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Abstract—Several computing systems rely on information
about living beings, such as Identification Keys – artifacts created
by biologists to identify specimens following a flow of questions
about their observable characters (phenotype). These questions
are described in a free-text format, e.g., “big and black eye”.
Free-texts hamper the automatic information interpretation by
machines, limiting their ability to perform search and comparison
of terms, as well as integration tasks. This paper proposes a
method to extract phenotypic information from natural language
texts from biology legacy information systems, transforming
them in an Entity-Quality formalism – a format to represent
each phenotype character (Entity) and its state (Quality). Our
approach aligns automatically recognized Entities and Qualities
with domain concepts described in ontologies. It adopts existing
Natural Language Processing techniques, adding an extra orig-
inal step, which exploits intrinsic characteristics of phenotypic
descriptions and of the organizational structure of Identification
Keys. The approach was validated over the FishBase data. We
conducted extensive experiments based on a manually annotated
Gold Standard set to assess the precision and applicability of
the proposed extraction method. The obtained results reveal
the feasibility of our technique, its benefits and possibilities of
scientific studies using the extracted knowledge network.

I. INTRODUCTION

Within the large set of knowledge bases containing infor-
mation about living beings, phenotype descriptions play a
key role, denoting the visible properties of organisms. These
descriptions are written in a textual format and are mainly
composed by morphological characters, e.g., “eye”, and related
qualifiers, e.g., “big”.

Many problems arise when descriptions are written in a
free-text format, such as the possibility of writing the same
description in different ways. For instance, “median fin skele-
ton” can be written as “unpaired fin skeleton” and “axial fin
skeleton”. It makes difficult the fully semantic interpretation
of data by computers and limits their capacity of supporting
accurate analyses over the information. The challenge in this
scenario is how to distinguish, as automatically as possible,
the characters and their states from free-text descriptions.

In this paper, we propose a method to detect the phenotype
descriptions expressed in an Identification Key (IK), which is a
decision tree to identify a specimen based on observed charac-
ters [1]. Our proposal transforms the recognized elements into
a semantic-based representation aligned to the Entity-Quality

(EQ) approach [2]. In an EQ statement, the Entity refers to the
morphological character (e.g., “eye”) and the Quality stands
for a qualifier (e.g., “big”) that specifies a given state of the
Entity.

This investigation defines a two-step method. The first step
analyses a sentence using a Natural Language Processing
(NLP) technique that produces a Dependency Tree, estab-
lishing dependency relations between the sentence terms. It
extracts EQ elements computing matches between ontology
concepts and terms of the tree. We assume that the relations
among terms in the Dependency Tree have latent Entity-
Quality statements. They reflect the biologists approach to
write phenotype descriptions: a term (or a set of terms)
representing a given Entity has specific kinds of dependency
with a term representing its Quality. The second step takes
advantage of the way that biologists relate and structure the
phenotype descriptions. This step explores the correlations
between sentences inside the IK. The identified Entities and
Qualities are connected to domain ontologies to make their
semantic explicit.

We conducted an experimental evaluation using data from
FishBase to validate the proposed method. FishBase1 is a fish
knowledge base containing information used by researchers,
fishery managers and zoologists. We show how recognized
EQs can link descriptions of several species to produce a
knowledge network and how this network can be explored
for data analysis. The results indicate the adequacy and po-
tentialities of our approach.

The remainder of this article is organized as follows: Section
II formulates the research scenario and problem. Section III
discusses the related work. Section IV describes the proposed
method for the extraction and semantic linking of phenotype
EQs. Section V reports on our experimental evaluation and
shows potential applications of the generated knowledge net-
work. Finally, Section VI draws conclusions and future work.

II. RESEARCH SCENARIO AND PROBLEM DEFINITION

Among several types of data managed by FishBase, Identi-
fication Keys (IKs) consist in artifacts created by biologists to

1http://www.fishbase.org
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Fig. 1: Fragment of Identification Key to the Teleostean families from East Africa (sub-order
Trachinoidei). Source: http://www.fishbase.org/keys/description.php?keycode=799.

identify species or any other taxonomic group (called taxon)
of an observed specimen [1]. An IK denotes a structured set of
phenotype descriptions of organisms. To identify a living being
using an IK, users might navigate through a series of multiple
choice questions about the specimen characteristics. According
to the picked answers, the path leads to the respective taxon.
Currently, FishBase has 1,668 IKs of fishes containing 25,542
phenotype description sentences.

As an example of IK usage, Figure 1 presents an IK
to identify the Teleostean families, from East Africa (sub-
order Trachinoidei). The identification process begins with
question 1, which has the pair of options 1a and 1b, with
their descriptive texts in the Character column. According to
the picked answer, the user might navigate to question either
2 or 4, indicated in the Next column. Each descriptive text
inside the Character column is called Key Question (KQ). This
process is repeated until the biologist reaches a row that does
not lead to another question. At this stage, the specimen is
identified and its respective taxon appears at the Link column.

IKs and other data of FishBase are stored in a set of
relational tables. Handling all these data manually is a huge
challenge for scientists, who face difficulties to analyse some
scenarios involving the network of relations (links) among
taxa and their characteristics. The overwhelming amount of
phenotype descriptions is in free-text format. This format is
more flexible and easier to produce, having advantages in
the narrative structure and providing better expressiveness.
However, this free-text format is inappropriate for some com-
putational tasks, mainly when it involves the interpretation
and comparison of the content by machines. It hampers
tasks involving information retrieval and integration with other
sources, since the description components are “locked” within
the text.

Therefore, it is necessary to develop methods that can
automate the identification, extraction, and integration of phe-
notype information hidden in descriptive texts [3]. This re-
search faces the problem through a method that automatically
recognizes Entities and Qualities inside phenotype description
sentences and link them to other data managed by FishBase
(e.g., species, genus, country). It produces a knowledge net-
work, making possible:

• Reuse of EQs: If EQs are duly unified in a semantic
level, it is possible to identify which IKs refer to the
same EQs, making explicit the network among IKs and

EQs.
• No need of previous knowledge: In FishBase, IKs

are segmented according to the taxa that they identify.
Therefore, users must know beforehand the specimen’s
taxon to pick a correct IK. This process is laborious and
error-prone; In addition, it limits the use of the system
only to expert biologists, who could not have previous
clues about the specimen to be identified. An explicit
and standard semantic representation might enable to
correlate EQ elements of several IKs and combine them
in a unified identification tree.

• Relation between taxa and keys: Unified and semantic-
enriched descriptions will enable to perform analyses
to understand facts including: (i) which IKs identify
similar taxonomic groups; (ii) which EQ elements are
determinant to discriminate a taxon of a specimen; (iii)
which EQ elements define a specific taxon.

III. RELATED WORK

There is a huge amount of biological data available in free-
text format. As the process of producing biological data is
expensive and complex, it is necessary to leverage the capa-
bility of automatically computing existing data. Thus, there is a
challenge of migrating such vast amount of data into machine-
interpretable formats, in order to produce semantically explicit
knowledge.

These machine-interpretable data can be used by generic
identification systems to improve their process and results.
These systems implement different identification processes,
such as: by descriptive characteristics, by pictures, by mor-
phological measures, etc. Besides the generic identification
systems, some information systems specialized in specific
kinds of organisms may also offer support to build and
publish IKs. For example, FishBase for fishes and Bird Id
(http://www.birdid.co.uk) for birds. In the FishBase case, the
identification process can be conducted in distinct ways, such
as by images, by ecosystems, through descriptive characteris-
tics, etc.

Several systems allow people to digitally create and publish
Identification Keys for organisms [4], for example, Intkey,
IdentifyIt, Linnaeus II, Lucid [5], MEKA, NaviKey, PollyClave,
XID, xPer [6], ActKey, eFloras, SLIKS, and KeyToNature [7].
Technical reviews of some of these tools can be found in
Dallwitz et al. [8].
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Fig. 2: General view of the proposed approach.

Farnsworth et al. [4] give an overview of technical innova-
tions and trends in the area and highlight the importance of
ontologies and semantics. They show that there is still space
for improvements on the usage of these data, concerning data
analysis and the correlation of phenotypes across different taxa
and systems.

Existing investigations consider the use of phenotype de-
scriptions in a machine-interpretable format. Phenoscape2

addresses this issue adopting the Entity-Quality (EQ) approach
to describe phenotypes and developing a scalable infrastructure
that enables linking phenotypes across different fields of
biology by the semantic similarity of their descriptions.

Concerning how to make explicit the semantics of biological
data, Dahdul et al. [9] investigated techniques for transforming
descriptive biology texts into a format that enables large-scale
computation. Based on a previous study, they claim that large-
scale computation can benefit from annotating characters with
ontology terms. Therefore, they advocate the need of efficient
methods to automatically extract and annotate phenotypes
from descriptions and consider that NLP tools can be used
in the process.

Related work concerning phenotype extraction are mostly
concentrated in: interactions among genes, proteins, drugs,
and diseases. This can be seen in Ciaramita et al. [10], Song
et al. [11], Pyysalo and Ananiadou [1], Ramakrishnan et
al. [12], and Fundel et al. [13]. Although the domains are
similar to our work, we exploit specific characteristics of
organisms morphological descriptions to improve the results
of our extraction.

Cui [14] presents a method to extract phenotypes that
describe leaves, fruits, and nuts of plants. He uses two key
techniques: (a) an unsupervised learning algorithm to annotate
descriptions at the sentence level, to build a lexicon; (b) the
learned lexicon, enhanced by a human user, feeds a parser
that recognizes biological characters in descriptive sentences
and annotates them. Our work differs since it does not require
human intervention during the process, in such a way that a
non-expert can use the system.

2http://phenoscape.org/wiki/Main Page

Alnazzawi et al. [3] compare several statistical learning
methods against a curated corpus made by experts, called Phe-
noCHF. This corpus contains annotations about phenotypic
information related to Congestive Heart Failure (CHF). One of
their objectives is to demonstrate how the well-known methods
perform better when a curated corpus is available. However,
the creation of a corpus is a hard and expensive task. Our
approach was developed to serve in contexts in which such
corpus are unavailable.

IV. EXTRACTION OF ENTITY-QUALITY TERMS

This section details our approach to recognize and to make
explicit Entity-Quality (EQ) elements, which are part of textual
descriptions inside semi-structured Identification Keys (IKs).
The method involves mapping them to a more formal repre-
sentation with explicit semantics, based on domain ontologies.
The approach departs from natural language text sentences
(phenotype descriptions) and produces a graph representation
of the recognized EQs. Figure 2 shows the general view of
our approach, which encompasses two steps:

• Step 1: recognizes EQ elements through an algorithm
that analyses the text of the sentence;

• Step 2: improves the results of Step 1 recognizing more
EQ elements through an algorithm that analyses the
relations of sentences according to the structure of the
IK.

Both steps rely on external tools and resources throughout
the process. This proposal is founded on two assumptions that
synthesize the principles behind our method:

Assumption 1: The typical way in which a phenotypic
description is written can guide the extraction of EQ elements.

Assumption 2: The way in which a set of phenotype
descriptions is organized and structured holds implicit relations
that can be exploited to improve the extraction of EQ elements.

Steps 1 and 2 implement algorithms based on Assumptions
1 and 2, respectively (cf. Sections IV-A and IV-B). We further
define a notation to be used throughout this chapter, which
will support the explanation of the method.
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E[ex] = an Entity
Q[qy] = a Quality
EQ[ex, q1, q2, ..., qn] = an Entity-Quality
S[sx] = sentence in free-text format
V [v1, v2, ..., vn] = vertexes of a Dependency Tree

A. Step 1: Exploiting the Writing Characteristics of a Pheno-
typic Description

Following Assumption 1, in order to guide the extraction
task, this step exploits the typical approach followed by
biologists to write phenotypic descriptions. This principle was
previously exploited by other authors like Cui [14], who
listed out some writing characteristics observed in Biology
description texts:

1) Generally, morphological descriptions are constituted by
two elements: Characters and Character States (C/CS);

2) Omission of Function Words – it is usual the omission of
words that do not carry relevant meaning, such as articles
and auxiliary verbs (e.g., a, an, the, is, are);

3) Characters are often not explicitly stated in the descrip-
tions. For example, in the sentence “Black and big eyes”,
the characters color and size are not explicitly stated.

To deal with the first item, we have chose to work with
Dependency Trees in order to reveal relations between sen-
tence terms reflecting C/CS relations. Dependency Trees are
produced by a Dependency Parser, which transforms the
sentence in a tree of relationships between words, where each
node represents a word and each edge denotes a grammatical
dependency. The dependencies are all binary relations [15]. In
this work, we use the Stanford Typed Dependencies Parser3

(STDP), a Dependency Parser implementation which belongs
to the Stanford Core NLP toolkit. Figure 3 shows two exam-
ples of Dependency Trees generated by the parser.

Fig. 3: Dependency trees of the sentences (a)
S[No dorsal fin] and (b) S[34-37 scales in lateral line].

STDP contains approximately 50 grammatical dependencies
[16]. We selected a subset which reflects the written character-
istics to be analized. For example, amod is a dependency that
has an adjective qualifying a noun. In the Dependency Tree,
Function Words are represented as edges (e.g., the word “in”
in Figure 3.b) instead of vertexes. Our match algorithm does
not consider the edge labels. Therefore, these Function Words
are ignored, which is conform the second writing characteristic
of phenotype descriptions, observed by Cui [14] since it does
not carry relevant meaning.

In order to obtain a semantic description of EQs, the
Dependency Relations are matched with domain ontologies.

3http://nlp.stanford.edu/software/stanford-dependencies.shtml

We used ontologies widely adopted by the community: (1)
Teleost Anatomy Ontology (TAO) [17] – an ontology that
formalizes the knowledge about teleostean fishes anatomy;
(2) Phenotypic Quality Ontology (PATO) – an ontology that
defines Qualities to be related to Entities and their respective
values.

We applied a recursive match algorithm that performs
a search over a domain ontology (TAO or PATO: Entity
or Quality, respectively). The match algorithm returns the
concept in the ontology that has the highest similarity with
a given subgraph of the input Dependency Tree. Similarity
refers to which degree (similarity ∈ [0, 1]) an existing
ontology concept is similar to the terms of the given subgraph.
Firstly, the algorithm discovers the Entities present in the
Dependency Tree. Then, it discovers Qualities related to the
Entities already recognized. Figure 4 presents two elements
returned by the match algorithm. The subgraph containing
V [fin, dorsal] is matched with E[Dorsal fin] (a concept of
TAO), while the subgraph containing V [no] is matched with
Q[absent] (a concept of PATO).

Fig. 4: Entity and Quality recognized in the sentence
S[No dorsal fin].

Figure 5 illustrates the execution of the recursive match
algorithm looking for an Entity. At each iteration, the algo-
rithm expands the subgraph adding vertexes connected to the
current subgraph (neighbors). After recursively traversing all
the Dependency Tree, it looks for the most similar concept
E[dorsal fin].

Fig. 5: Match by expansion algorithm over the sentence
S[No dorsal fin].

Figure 6 presents the result of Step 1: a graph where each
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Key Question is connected to the respective recognized Entities
and Qualities, e.g., the nodes E[dorsal fin] and Q[absent].

Fig. 6: Step 1 output.

It is possible to observe in Figure 6 that the method fails at
recognizing Q[present] in the sentence S[Dorsal fin present].
This failure is due to the violation of the English language
rules in the sentence formulation. There are other cases where
Step 1 fails, then the following Step 2 aims to treat these cases.

B. Step 2: Exploring the Structure of Identification Keys

This step explores the structure of IKs to enrich the output
graph from Step 1. We assume that the correlation between
distinct descriptions might be useful in the extraction of
additional EQs. Such correlation is an intrinsic characteristic
of IKs, as a result of their organizational structure. This step
is based on the previously mentioned Assumption 2: The way
in which a set of phenotype descriptions is organized and
structured holds implicit relations that can be exploited to
improve the extraction of EQ statements.

We believe that the principles behind this work could be
generalized to other fields in the future. An organizational
structure, as we exploit in the IKs, could also be the sessions
of a technical report, the structure of legal documents with
juridical rules, the layout of a Web site, etc. Wong et al. [18]
indicate that such noncontent cues may be used to support
information extraction tasks. This perspective opens a future
wider application scenario for our technique.

IKs are structured in a tree format, in which the alternatives
of a given KQ are its sibling nodes containing complementary
alternative sentences. This structure offers clues about its
content, from which we consider the following characteristics:
(a) Alternatives of a KQ frequently refer to the same En-

tities. In our previous example, both sibling sentences
S1[No dorsal fin] and S2[Dorsal fin present] refer to the
same anatomical character E[dorsal fin];

(b) Alternatives of a KQ are frequently complementary, in
the sense that they assign complementary states to the
described Entity. In the same previous example, the Qual-
ities Q1[absent] and Q2[present], assigned to the Entity
E[dorsal fin], are opposites, encompassing its possible
state values.

In summary, we assume that if an EQ pair is identified in
a KQ, it is very likely that the sibling KQs must refer to
the same Entity, but potentially using complementary Quality
terms to modify the Entities. The challenge here is to verify
if the sibling nodes hold this property.

Therefore, we developed an algorithm that measures the
similarity between two sentence pieces. It is based on the gen-
eral principle of Paraphrase Recognition, which is a process
to judge if two different sentences convey the same aspect or
the same information. Androutsopoulos and Malakasiotis [19]
present a survey regarding Paraphrase Recognition techniques.
There are techniques that exploit the dependency tree to
measure the similarity between the sentences. In general, they
assume that if there is a value above a given threshold, the
involved sentences are considered paraphrases.

Usually, Paraphrases Recognition algorithms compare the
whole trees [19]. We have adapted the principle of Paraphrases
Recognition to the problem of recognizing complementary
sentences in an IK.

Step 2 acts in cases where Step 1 was successful in one sen-
tence, but failed in recognizing EQ statements in its siblings.
It determines if these sentences have complementary Qualities
for the same Entities. It measures the similarity between the
subtrees comparing each edge inside them. We aim to verify
if they refer to the same Entity with complementary Qualities,
based on a settled threshold.

Figure 7 illustrates the Step 2 input elements. The algorithm
receives a pair of Key Questions: KQmain and KQsibling.
Inside each KQ node, there are the Dependency Trees of the
sentences. The KQmain has a link to an EQ pair E1Q1 and
the KQsibling has a link to the same E1, but it lacks the Q2

(dashed element), to be recognized by the algorithm.

Fig. 7: A generic example of Step 2 input.

The Step 2 algorithm iterates over each EQ pair ex-
tracted from the KQmain (E1 and Q1 in Figure 7). For
each EQ pair, the algorithm gets the corresponding subtrees
Entitymain subtree and Qualitymain subtree that contain the
terms that are part of the E1 and Q1, respectively. Figure
8 exemplifies these subtrees, highlighting Entitymain subtree

and Qualitymain subtree inside the DTmain.
The algorithm gets the Edgemain 2, which links the

Entitymain subtree to the Qualitymain subtree. Then, the
algorithm fetches the subtrees extracted from sibling KQs
(KQsibling, in this case) and compares the original edge with
all edges related to the subtree Entitysibling subtree (which
represents the same entity of Entitymain subtree): edges
〈Edgesibling 1, Edgesibling 2, Edgesibling 3, Edgesibling 4〉.
This comparison looks for an edge that connects the
Entitysibling subtree to the complementary Q2. The similarity
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Fig. 8: Generic example of dependency trees of two
sentences. Entity and Qualities recognized in the previous

Step 1 are highlighted.

computation between the edges takes into account the follow-
ing parameters:
(a) Directions of the dependency relations edgesibling n and

edgemain 2;
(b) Grammatical class of Q1 and Q2;
(c) Types of the dependency relations of edgesibling eq and

edgemain eq;
(d) Antonymy between Q1 and Q2 (the algorithm explores

the WordNet lexical database [20] to check if two words
are antonyms).

These parameters represent to which extent one edge is
similar to another. To calculate the degree of similarity, each
parameter contributes with a pre-defined value: va = 0.25;
vb = 0.50; vc = 0.75; vd = 1.

We have chose these parameters and estimated their cor-
responding values based on empirical observations regarding
their relevance in Dependency Tree elements (edges and
vertexes) concerning phenotype description sentences. For
example, we noted that a pair of edges having the same
direction is important, but it is less important than the fact
that the Qualities have antonyms terms since the algorithm
is looking for opposite Qualities. These parameters and their
values can be adapted to the execution of the algorithm in
other scenarios.

The similarity between each pair of edges is calculated
through a summation of those parameters. The edge with the
highest similarity value is selected as the potential Q2, if it is
equal or higher than a determined threshold. In the conducted
experiments, we assigned the threshold = 0.75 to avoid
retrieving edges with low similarity values. Afterward, the
recursive match algorithm (the same used in Step 1) performs
a search over the PATO ontology in order to confirm if the
selected edge corresponds to a Quality concept.

The threshold value can be modified and it affects the
behaviour of the algorithm. A high threshold value enables
to recognize more Qualities, but it can increase the rate of
false positives. On the other hand, a low value can decrease
the number of recognized Qualities, but it increases the rate of
correct elements. The values of each parameter and threshold
have been empirically determined by experimental analyses.

Figure 9 shows the the Step 2 output for the KQs example.
Compared to Figure 6, the Q[present] was inserted as a new
node in the graph as a result of the algorithm.

Fig. 9: Step 2 output.

V. EVALUATION AND APPLICATION EXPERIMENTS

This section reports experimental results of this investiga-
tion. We rely on the FishBase database to conduct the proposed
assessments. Section V-A presents an evaluation to assess
the viability of our extraction method. The objective is to
investigate the effectiveness of the approach considering a gold
standard dataset and traditional metrics.

The initial motivation for this research was to obtain a
knowledge network correlating and integrating several el-
ements of phenotype descriptions. Therefore, Section V-B
presents experiments linking FishBase species data through
the recognized EQs.

A. Accuracy Assessment

The quality of the recognition and extraction of elements
in natural language texts, i.e., entities or relations, can be
evaluated by several mechanisms. The most common considers
a standard evaluation set generated by either a group of
specialists in the domain, or an organizing committee of a
competition. A standard evaluation set contains fragments
of texts highlighting the elements that are supposed to be
recognized. Such kind of evaluation is suitable when there is
a mature developed community acting in the area of interest.

However, there is still no standard evaluation set for mor-
phological descriptions, in the context that we are working,
i.e., Entity and Quality linked in an EQ pair. Therefore, this
investigation involved the creation of an evaluation dataset
to assess the performance of our method. This dataset has
the original sentence descriptions where the EQ elements are
annotated. A set of 100 KQs have been manually annotated,
from the total of 25,542 KQ from FishBase.

Figure 10 shows four examples of sentences in our evalua-
tion dataset. The words in bold compose Entities, and words in
italic compose Qualities, while the boxes represent EQ pairs.

1) Lips not fringed ; mouth horizontal .

2) No dark longitudinal stripes on head and body.

3) Total vertebrae 119 to 132 .
4) Scattered breast melanophores . One large spot

centered at the base of the caudal fin.

Fig. 10: Examples of sentences within our Gold Standard.

Several criteria were explored to create the Gold Standard.
First, we considered only Simple EQs, i.e., those composed
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strictly by one Entity and one Quality, such as in the second
sentence in Figure 10: E[stripes]Q[no], E[stripes]Q[dark] and
E[stripes]Q[longitudinal]. To save space, we group them as
follows: E[stripes]Q[no]Q[dark]Q[longitudinal].

We ignored complex EQs, i.e., those composed by complex
Qualities, which recursively contain Qualities linked to other
Entities. For example, Sentence 4 in Figure 10 has a complex
EQ formed by E[spot] Q[centered at the base of ] E[caudal
fin]. This kind of phenotype construction requires further
efforts and expertise to produce annotation. In particular,
complex EQs are not treated by our approach and to avoid
misinterpretations in the numerical evaluation, they are not
computed.

We applied our method to each annotated KQ. We compared
the EQs recognized by our method with the annotations of the
Gold Standard. The comparison considers four indicators:

• True Positive (TP): elements correctly identified. For Ex-
ample: our method identified in Sentence 1 the following
EQs: E[lips]Q[not fringed];E[mouth]Q[horizontal].
These elements were actually annotated in Sentence 1
of the Gold Standard;

• False Positive (FP): An expression recognized by the
method as a phenotype, which does not appear as such in
the Gold Standard. Example: in Sentence 3, our approach
recognized E[vertebrae]Q[132], which is a Quality that
slightly differs from the expected one;

• False Negative (FN): those phenotypes annotated in the
Gold standard that were not detected by the method. Ex-
ample: E[breast melanophores]Q[Scattered] should be
identified in Sentence 4 and we failed in recognizing it.

The computation of TP, FP and FN allows calculating the
following traditional measures:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F -measure =
2 ∗ Precision ∗Recall

Precision+Recall
(3)

Table I presents the obtained results of Precision, Recall and
F-measure. The column “EQ pair” compute the recognition
of complete Entity-Quality pairs and the column “Entity”
computes the recognition of Entities alone without related
Qualities.

TABLE I: Results concerning Perfect Matches.

`````````Measures
Elements EQ pair Entity

Recall 0,39 0,69

Precision 0,75 0,85

F-measure 0,51 0,76

The results are influenced by EQs partially recognized.
These cases might not be considered a totally wrong result,
then we added a more flexible partial match count:

• Partial Matches (PM): The cases where the recog-
nized element contains only a part of the expected one.
Example: in sentence 3, the E[vertebrae]Q[132] was
recognized, but the Quality is not complete.

As a consequence, the measures are adapted as follows:

Total Precision = Precision+
PM

TP + PM + FP
(4)

Partial Recall = Recall +
PM

TP + PM + FN
(5)

F -measure =
2 ∗ Total Precision ∗ Total Recall

Total Precision + Total Recall
(6)

Tables II presents the obtained results considering partial
matches. As expected, in an overall analysis, results reached
with partial matches overcome the results of exact matches.
We note that better results yield mostly by the Recall.

TABLE II: Total Results.

`````````Measures
Elements EQ pair Entity

Total Recall 0,45 0,76

Total Precision 0,87 0,94

Total F-measure 0,59 0,84

The results are affected by many factors, among them: the
range of terms in the domain covered by the ontology. In our
case, the universe of Quality terms is more vast than those
available in PATO.

A study comparing our results with related work is ham-
pered by the unavailability of a Gold Standard set. However,
it is possible to compare the proposals conceptually. Among
the existing approaches, the most related is the CharaParser –
part of the Phenoscape project – which has a good acceptance
in the community. Our work presents more independence of
human action in identifying the EQ elements, since Chara-
Parser requires some steps of validation by the user over the
extracted information, to feed the next steps.

Our approach demands further refinements to identify more
EQ elements. Among them, we highlight the need of:

• extending the EQ formalism to handle complex EQs with
compound Entities and Qualities;

• developing a method to perform an Entity Linking task
to handle complex cases, e.g., S[first four dorsal spines
prolonged, the second and third longest]. This sentence
requires identifying that the words second and third
implicitly mention the E[dorsal spine];
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B. Knowledge Network Analysis

In this section, we present practical applications, which
are possible due to the extraction of phenotypes. The objec-
tive is demonstrating the usefulness of explicitly recognizing
EQs. The knowledge network was created by correlating the
detected EQs with other information elements available in
FishBase. In particular, we correlated EQ pairs with data
concerning taxonomic groups of fishes. Afterwards, we gener-
ated different information visualizations/perspectives to eval-
uate the obtained correlations. We selected specific cases to
highlight the relevance of considering EQ statements.

Figure 11 shows a graph model derived from FishBase
(FishGraph), created by a previous work of Cavoto et al.
[21]. It highlights the node types (class, order, family, species,
genus, country, key, and ecosystem) and relationships among
them. We have added new nodes to FishGraph – keyQuestion,
EQ, Entity, and Quality – and linked them to the existing ones.

Fig. 11: New nodes added in the FishGraph database.

This updated FishGraph version models our knowledge
network. It allows scientists to perform analyses making use
of the new extracted information. We further present examples
of possible applications to improve the system usage by the
user and analyses to understand facts about living beings.

1) No need of previous knowledge: Currently, each IK is
represented in FishBase as an independent tree, which hampers
their usage, as one needs to know beforehand the main taxon
(the root of the IK tree) to start the identification process.

Fig. 12: Part of Identification Keys: 799 of Teleostean
families from East Africa (sub-order Trachinoidei) and 798

of the Teleostean families from East Africa.

As an example, consider the IK “799 – Teleostean families
from East Africa (sub-order Trachinoidei)” (cf. Figure 12).

The identification process using this key requires the following
knowledge: the specimen belongs to the teleostean family,
sub-order Trachinoidei and it is found in East Africa. The
identification process is hampered if the user knows only
part of the root – suppose family and geographic location
– since FishBase has another 6 IKs of the teleostean family
distinguished mainly by the sub-order, e.g., IK 798 also
in Figure 12. Even with all the required knowledge, it is
necessary to follow the proposed path in the IK tree. All these
particularities make the identification process only possible to
specialists.

The new structure allows starting the identification process
from any known characteristic. For instance, we can start the
identification process using a known characteristic like dorsal
fin soft, independently of any IK or other characteristic.

2) Searching through incremental filtering: The generated
knowledge graph allows searching for specific taxons by
applying an incremental filtering process.

Figure 13 shows an example of this incremental filter
using Entities and Qualities, which leads to a family with
three specific characteristics. Figure 13.a shows the initial
filtered graph with 27 families of species that have the
E[dorsal fin]Q[soft] (Entities and Qualities are collapsed in
a single node, in order to simplify the view). Adding a second
filter of the E[anal fin]Q[soft] (Figure 13.b) means to select
those species with edges to both EQs. The number of families
with both characteristics decreases to 8. A third filter of
the E[body scale], results in only 1 family that has the 3
characteristics: Creediidae (Figure 13.c).

3) Relation of taxons and IKs: One taxon is referred in
many IKs in FishBase but, since they are independent, each
IK has its own set of characteristics. When we analyse IKs
referring to the same taxon, there are two possible cases: (i)
keys share partially or totally the characteristics of a given
taxon; (ii) keys that have complementary information about
the taxon.

Our unified graph structure links distinct characteristics of
the same taxonomic group, coming from many independent
IKs, enriching and facilitating the identification process. Re-
turning to the previous experiment, the E[body scale] is a
characteristic that belongs to IK 324 but it does not belong
to IK 799. Since they refer to the same taxonomic group,
it is possible to combine them to achieve a more complete
description of the taxons.

4) Phenotypes distinguishing taxons: Figure 14.a shows a
fragment of the obtained knowledge network highlighting 3
classes of fishes and the EQ elements concerning the tooth
structure. As can be seen, our approach enabled to unify the
Entities and it is possible to verify that all 3 classes share the
same EQ elements. However, if we drill down to the level of
family, it is possible to verify which EQ elements distinguish
the two families Aulopiformes and Cetomimiformes – the size
of the tooth: the first one (Figure 14.b) is large and the second
(Figure 14.c) is small.

5) Sharing EQs through taxons: We built a bipartite net-
work consisting of two different types of nodes: species and
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Fig. 13: Filtering families of species by EQ: a) dorsal fin soft; b) dorsal fin soft and anal fin soft;
and c) dorsal fin soft, anal fin soft, and body scale.

Fig. 14: (a) Relation between a set of EQ elements and
classes. (b) EQ element determiner of Aulopiformes Family.

(c) EQ element determiner of Cetomimiformes family.

EQ statements. In this network, each EQ element is linked to
the species that has it.

Figure 15 shows a small portion of this network, in a
synthetic view. Since several EQ elements are shared by a
large number of species, the resulting bipartide network is too
dense for direct visualization. While 29 species are on the left
side, 6 EQ pair elements are on the right side. This network
enables visualizing which EQ pairs are the most shared by the
species.

In the visualization aspect, the size of the EQ nodes indi-
cates the amount of linked species, e.g., the E[melanophore
spot]Q[low brightness] is the biggest node, which means that
it is an EQ pair present in many species.

Figure 16 shows a projection of the bipartite network. In
this visualization, the nodes are EQs and they are connected

Fig. 15: Bipartite network of Species and EQs elements,
showing some of the most present EQ in the species.

if they are present together at least one species. The link width
is proportional to the amount of shares. The size of the nodes
indicates the prevalence of the EQ elements in species.

Fig. 16: Projection of the Bipartite network showing the
most shared EQ elements by species.
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This visualization allows to study which EQ elements
frequently occur together. For example, the link width be-
tween the nodes E[melanophore spot]Q[low brightness] and
E[melanophore spot]Q[decreased size] indicates that they are
EQ elements present together in many species.

VI. CONCLUSION

Phenotype descriptions play a key role in biological knowl-
edge bases, but most of the descriptions remain in a free-
textual format, which affects machine interpretation and their
applicability in network-driven analyses.

This paper proposed an original approach to recognize
Entities and Qualities connecting them to concepts in ontolo-
gies to make their representation semantically interpretable by
machines. Our key point, not addressed by related work found
in literature, consists in our approach, which explored clues
of non-textual information: from the writing characteristics of
phenotype descriptions to their organizational structure.

The experimental evaluations revealed encouraging results
regarding the assessment against a gold standard set. The
experiments point out the contributions of each step to improve
the results of the recognition process. The experiments using
the EQ elements, extracted from free-text sentences applying
our proposal, showed the advantages of bringing these descrip-
tions to a common and formal language. It enables machines
better consuming and interpreting the available descriptions.

Future work involves conducting further evaluations to
measure and compare the efficiency concerning to other
approaches. It also aims at addressing limitations of the
recognition of EQ elements.
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