Bord ), for a grand total of
approximately 480x0° values. Our data were provided by the CLAIRE traffic supervi-
sion system [30] from INRETS (the French National Transgtavh Research Institute).
CLAIRE models an urban street network through an orienteglyrwhere each edge cor-
responds to a street segment. Sensor data are provided loredge, associated with the
corresponding spatial location.

Figure 1 shows the flow rate and average occupancy in a weetdaya 24 hour pe-
riod, for one sensor that is installed in a specific streetseg. If this is a "typical” day, one
expects that this sensor will produce similar series thnoug the year — i.e., for the sensor
portrayed, low traffic in the early hours, with a peak betw8eand 10 AM, another peak
at noon and so on, petering out in the evening. The occuparphgon the right, shows
that the 8-10 AM period is the one where there is a higher deobtars in the correspond-
ing street segment being monitored. Such patterns are ysexplerts to detect anomalous
traffic behavior. There are, however, several kinds of tawdpeehavior for a given area,
depending on the context and human activity associated.~veegkends or festivals will
provide different patterns.
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Fig. 1: Flow and occupancy rates, for one sensor, in a giveretssegment. The horizontal axis corresponds
to time, while the y-axis portrays the values measured bgémsor.

Processing these data presents several challengesgsamzer must be combined to
allow experts an overall view, complicating the mathena@malysis. Given the potentially
very large number of series and sensors, this gives risetsditalledlimensionality prob-
lem in which experts must handle multidimensional data (Heeeset of time series), whose
dimensions must be reduced in order to allow them to perfbeir analyses.

1 l.e., (3x 365) x 1000 sensors x (480 measures per day)



At INRETS, data are kept separate for each sensor and eacfildayneans that there
are at least two kinds of long series that can be constructagl per sensor, over time, and
(b) per timestamp, for all sensors. Each kind — (a) or (b) peup a distinct analysis. The
first allows studying the behavior, for one sensor, throumgie {fixed point in space, varying
time), while the second presents a snapshot of the entinrietat a given timestamp (fixed
time, varying space). Joint analyses need to correlate thaesors, resulting in a complex
multidimensional data space, as will be seen in section 3.

The relationship betweepandr is defined in the fundamental car-traffic law of trans-
portation theory. This correlation can be graphically esgnted by the fundamental diagram
— see figure 2, which shows the inherent relationship betwdeartical) and; (horizontal)
rates, for one sensor, over one day.
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Fig. 2: lllustration of the fundamental car-traffic law ofrsportation theory — Fundamental diagram for one
sensor, on a given day.

Another issue is quality — the data transmitted by the sere@rvery noisy, and contain
many gaps, mainly due to sensor failures and/or networkkdieens. Thus, the data must
be cleaned before they can be processed. The next secteeneur solution for the di-
mensionality and missing value problems. It shows how theseseries can be cleaned, and
represented with very small errors by a compact descriphos(reducing dimensionality).

3 Summarizing Sensor-based Data

This section presents our solution to pre-process thesspatiporal sensor data series, sum-
marizing them and reducing their dimensionality. It stétgpresenting a method that dra-
matically reduces the dimensionality of each sergemdr), for all sensors, while managing
to maintain almost all the original information. Next, itsts how to derive missing values.
Finally, it combines both kinds of series (flow rate and o@ngy), to describe the overall



state of each sensor per day, mapped to the interval [0,13.ifiterval can be divided into
several classes, which represent specific traffic statasadily experts (e.g., “heavy”, “bot-
tleneck”), thus supporting subsequent queries not onlyadtnes but also on semantically
meaningful states.

3.1 Reducing Dimensionality — the STPCA Method

In [15], we introduced the Space-Time Component AnalysiddGA), a new method to de-
velop descriptors of spatio-temporal data series. Thisiatkis based on applying Principal
Component Analysis (PCA) [19] to both spatial and temponaleshsions, as follows.

Assume that there are sensor data availableNfatays, for a total ofS sensors, and
that there are no missing or invalid valdeset I be the number of instants in a day for
which sensors collect data (in our cae480). Data collected on the flow rate or occupancy
rate are stored in a matriX?, whered symbolizes a date. The time series corresponding
to measurements collected by sensatt dayd is given by I’OWxg. The following steps
are applied separately to flow rate and to occupancy ratajrobg two sets of time series
processed by STPCA.

1. Assemble day matrices horizontally (i.e., concatenagentone beside the other), for
spatial analysis, in a single matrik, and vertically (i.e., concatenate them on top of
each other) for temporal analysis in a matt# In matrix'Y, each column contains all
values obtained in a timestamp, and each row correspondset@ensor, with values
varying through time, through all days (fixed location). lamix Z, columns are the
instants of one day and each row corresponds to data fromers®is for one single
date (fixed time); there are as many rows for each sensor es &éne capture dates.
Matrix Y is S by (IxN), while Z is (SxI) by N.

2. Compute singular value decomposition for matri¥eandZ, as follows
For spatial correlation matrid® = YY7, compute the K first spatial eigenvec-
tors (¥*),_, g, with K < S, storing them in matrixP. For temporal correlation
matrixM? = ZT'Z, compute the. first temporal eigenvectors, with < I, (#'),_;__;,
storing them in matrixQ.

P:col(u?l,u?z,...,WK).

Q = col (45{45%...,#) :
3. Finally, the STPCA estimat&? of a day matrixX¢ is defined by:
x?1=pPPTx?QQ".
We point out that the reduced order matrix is given by:
X, =pPT'x1Q,

of size K x L where K and L are chosen to be small. Experiments done with very small
values of these parameters, namély,= L = 3, corresponding to a reduction factor of
order10?, demonstrate the ability of STPCA to compute a good appratiom. — see [15]

for details.

2 As will be seen, STPCA is preceded by an error-correctiomgutare, described later in the paper
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Fig. 3: lllustration of the flow rate time series, for one daf/8 randomly chosen sensors - horizontal axis
represents time. Original and STPCA time series ugthg= 3 andL = 3. The STPCA approximation is
portrayed in bold, while actual raw data is in gray.

Intuitively, STPCA summarizes the “average” typical traffiehavior for a sensor, over
all days in a period. Figure 3 illustrates flow rate time senwasured by sensors randomly
chosen (grey curves), and their STPCA estimate (black syrfer K = L = 3. Domain
experts considered such approximations adequate forcteafilysis and trend forecasting,
in spite of divergences at specific points — e.g., the casemmd® 5, between 8 and 10
AM, for this specific day. These differences are due to thetfeat, for these cases, STPCA
uses approximations based on an entire day. We might als® jbhat considered shorter
periods, for every day, in which case the results would beenpoecise. As will be seen,
these variations can be analyzed and accounted for.

3.2 Filling missing values

STPCA cannot be directly applied to a data set containingimgsvalues. Our solution to
this problem [18] is the following. We use the ExpectationXitaization (EM) [5] algo-
rithm to estimate separately the spatial correlation mai® and the temporal correlation
matrix M?. We compute a complete estimation of the data set by using thearest time
series of each time series. We then project this estimatiothe principal component of
M? andM' approximations. Our experiments [18] show that resultsiokt by STPCA
on data sets — even those with an incompleteness degreathgba@s high as0% — stay
very close to those obtained by STPCA on the correspondingplaie data sets.



4 Attaching Semantics to Traffic Variables
4.1 Computing Traffic Congestion

We now introduce a new variable to support traffic analysistriaffic congestion(£), de-
rived from the fundamental diagram, and computed for eawbgstamp. To better illustrate
how it is computed, we reproduce the fundamental diagramwssiofigure 2 in a schematic
way — the black curve on figure 4, which shows the relation betw (vertical) andy (hor-
izontal) rates, for one sensor, over one day. This new Marigbbased on computing two
kinds of value for each sensgrper day:

— the average maximum flow ratg ], given by the mean of the maximum flow rate mea-
sured at sensar for each day. It corresponds to a near optimal flow rate valite w
respect to traffic in front of sensor,

— variable7;, which computes the daily average occupancy rate value twhaffic reaches
its maximum flow rate in a day.

A occupancy rate
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Fig. 4: Fundamental diagram with traffic congestion vasga| for sensor

At a fixed timet for day d, the vehicle flow rate and the occupancy rate of a sehsor
are respectively given bqﬁt andrfft. For each measurement, we comp&ﬁ@— the angle

between the line given by = #; and the line linking the point$0,7;) and (qf';, 7",).

From egft, we defineed(t) — the value of the traffic congestidh at sensoi at dayd and
timet:

d ~ -
(Tie — Ti) o i )
—l o d),

100 s

s

eg(t) =1/2+1/7 X arctg(

This formula is based on first computing angfg using trigonometric properties —i.e.,

d ~ ~
P (L
wt = 4TI\ T 00 ]
1,t

where there is a division by00 because it is the maximum value af The resulting angle
(which is between-7/2 and~/2) is transformed into a value between 0 and 1.



4.2 Applying STPCA to congestion

We now proceed to apply STPCA to our congestion function. #emathematically show
that STPCA is able to produce accurate approximationsnga&dvantage of the otion of
energyof a vectorial space. Total energy is equal to the trace ofdneslation matriced,
and is given by:

tr(M) = Y2001 A (M),

where X, (M) represents the’" eigenvalue of matrixM, and N represents the number
of eigenmodes. As correlation matricks® (spatial correlation matrix) an¥? (temporal
correlation matrix) are determined while applying STPCAergy captured by the first
spatial and temporal eigenmodes are respectively given by:

Z:il /\i(Ms) vaﬂ )‘i(Mt)
tr(Ms) tr(M?)

Intuitively, the original data set corresponds to a veal@pace containingd0% energy.
Hence, the more a set of eigenmodes captures energy, theaocueate the estimation
obtained when projecting data on the vectorial space defip¢dese eigenmodes (and thus
the better the dimensionality reduction).

Our experiments, discussed in [15], show that on both (@letid temporal) dimensions,
the first eigenmode contain more thag? of the energy. Moreover, th& = 4 first spatial
eigenmodes and = 6 first temporal eigenmodes capture more thars% of the energy.
This allows us to reproduce very accurately the typicafitréehaviour of each sensor with
a reduced dimensional space.

and

4.3 Interpreting congestion states — symbolic representat

We recall that the values ef'(¢) are normalized betweenand1. If values are close t0,
traffic is very fluid (low flow and occupancy rates), while veduclose tol represent a
large bottleneck. Values close @5 correspond to nearly optimal traffic, with high flow
rate. Traffic congestiori’ thus combines two different variables into one without logs
information. Moreover, it gives a normalized and inteltilgi view of traffic.

In order to work with traffic congestion, this function wasdhietized with help of ex-
perts into seven intervals, each of which corresponding diffarent traffic state. These
intervals were assigned symbols, thereby introducing ebsjimdescription of traffic con-
gestion curves (for symbolic representation, see [14], disdussion on related work at
section 7):

— "C": Sparse - few vehicles, typically night traffic;

— "TH": Tendency to heavy traffic — intermediate state betwéeand H, tending to
increase in traffic;

— "H": Heavy traffic — state corresponding to quasi-optimalficafongestion, with high
flow but no bottleneck;

— "RC": Return to sparse — intermediate state betwé€eandT H, where traffic moves
from heavy towards sparse;

— ”51": Saturation level 1 — corresponds to a light density, witwsflow and increase in
occupancy level;

— 752" Saturation level 2 — severe traffic bottleneck, very slamfland heavy traffic;

— 7.53": Saturation level 3 — bottleneck, vehicles are almosictat



These traffic states are computed from thresholds appligd, @s well as to the sign of

the derivative of the congestion function. Table 1 shows bowompute these symbolic

variables at every timestantp Each symbol is associated with a value betwgemd 7,

to facilitate computation of pattern similarity. Symbotiepresentation is thus mapped to
a step-wise function. Figure 5 represents temporal sefidésaffic congestions and the

corresponding symbolic representation.

Table 1: Discretization of¢(¢) into seven intervals.

Symbolic state| Associated valug] Range of?(t) Derivative fored(¢)
C T e (t) < 0.2 7
RC 2 02<el(f) < 0.45 negative
TH 3 02<e’(f) <0.45 positive
H 4 0.45 < 7' (t) < 0.52 I
ST 5 0.52 < 7' (t) < 0.6 I
s2 6 06<e'(t) <0.7 7
S3 7 e (t) > 0.7 7

Besides helping reducing the problem dimensionality atgiing user visualization, the
use of symbolic representation helps data discretizalibis is also useful for subsequent
computations across time and space, such as mutual informatee next.
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5 Handling atypical traffic behavior

Up to now, this paper has applied the STPCA method to timeesdd summarize and
forecast typical behavior. However, it can also be a meadetect atypical situations. We
say that traffic behavior iatypicalif the distance between measured traffic congestion and
its STPCA estimation is beyond a given threshold defined byuger — i.e., the activity
measured by the sensor is not representative of the usualibeh computed by STPCA.
Atypical behavior means that STPCA has either provided @ergstimation of an over-
estimation or traffic congestion. In the first case, traffiecnisre intense than forecast by
STPCA,; in the second, it is more fluid. Once atypical situaiare detected, we provide a
new kind of mechanism to study and describe spatio-tempooglagation of such behavior
— thepropagation graph®

5.1 Propagation graphs

A propagation graph describes how local traffic perturlvetiat a given instant propagate to
other areas in subsequent periods. As such, these graptes/spatio-temporal propagation
of atypical traffic events, computed with respect to corigast

Figure 6 gives a short illustration of such a graph. Vertieggesent sensors, and edges
represent propagation of atypical behavior. The figure shfavinstance, that some atypical
event detected at sensor 1 at tingeersists at the same location at titael (i.e., the situation
was propagated through time, for the same spatial refeyeliaso shows that the event
detected at sensardid not persist. Also in the figure, we can see that at timel sensor
1 is also affected by the atypical event detected at sehabtimet (i.e., the problem was
propagated in time and space). Events at serssargl5 att + 1 affect each other at+ 2.
The rest of the figure can be interpreted the same way.

Instant t Instant t+1 Instant t+2

Fig. 6: Example of a propagation graph on three successnagstamps.

These graphs are constructed from appropriate subsets wigasured data, using an al-
gorithm based on the combination of Isomap and Mutual in&diom (see [16] for details on
this algorithm). Mutual information [31] is provided by frability theory and information
theory, and measures the mutual dependence of two varidthkegiven by :

I(X,)Y)=H(X)+ H(Y)—-H(X,Y),

3 The work of [16] uses the term "pattern” to refer to propagatjraphs. Here, we adopt the name "graph”
to avoid confusion with pattern matching in time series.
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Input: Symbolic representation congestion time series for a setigors
Step 1- Compute embeddings

For each timestamp:
1.1 Compute mutual information Compute mutual informatiod (¢, j) at timet¢ be-
tween each pair of sensoisj

1.2 Construct neighborhood graph Connect vertices and j by an edge if distance
(Isomap step 1 dx(i,j) = 1—1(1, j) is smaller than threshold: or
if 7 is one of the K nearest neighbors ©fisingd.. .
Edge weights are given k. (¢, j) values.

1.3 Compute shortest paths Initialize d¢ (4, j) = d= (¢, §) if i andj are linked
(Isomap step @ by an edge,dg(i,j) = oo else. Then for pa-
rameter k = 1...N replace dg(i,7) by

min{dg (¢, J),dc (4, k) +da(k, j)}. Construct ma-
trix Dg = {da(i,7)} containing shortest path dis-
tances for each pair of points i@.

1.4 Construct embedding Apply multidimensional scaling to matrR
(Isomap step B to obtain an-dimensional embeddinyy? at each
timestamp.
EndFor
Step 2- Create propagation graph Create an edge between each senison embedding

Y? andi’'s K nearest neighbors restricted to an
maximum distance radius on embeddivg*! ac-
cording to Euclidean distance. Keep only edges with
high propagation probability.

Fig. 7: Algorithm to construct propagation graphs.

whereH (X) andH (Y) respectively measure the entropy of variabteandY’, andH (X, Y)
corresponds to the cross entropy for these variables. Munfigamation values are defined
betweerp and1. The higher its value, the stronger the relationship ameegts. When its
value is zero, the events are independent.

Isomap [35] is an approach to solve dimensionality redacpooblems that uses lo-
cal metric information to derive the underlying global gexiry of a data set. This method
can be decomposed in three steps. The first step determirieB pdints are neighbors,
based on the distancés (i, j) between pairs of points andj from the data set. Neigh-
borhood relations are then represented as edges in a wetigistphG. The second step of
Isomap estimates the geodesic distankg§, j) between all pairs of points by computing
their shortest path it:. The final step applies classical multidimensional scalMBS) to
the geodesic distances matiix;, reducing its dimensionality. This last step projects the
original data into ax-dimensional Euclidean space that best preserves thes deirnated
intrinsic geometry. We call this projectionradimensional embeddingan Euclidean space
of dimensiomn, in which the Euclidean distance between its points is seretive of their
similarity.

Figure 7 presents a high level view of our algorithm to camdtpropagation graphs.
It receives as input congestion information, computed froeasured data, and reduced to
a symbolic representation. The key in our approach is to coenmutual information on a
symbolic description of the traffic congestion and then use idistance in the first step of
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Isomap. Each point in the data set corresponds to a specios@nd a-dimensional em-
bedding is computed for each timestamp. Generally, evensreall values of: (e.g.,n = 2
orn = 3) are enough to capture data’s geometry. The distance betimeepoints on the
embedding is used to compute the similarity of traffic bebiafar the corresponding sensors
(the smaller the distance, the more similar traffic is).

To construct propagation graphs, we link points betweeseoutive embeddings. Our
hypothesis is that, if traffic congestion is atypical on serist timet, traffic at this same
sensor will still be atypical at+ 1 — obviously depending on the time interval between two
successive timestamps. Moreover, an atypical event abseasd timet will affect all of
1S neighbors in the correspondingdimensional embedding at timet- 1.

To increase readability, we introduce the following natatiused in the rest of the text

(7,t) —node in a propagation graph, denoting serasartimet;

< (4,t),(j,t +1) > — an edge in the propagation graph — notice that edges ahiveys |
embeddings at consecutive timestamps, i.e., there are gesewthin an embedding,
and no edges linking embeddings which are separated by mamneohe timestamp;

A%t — an atypical event detected at sensat timet — i.e., at graph nodgi, t). We recall
that atypical events are detected whenever the congestasured a, ¢) is different
(over some threshold) from its STPCA average behavior astim

P(A%L A5 — probability that, if atypical event™! is detected ati, ¢), then there will
be an atypical event/! 1 at (4, + 1).

Step 2 starts by creating edges (i, t), (5,t + 1) > — i.e., linking each sensarin
an embedding at time with the same sensdarand all its neighbors at timestampt 1.
Graph edges are next assigned weidhtst’-!*1|.4%!). These probabilities are computable
from available information. Finally, graph edges with waggbelow a certain threshold are
eliminated.
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tive timestamps) and (b) predictions for a 15 minute interva

Numeric experiments showed the accuracy of propagatigohgrdf all data are used,
they manage to foretell approximatet9% of atypical event propagations in a 3 minute
period, andi8% of atypical event propagation inla minute period —see figure 8. Moreover,
as shown in the figure, graphs constructed using 80% of the available data predict up
to 75% and61% of the propagation respectively for 3 and 15 minute peridtiés confirms
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the hypothesis that atypical situations(att) propagate in spatio-temporal patterns in the
neighborhood of senser

5.2 Graphical representation of propagation graphs
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Fig. 9: lllustration of spatio temporal propagation pattextract.

In order to help traffic experts to quickly grasp atypical gagation patterns, we de-
signed a graphical representation of propagation grapks the right side of Figure 9. The
left part of the figure represents the traffic network's togyl Sensors are illustrated by
squares, roads by gray lines, and rivers by thin black lifies.right part of the figure is the
graphical representation itself, corresponding to théopdbetweenrh48 and 7h58. Edge
directions indicate propagation sense, and edge thickegsesents propagation probabil-
ity P(A%*+1|.4%1). The highest this value, the thickest the correspondingaarr

The graphical notation helps visual identification of sitoias which seem logically
acceptable — for instance, an atypical event at ses&@at 7h48) lasting for 6 minutes at
its site, though decreasing in intensity after the first 3utés. We can also see in the graph
that traffic on sensog3 affects traffic on sensaor7 after 3 minutes — again, a seemingly
reasonable situation if one considers the network topolsigge these sensors lie along the
same route. However, the graph also shows surprising aftesgt-abnormalities —e.g., from
sensori8 to sensor7, though they are not directly connected in the network. linglat
such a graphical representation, experts are able to dgrat®-temporal traffic propagation
behavior patterns that can help them set up traffic contralegiies. We now proceed to show
how experts can use our model to detect anomalous eventsuatydtiseir propagation.

5.3 Distinguishing atypical events - spatio-temporal pggtion of overestimation and
underestimation events

An atypical situation is detected when the difference betwteaffic congestion measured at
a sensor and the STPCA estimate for the congestion (basetmga historical behavior)
is above a certain threshold, which is defined by experts pfediminary simulations. Two
kinds of atypical events can be distinguished:

— traffic underestimation (STPCA underestimates congestimffic is more intense than
usual. It corresponds to atypical situations for which mead congestion is greater
than its STPCA estimaté(’"! denotes the detection of a traffic underestimation event at
sensor and timet.
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— traffic overestimation (STPCA overestimates congestitajfic flows more smoothly
than usual. It corresponds to atypical situations in whigasured congestion is smaller
than its STPCA estimat&’! denotes the detection of a traffic overestimation event at
sensor and timet.

Hence,
{ {0" Yy u{Unty = (A}
{0 N {Uty = @.

We now proceed to identify two kinds of propagation situagio

— underestimation grapli{,): For each underestimation event detecte@ a, it shows
the events propagation. Edges are weighted by probasilitied’-'+1|0"*), that we
refer to as traffinderestimation propagation tendency

— overestimation graplg(,): For each overestimation event detecte@ &f), it shows the
events propagation. Edges are weighted by probabilitied’! 1 |1/%), that we refer
to as trafficoverestimation propagation tendency

Gy andG are computed independently using the algorithm of Figuepplying either
underestimation propagation tenderegA’' 1 |t/%*) (for G,), or overestimation propaga-
tion tendencyP (A% 1| 0%!) to construcgo.

Remark that the nature of the propagation is unknown — ireurelerestimation event
observed at nodé;, ¢) can trigger over- or underestimation events at ngde+ 1) — the
graph will only show some kind of propagation has a high pbalig. We can only tell what
kind of atypical situation was observed at the beginning (tbdes at the graph source). We
call these eventsausal atypical eventdo denote they are at the origin of propagation of
some kind of atypical behavior.

To compare underestimation and overestimation propaggtige introduce the notion
of differentiation raterp (G, Go). It computes the proportion of edges that appear in either
the overestimation or the underestimation graph, but nditadh:

1 1 ExclusiveNeigh; ¢
™0 (9u, G0) = T > i >
teT " del,

TotalNeigh; ¢

where

T is the set of time periods considered to construct the graph;

I contains all graph nodeg, ¢t) which are connected to at least one ndgle + 1) in
eitherg, or Gp;

ExclusiveNeigh; ; is the total number of edges (i,t), (j,t + 1) > which appear in
eitherG,, or G, bot not in both ;

TotalNeigh; 4 is the number of distinct edges (i, t), (j,t+1) > that appear i, or Go.

The goal of the differentiation rate is to check whether asehatypical event triggers dif-
ferent propagations, depending on whether it is an undeverestimation; High values of
this rate indicate that a causal underestimation eventmimgsropagate to the same sensors
as a causal overestimation event — i.e., the graphs areeatiffdepending on the nature of
the causal event.

In fact, if we separately consider the two kinds of causapiagl events, the graphs
become slightly more accurate (i.81,% for a 3 minute interval, and9% for a 15 minute
interval, with slightly less false positives). If all avalille data are used, the graphs show
that the differentiation rate reach&d8% for 3 minute predictions, angt% for a 15 minute
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Fig. 10: Prediction accuracy (solid line) and differentiatrate (dashed line) evolution depending on the
amount of data used to create the graph (a) for a 3 minutevaitprediction and (b) for 15 minute interval
predictions, when causal atypical situations are difféaézd.

prediction. Such values indicate that, on the averag#, of the sensors affected after 3
minutes by an underestimation event are not the same asdfiesed by an overestimation
event. If graphs are constructed using o30% of the data, then they are able to prediz¥

of propagations for 3 minute intervals, aé@b% at 15 minute intervals, with differentiation
rates of respectively6% and87% (figure 10).

Hence, the distinction between causal over- and underatitimevents allows more
precise analysis and forecast of traffic anomalies. Thd t&vguality of the prediction is
the same, while at the same time taking into account the eatuthe causal situation and
its propagation throughout the traffic network.

5.4 Cause-consequence relations

Intuitively, an atypical event afi, ¢) can propagate throughout the network and provoke
atypical events (of either kind, under- or overestimatianyubsequent timestamps. Let us
illustrate this idea. Considex sensorg, j andk that are placed in this spatial order along
some traffic axis, distant from each other by a few kilometegsus suppose that an accident
occurs just in front of sensgr thereby creating traffic problems - i.e., congestion deses
(an underestimation event, in which actual traffic condsiavill be worse than the average
forecast bye? (t)). This may block traffic a, and thus the traffic flowing from its position
will diminish in the subsequent periods. This will cause garestimation event at (there
will be less vehicles than expected). Moreover, if the lottick ag takes longer, the atypical
situation may extend back to sengdhat precedes spatially, also halting traffic at This
is an example that shows that an underestimatigrpedpagates an overestimationitcand
as underestimation to

Sensor spatial configuration thus allows forecasting theiof propagation relations
that can be established among sensors. Underestimationveneistimation graphs (resp.
Gy andGp) are constructed according to probability computatioesyfrP (A7t [1t)
and P(A7+10%t)). As mentioned before, these graphs do not consider theenatuhe
propagation — they just show propagation of a causal atypient. Experts may want to
know more about the type of propagation — i.e., specific caffeet edges. This does not
require building new graphs — rather, we will perform a distigraph analysis.
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In more detail, we now compute probability valuegs?! 1|14ty and P(O 1+ |144t)
for edges inGy,; and probability values (71 F10%) and P(O71T10%?) for the edges
in Go. For instanceP (071 |1/*) is the probability that an underestimation eventiat)
is propagated as an overestimation everfjio+ 1).

Propagation ofA" to .A7‘*! may have the following outcomes:

— AP+ is an overestimation;
— A7**1is an underestimation;
— there is no propagation (atypical event is restricte(t o).

Our cause-effect study will only consider the first two oues, since we are interested
in finding out whether propagation types are predictableotirin this simplification, we ig-
nore the fact that atypical events may not propagate toeill tieighbors in a-embedding.
Let us simulate a context in which propagation predictiorDi¥% correct, i.e.,

PAPHAM) = 1
which is equivalent to:

V < (i,1),(, t + 1) >€ Go, P(ATTHOM) = POV OM) + U O =1,
V< (i,t), (G, t + 1) >€ Gy, P(APHT YY) = p(OIH bt + Pud i ybt) = 1.

Under these conditions, and for the time intervals consiléB and 15 minutes) we
observed the following from our experiments:

— For Gy, more tharp5% of edges< (i, t), (j,t + 1) > obey eitherP (7! T1|14%) > 0.9
or P(OF Lyt > 0.9 ;

— ForGe, more tharp5% of edges< (i, t), (j,t + 1) > obey eitherP (U1 +1|0"t) > 0.9
or P(OH1H o) > 0.9 ;

In other words, for more tha#5% of the time, we can predict the type of atypical event
propagated tdj, ¢ + 1) with an error margin inferior td0% (since all probabilities are
superior t00.9). This leads to the conclusion that propagation is not remdand that we
can even develop very reasonable propagation forecasts.

Nevertheless, propagation may not always happen. Thusjigh fihis study, we now
consider the third case — when there is no propagation. Badipa probability can also be
used to compute estimation errors. For instanc®,(if’*+1|0%!) = 0.88 (probability that
overestimation ati, t) propagates as underestimatior{ gt + 1)), then this means that the
underestimation event &t + 1) is predicted with an error margin ¢2%.

Figure 11 shows curves that indicate prediction accuraoy.ifistance, figure 11(a)
shows that, for a 3 minute period, if is possible to predi@ra®0% of cause-effect propa-
gations with an error margin below0%. If we accept an error margin @b% or less, more
than50% of the situations can be predicted. For 15 minute periodsit®show that our pre-
dictions are slightly less reliable (see part (b) of the #@&ju+ for an error margin df0%, we
are able to correctly predict more thas% of cause-effect propagations. Given our results
for perfect prediction, we can safely say that these ern@srainly due to the difficulty of
forecasting the presence of any kind of propagation, thasetdrmining the nature of the
propagation itself.
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Fig. 11: Evolution of prediction accuracy depending on theeated error rate for predictions on (a) a 3
minute and (b) a 15 minute period.

6 Querying and Mining Traffic Data

In [29] we described the structure of a data warehouse te ke raw sensor data. The
design of this warehouse took into consideration the mleltgpatial and temporal aspects
that must be considered when dealing with traffic data, haefloeiing aggregation along
several dimensions.

We now extend this proposal by supporting the storage ofiatikof data discussed
previously together with the raw data — i.e., the series withsing values filled, traffic
congestion £) as well as STPCA summarizations (fgrr andE), as well as their symbolic
discretization. This multitude of data representatiomsvad several kinds of analyses not
reported elsewhere. This section indicates the classesenieg that can be posed. Though
not implemented, they exemplify new kinds of analyses weatdain.

6.1 Pattern Analysis

Pattern analysis is deeply related with similarity seafidte goal of similarity search is to
find, in a database, all series which are similar to anoth@sprovided as input.

Let I be an input series, which can represent or E seriesQ1 shows standard pattern
analyses, whose implementation can be solved by similgritgessing algorithms typical
of data mining processes — see section 7. Thus, such queriggegrocessed on the cleaned
data set using these standard procedures.

— Q1 - Retrieve all series which are similar g but only for sensoi and/or dayd

Q2 through@5, however, are new kinds of query. They can only be answeredawour
spatio-temporal representations, e.g., a query on “typielaavior” requires STPCA.

— Q2 - What is the traffic congestion behavior of sensior dayd
This query returns the symbolic representatiorzof

— Q3 - What is the typical flow rate behavior of sensar
This query returns the STPCA estimate §ocapturing its behavior over time

— Q4 - Show the sensors whose typical traffic congestion behawiclosest to that of
sensor on dayd
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This query is processed in three steps. First, the congetiwtion is computed; next,
its STPCA approximation is calculated. Finally, the seaseturned are those whose
STPCA approximation (oF) is closest to measured values. The notion of "close” is a
threshold defined by the user.

— Q5 Show all sensors with a high margin of outliers for day
Here, the goal is to retrieve sensors where there is a higtepege (user defined) of
overestimated or underestimated values.

Outliers can be detected by comparing a curve created byiagiTPCA tog or 7, and
the original series, for a given day and sensor. Figure 1®&sleaamples of such a difference
— values computed for a typical day, for a sensor, and valapticed on Christmas. The
possibility of describing typical behavior allows chedkifor anomalies, and also detecting
for which kinds of day an approximation must be tuned — elgnieating these days from
global matricey” andZ, and computing STPCA for them alone.

We point out that our work does not differentiate betweemllagand special days (e.g.,
holidays). Hence, normal behavior in a special day wouldeaps atypical. This kind of
differentiated analysis is left for future work.

Sensor 1 Sensor 2

Fig. 12: Comparison of actual measured values for a sensesggray) and their STPCA estimate (black),
for an atypical date - outliers.

6.2 Spatio-temporal Database Queries

Two kinds of spatio-temporal database queries can be cenesid- those on the different
numeric (measured) series, and those on symbolic repegs® applied taF. The first
can be divided into two basic situations — temporal and apgtieries; spatio-temporal
gueries are classically a result of the combination of beg#amples on queries on numeric
series are

— Q6 - Spatial information — retrieve all series @for 7, or E) for sensors within a given
region.
Standard spatial window query, returning data on all sensdrose coordinates fall
within the input region. It returns a set of series (assurgiach day is stored separately)
— Q7 - Temporal information — retrieve all series @for 7, or E) within a given period
Standard temporal query where the predicate will be chealathst sensor timestamps.
Screen copy on figure 13 is an example of the kind of outputalyspf this query.
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— Q8 — Spatio-temporal information — a combination of Q6 and Q7

We finally come to queries on symbolic data. This allows useretrieve information
with associated semantics, closer to the user mental frankew

— Q9 — What are the sensors that on ddyad more than 30% df eavy traffic congestion
values

— Q10 — What are the sensors within a given region that in at le@es day had more
than 30% ofH eavy traffic congestion values (spatial restriction to a regimd then
executingR9 repeatedly for each sensor in that region)

7 Comparison to Related Work

This paper concerns methods and mathematical tools to stinenaad interpret time series,
captured by traffic sensors, which can be subsequently $tetohtd distinct kinds of manip-

ulation. Our research thus combines work on time series @rimation, management and
pattern mining, and work on spatio-temporal databasesdadlng sensor data for traf-
fic management. This paper extends our work in [17] by intoauy propagation graphs,
and discussing the kinds of propagation patterns that manbkyzed. This section briefly
comments on related work in time series, and research dittvafiables as a whole.

7.1 Intelligent Transportation Systems

Spatio-temporal database research on traffic networkdviesaountless issues. In many
cases, the network is transformed into a (spatial) grapighwk used as a basis for planning
maintenance and expansion of the network. A large percemfthe graph structures ana-
lyzed in the context of traffic databases concern road tggoland are thus a spatial (but
not necessarily temporal) structure. Our propagation lggamstead, are spatio-temporal
constructs. This kind of formalism is more common to work ransportation sciences -
however, in such a domain, the main concern is temporal Beolwithin a fixed region
(and thus the emphasis is on time, but not necessarily space)

Graphs are either theoretical constructs (i.e., the iatésdo analyze algorithm perfor-
mance for arbitrary complex topologies) or correspond e likirs - to actual road topol-
ogy. However, in these graphs, nodes are street interasctimd edges are road segments,
whereas our nodes are sensor positions and edges are trafimgpation links. Thus, our
propagation graphs must be always analyzed in conjunctiinnetwork topology graphs.

Operations research and graph theory play important roleg+ [28] is concerned
with routing models, using computation of flow in the netwagtaph. The work of [24]
also takes advantage of network graphs and graph proptrtoggimize kNN and distance
range queries in traffic, while [4] perform continuous kNNeges on a network, for mobile
objects.

Graphs and network structures are furthermore used todstend analyze trajectories
of mobile objects (e.g.,[23] in indexing trajectories).efé is also extensive research on
models for mobile objects and trajectories — e.g., [9,33lese models assume that the
identity of each object is known, and that the sensors aeglan the moving objects.

Several other problems give rise to database-relatedradsea traffic issues. For in-
stance, the work of [12] concerns detecting specific spatiationships among moving
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vehicles along a trajectory (e.g., "in-front-of” relat&hmp). This kind of research is con-
cerned with small granularity details, considering induél vehicles whose data, collected
periodically, are stored in databases.

Our work is based on using traffic estimates computed on geesansor-provided data,
which is used to predict traffic congestion. In this sensegiit be contrasted, for instance, to
[36], in which historical data on trajectories along giventes is used to forecast real-time
trajectories. Though the idea is the same, the latter issroed with individual vehicles (and
their historical data); in this research, real-time dataded to update trajectory forecast,
and thus improve future trajectory studies. Since our histbdata is on global flow and
occupancy (and not on individual car behavior), we can samsiderable storage space. On
the other hand, we cannot provide information on individeedlicles.

Computer networks is another area in computer science iohathere is extensive in-
vestigation in combining research in network propertied sensor traffic information. In
particular, in the area ofA-NET- Vehicular Ad Hoc Networks - all vehicles gather data on
traffic conditions, and broadcast it to other vehicles, ébgrproviding real-time informa-
tion to drivers. Problems therefore involve filtering redavinformation, providing decision
tools, and managing mobile telecommunications (e.g., \Whtd are relevant to which set
of vehicles — see, for instance [26]). Additional issuessiger sensor placement and infor-
mation aggregation (to optimize use of bandwidth). Thougihveork is not directly related
to this kind of research, it can be applied in solving somehefproblems investigated, in
particular when it comes to propagation of atypical behavio

Last but not least, in transportation sciences, there snsige research on Intelligent
Transportation Systems from the point of view of traffic expeln such research, traffic
flow can be schematized on top of roads, or use digraphs fdy stuvariables — e.g., see
[32]. This also includes work on propagation of phenomenawéler, to the best of our
knowledge, none of these papers have considered atypieat pvopagations like us, in
special when it comes to considering our research on preipaggraphs.

7.2 Summarization of time series

Many techniques are used to perform summarization andlseperations on time series,
such as machine learning (supervised and non-supervigidhty), linear regression, dy-
namic programming and signal decomposition [10,11,8,d7,Rccording to Faloutsos
[6], many of these operations are tightly interconnecteend¢, there have been propos-
als to construct a basic set of primitives to be used to partbem — e.g., the combination
of pattern discovery and similarity search can be used tdigrgalues. All functionalities
require some sort of comparison, to recognize patternsremeact matching is virtually
impossible.

A recent research direction concexhgamicseries, in which data sets may be updated
during the summarization and mining activity, in particutncerning stream data (e.g.,
from sensors). Our work is concerned only with static sefidgere data are collected and
stored in a database), and thus stream data analysis anahidysiammarization will not be
considered here.

When dealing with data containing time series, the main eoné usually to reduce
the temporal dimension, preserving the original inform@twithin some predefined error
threshold.
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Signal processing methods include DFDiscrete Fourier Transfornjl, 7] and DWT
- Discrete Wavelet Transformproposed by [3]. Each such method is based on representing
the series by coefficients that summarize it at some gratwular

SVD - Singular Value Decompositiois based on considering the time series as a set
of n-dimensional vectors. The goal is to project these vecturs a k-dimensional space,
wherek < n, maximizing the energy (i.e., conserving information) cEaeries is next
represented by coefficients applied to theifferent functions, thus defining the basis for
the projections.

Segmentation methods approximate a series by a set of keganents. Examples in-
clude PAA -Piecewise Aggregate Approximatif20, 37], APCA -Adaptive Piecewise Con-
stant Approximatiorf21] and PLA -Piecewise Linear Approximatiohe first approxi-
mates a time series withelements inton intervals of the same size, wherés a multiple
of m. The series is next represented by a set of segments (stefpfun where theg-value
for each segment is given by the average of the values fortithatinterval. The second
improves PAA - the difference is that, instead of regulaeimls, the number and length
of intervals varies according to the series. In PLA, instebstep functions, segments con-
nect the actual measured points. [22,13] propose sevegatithims to determine segment
extremities.

In symbolic representation - e.g., [25,14], the series imedmw converted into a se-
guence of symbols, i.e., a series of values is transform@dairstring. This representation
allows the use of text matching algorithms to compare seSigsbols are obtained by clas-
sification. Symbolic representation can also be based ervals adapted to data profiles —
see [13] for an overview of symbolic representation al¢pons and models.

Several representations are a result of composing digtimds of methods. TIDES [27]
is an example of an approximation that combines more thambiie previous techniques.
It first reduces the original series using PLA. Next, it reqarets each segment by its angle
with respect to the, axis, and associates symbols to classes of angles (thusirioghb
symbolic representation and PLA).

STPCA and SVD both sumarize time series while maximizinggné&\Ve now compare
both. Comparisons are done according to two criteria: (&jnesion error, given by the
average Euclidean distance between the real and the estittiraie series and (b) reduction
factor. It is very interesting to compare their respecticeuaacy, since their parameters
as tuned according to the same conditions. SVD is not realipaio-temporal method
— it applies a PCA either on the spatial or the temporal dinoen$SVD performed on the
spatial dimension is also known as S-mode PCA, while SVDiagmn temporal dimension
is named T-mode PCA.

In this comparison, T(S)-mode PCA is applied with paramétes 3 and STPCA is
applied with parameter&” = 3 andL = 3. STPCA totally outperforms the other methods
while producing an estimation error 629 which is the same order of those obtained by
S-mode PCA®.28) and T-mode PCA(Q25) with a 10* reduction factor — far greater than
those obtained with S-mode PCA (160) and T-mode PCA (60).

8 Conclusions and Ongoing Work
This paper presented research conducted within a muligidiisary project, in the domain of

spatio-temporal sensor data processing for urban trafffemrhbines research on analytical
methods to pre-process, clean and summarize multiple sdatosources, and research on
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spatio-temporal database management. As part of the w@RDDY, we have constructed
a prototype that allows the visual exploration of sensoadstiown in figure 13.

Different kinds of time series can be processed by STPCA thadghat improves data
analysis considering the spatio temporal aspect of theseiat@his method allows a consid-
erable reduction of the dimensionality of data sets, whiltha same time preserving the
original information, as shown by our energy experimentsrédver, it offers a compres-
sion factor which outperforms those obtain by classical&iePCA and T-mode PCA with
an equivalent reconstruction error. STPCA also dominditese methods when it comes to
estimating missing values.

Fig. 13: Screen copy of prototype.

Another contribution is the introduction of the notion ddiffic congestion, a new kind
of traffic variable which combines flow and occupancy infotioa The paper shows how
one can use symbolic representation to describe congesteneby helping experts analyze
traffic conditions.

One major contribution is our study on propagation of atgpiraffic events (character-
ized by deviations from STPCA estimates). The use of prajp@ggraphs, and the analysis
described on these graphs, show that they are a promisingffeative tool to support deci-
sion making in traffic management, and thus intelligentgpamtation systems. Our studies
backed up several empirical observations. However, tteysiiow some unexpected traffic
behavior. In particular, our experiments with propagatjoaphs indicate that the urban areas
affected by an atypical traffic event differ according to tizure of the causal event —i.e.,
atypically slow traffic does not propagate in the same sgatitporal patterns as atypically
smooth traffic.

Finally, we describe new kinds of queries and analyses trabe performed using all
these new methods and analytical tools. Though some of theses are common in time
series databases, most of them provide support to novébspatporal analyses.

Future work involves theoretical and implementation issdde latter mainly concern
developing more tools within the prototype to directly sopiphe classes of queries de-
scribed. This will require, among others, linking the ptgpe to pattern recognition algo-
rithms. An interesting kind of query that we are considergogcerns exploration of prop-
agation graphs. In fact, these directed graphs can be steieg some kind of linear stor-
age structure (e.g., linked lists). Such structures camlzdsqueried and mined, to analyze
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propagation effects, and eventually trigger alerts to exp&ince these are probabilistic
structures, this will require work on statistical datalsase

We furthermore need to explore other extensions to STPCAs iethod is geared
towards studying individual sensors, for specific pattetogletermine an average typical
behavior for each sensor. STPCA can be extended to spatjedgagion (several sensors)
over an area. Another issue concerns deriving other kindsaffic behavior description —
e.g., for atypical days, due to variation in human activityaigiven area, such as holidays
or festivals. A combination of these two extensions wouldput a wider variety of traf-
fic pattern descriptions — e.g., for distinct events. Thstuirn, would allow new kinds of
decision support in real time traffic management, includirigraction with intelligent car
systems.
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