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Abstract—Scientific datasets, and the experiments that analyze
them are growing in size and complexity, and scientists are
facing difficulties to share such resources. Some initiatives have
emerged to try to solve this problem. One of them involves the
use of scientific workflows to represent and enact experiment
execution. There is an increasing number of workflows that
are potentially relevant for more than one scientific domain.
However, it is hard to find workflows suitable for reuse given an
experiment. Creating a workflow takes time and resources, and
their reuse helps scientists to build new workflows faster and in a
more reliable way. Search mechanisms in workflow repositories
should provide different options for workflow discovery, but it is
difficult for generic repositories to provide multiple mechanisms.
This paper presents WorkflowHunt, a hybrid architecture for
workflow search and discovery for generic repositories, which
combines keyword and semantic search to allow finding relevant
workflows using different search methods. We validated our
architecture creating a prototype that uses real workflows and
metadata from myExperiment, and compare search results via
WorkflowHunt and via myExperiment’s search interface.

I. INTRODUCTION

The reproducibility crisis in science has become visible.
Datasets and data analyses are becoming increasingly more
complex and many scientists do not make public these re-
sources; There is a lack of tools to allow reproducibility
and communication of data analyses [1]. Nevertheless, some
efforts have emerged to help solving this problem, such as The
Open Science movement [2]. One particular approach involves
the use of scientific workflows.

A scientific workflow is a step by step description of a
scientific process for achieving a scientific objective, normally
expressed in terms of inputs, outputs, and tasks [3]. Usually,
scientists use workflow repositories to publish, store and share
workflows with their peers in academia. An increasing number
of scientific workflows are potentially relevant for one or
more scientific domains [4]. The access to those workflows is
usually open to anyone interested in their reuse, re-purpose or
experiment replication. Given such availability of workflows,
a research question still remains; that is, how can a scientist
find and select the most appropriate workflow(s) for reuse by
a given experiment?

The problem handled in this paper is the search and discov-
ery of relevant workflows for one or more scientific domains.
This problem is important because creating new workflows

can be expensive in terms of time and resources. Reuse of
relevant workflows helps researchers to build new workflows
in a faster and more reliable way.

There are mainly three approaches for search in scientific
workflow repositories: keyword-based search, structure-based
search, and semantic-based search [4], [5], [6], [7]. Keyword-
based search uses the workflow metadata to return workflows
associated with the exact words used by scientists in their
queries. Structure-based search uses the workflow topology to
find workflows with similar structure. Finally, semantic-based
search or ontology-based search uses semantic annotations
to find workflows where annotations are similar in meaning
to the terms in scientists’ query. Each approach has advan-
tages and disadvantages. Ideally, search mechanisms should
combine these approaches, but this is seldom supported due
to the variety of domains involved. For example, keyword-
based search is the preferred method offered by workflow
repositories because it is easy to use and users are accustomed
to using keyword-based search in search engines like Google.
Nevertheless, this approach has limitations because of the
heterogeneous nature of the terms that are used to refer to the
same scientific concept. This causes problems when a scientist
wants to search workflows related to a scientific concept, but
s/he knows just a subset of the terminology used to refer to
that concept and gets partially relevant results. Structure-based
search is computationally complex, and hard to perform with
heterogeneous sources. While semantic-based search presents
more advantages, it usually requires knowing languages with
complex syntax like SPARQL [8].

Our approach is a first step towards solving this search
problem. This paper presents the design and implementation of
a retrieval system for scientific workflow repositories, which
allows searching using a keyword-based interface powered by
semantic knowledge extracted from domain ontologies. This
work was validated with data from myExperiment [9], which
is one of the largest scientific workflow repositories at the
moment.

Our work expands the search options in scientific workflow
repositories. Moreover, our platform improves the interoper-
ability among different scientific domains by standardizing
workflow annotations via ontologies.

The rest of this paper is organized as follows: Section II



presents the theoretical foundations and related work; Section
III presents the system architecture; Section IV presents details
about the implementation; Section V presents a case study and
finally, Section VI presents the conclusions and future work.

II. THEORETICAL FOUNDATION AND RELATED WORK

A. Scientific Workflows and Repositories

In science, workflows are “executables” of scientific pro-
cesses, where these processes mainly refer to computational
science simulations and data analyses [4]. Workflows are
often represented as Directed Acyclic Graphs (DAG). Many
Scientific Workflow Management Systems (SWMS) exploit
the DAG representation to offer a user-friendly interface,
where the user can model workflows in a high-level manner.

Workflow repositories emerged as a particular solution for
the reproducibility problem since they allow scientists to pub-
lish and share their workflows. Bioinformatics is recognized
for having a long tradition in exchange and publication of
scientific resources; for this reason, many scientific work-
flow repositories contain a large number of bioinformatics
workflows. However, other scientific fields are increasing
their participation in workflow sharing via repositories – e.g.,
chemistry [7] or geosciences.

Usually, workflow authors upload their creations to reposi-
tories through a process that includes filling a form with some
metadata that describes the workflow. Such metadata is often
used for search and discovery of relevant workflows. In this
paper, we define workflow metadata as a dictionary, where the
keys are the field names and the values are free text.

We present some representative scientific workflow reposi-
tories.

1) MyExperiment [9]: This is a collaborative platform
to publish and share scientific workflows. Most users of
this platform are scientists in the life sciences; however,
other communities (e.g., chemistry, social statistics, and music
information retrieval) are expanding their participation in
myExperiment. It stores workflows, metadata, data inputs,
provenance information, versions, among other assets [9].
Moreover, it supports workflows from different SWMS such as
Taverna, RapidMiner, Galaxy, KNIME, Kepler, among others.
It allows keyword-based search and filtering by some workflow
metadata such as title, description, tags, user, license, etc.
Furthermore, it provides structure-based search for workflow
discovery using workflows that share the same services as
similarity measure.

The myExperiment project hosts 392 scientific groups,
10.501 registered users and more than 2.800 scientific work-
flows in its database (in May, 2017). Since its creation, it has
expanded the scientific domains that use it and has been used
in several research projects [6], [5], [10].

2) CrowdLabs [11]: This is a collaborative environment
for scientists inspired by social websites. This platform works
with workflows in VisTrails and VisMashup [11]. VisTrails is
an open-source SWMS with a particular focus on data analysis
and visualization, and VisMashup is a VisTrails extension

to allow user interaction with workflows using a web-based
solution [11].

3) Galaxy [12]: This is a genomic research platform to
handle computational biology experiments. It supports com-
putation analysis, the capture of provenance data from in
silico experiments, and workflow annotation. Furthermore, this
platform allows interaction with the research components (e.g.,
datasets, analysis, workflows, and annotations) using a web-
based format [12]. This repository provides keyword search
based on workflow metadata (name, owner, annotation, and
tags). As downside, it just supports workflows from its SWMS.

4) CloudFlows [13]: This is a social platform for creation,
execution, and sharing of data mining workflows. Users use
web browsers to develop their workflows without installing
specific software to execute them [13]. It does not provide
search but allows workflow discovery by listing all the work-
flows in the platform, and just supports workflows from its
SWMS.

5) PBase: This repository allows storing provenance data
using ProvONE, which is a standard for modeling, represent-
ing and sharing provenance information [14]. PBase can store
workflows (from VisTrails, Taverna, and Kepler), prospective
provenance, and retrospective provenance [14]. Moreover, it
provides keyword-based search and structure-based search
using neo4j graph DBMS and Cypher as the query language.

6) OPMW Workflow Repository [15]: Unlike other reposi-
tories, it stores both executable workflows and abstract work-
flows, which allows independence from a particular execution
environment [15]. Abstract workflows describe the workflow
components and are human readable to make workflows more
understandable; therefore, more reusable [15]. Anyone can use
the workflows in this repository without problems; however,
just users with knowledge in Wings can contribute to it
[15]. It provides semantic search via an SPARQL endpoint
using workflow metadata such as descriptions of the inputs,
processes, and outputs and workflow execution provenance
traces such as intermediate results, outputs, software codes.

B. Ontologies and Semantic Annotations

An ontology is “an explicit specification of a conceptualiza-
tion” [16], where a conceptualization is an abstract perspective
about something (e.g., objects, concepts, and relationships).
Explicit specification means the definition of a formalism to
map the abstract meaning of conceptualization in something
concrete [16]. Ontologies also include the relationships among
the concepts they contain [17]. An ontology concept is unique
in an ontology and is often known as ontology class. An
ontology term is a string that identifies an ontology concept –
e.g., synonyms and labels. Consequently, an ontology concept
is often linked to several ontology terms [18].

Superclasses represent high-level concepts and subclasses
represent more detailed concepts [17]. Such relationships can
be represented using a graph (see Fig. 1) or a hierarchical
structure (see Fig. 2). Both show a part of the EDAM ontology.
EDAM is an ontology of bioinformatics information, including
operations, types of data, topics, and formats [19].



Fig. 1. Partial graph representation of EDAM Ontology via Ontology Lookup Service

Fig. 2. Partial hierarchy representation of EDAM Ontology via Ontology
Lookup Service

An annotation is a particular kind of data that describe
other data [20]. For Macario et al. [20] semantic annotations
are annotations that use ontologies to eliminate ambiguities
and promote a common understanding of concepts. In this
paper, we will borrow the formal definition of semantic
annotation from Oren et al. [21]: a semantic annotation is
a tuple (s, p, o, c), where s is the subject of annotation (in
our case, a term in a domain ontology), o is the object of
annotation (in our case, a workflow), p is the predicate (the
relationship between s and o), and c is the context (provenance
information) [21]. For us, p = “occurs− in”.

C. Workflow Retrieval

As mentioned in Section I, the retrieval process for work-
flow repositories can be performed via a wide range of
methods; some of these methods are keyword-based search,
topology-based search (also known as structure-based search),
and semantic-based search.

In more detail, keyword-based retrieval systems use a free
text query to match against subsets of metadata (e.g., the title,
descriptions, and tags) for each workflow in the repository.

Keyword-based methods are widely implemented on scientific
workflow repositories – e.g., myExperiment [22]. Another
example is presented in [23], which implements a keyword-
based search engine for workflows collected from Kepler,
Taverna, and myGrid. This search method has good precision,
retrieving relevant workflows that match the scientist’s query.
The downside is that in some cases it has a low recall because
some relevant results are hidden. Scientists may use different
words to refer to the same concepts, and annotate a workflow
according to distinct criteria. Hence, in this case, this method
just returns a subset of all the relevant results for the user’s
query.

Topology-based retrieval systems use the workflow structure
to search for workflows with similar topology in the repository.
Workflows regularly use three elements in the DAG represen-
tation: the inputs, the outputs, and the processes. The elements
are used individually or collectively to perform a search based
on the workflows that contain the same workflow elements.
For example, the work in [5] presents a method that takes
into account the order of each element; the method uses a
topological sort, a topological comparison, and a normalization
of the results to obtain a better accuracy. This search method is
a good choice for workflow discovery. Nevertheless, it needs
a workflow or a subset of the workflow components as input
to return relevant results. Topology alone is not a good choice
in searching, and has to be accompanied by e.g., keyword-
based search. Moreover, it requires expensive preprocessing
of workflows in a repository.

Semantic-based retrieval systems use ontologies to match
queries against the semantic annotations in the workflow
repositories. This method has the higher recall and precision
among the search methods. Nevertheless, it usually needs
languages with complex syntax (like SPARQL) that represent
a barrier for the user [8]. Some works try to combine this
method with others; for example, the work in [4] uses a hybrid
approach between structure-based search and semantic-based
search. It presents a method for similarity search in a few
semantic workflows using a graph representation and an A*
search algorithm to perform the similarity search.

Our approach differs from the mentioned above by propos-



Fig. 3. Retrieval System Architecture for semantic search.

ing a retrieval system architecture that uses a hybrid search
method combining keyword-based and semantic-based search.
Our architecture focuses on expanding the search options,
improving workflow interoperability among different scientific
domains by using ontologies to semantically annotate work-
flows, and keep a standard terminology for different scientific
fields. Our solution allows workflow reuse and re-purpose from
different scientific fields.

III. SYSTEM ARCHITECTURE

The architecture of our retrieval system is inspired by the
work in [8] and [24]. Fig. 3 shows this architecture, which
comprises three layers. The Persistence Layer is composed
by four repositories: Local Workflow Repository, Metadata
Repository, Ontology Repository, and Repository of Semantic
Annotations. It also includes the keyword index and the
semantic index. The Preprocessing Layer prepares data for
subsequent search, which is performed by the Processing
Layer. The latter provides all the services needed to look for
workflows using Keyword search or Semantic search. These
services can be accessed through the Web Interface (scientists
who are looking for workflows of interest). Finally, solid
arrows represent the data flow in the system, and dashed
arrows represent data connections among elements.

Our system requires preparing the repositories, so users
can perform a search. This preparation is performed offline.
It starts when the Metadata Collector extracts metadata from
external (1a) and internal (2a) repositories. External workflow
data requires a Web Crawler; scientists can also take advantage
of workflows created by their own research team, stored in the
Local Workflow Repository. Metadata is stored in the Metadata

Repository (3a). Next, the Semantic Annotator semantically
annotates the metadata using the ontologies provided by the
Ontology Repository (4a). These semantic annotations are
stored in the Repository of Semantic Annotations (5a). The
Index Generator then creates indices for metadata (keyword
index) and semantic annotations (6a-7a). We use an inverted
index for keyword-based search and a modified version of the
same index data structure for semantic search (see Subsection
III-B). Both indices refer to the metadata, which contains
the workflow identifier (see Fig. 7). Once annotations and
metadata repositories are created and indices are constructed,
the system is ready to handle queries using keyword and
semantic search. Each new workflow processed needs to go
through this process. If new ontologies are added, steps (4a)
onwards are executed.

A typical retrieval scenario starts when a user poses a query
through the Web Interface (1b). It then redirects the query to
the Search Engine (2b); the Log Manager stores the query for
performance management (2b). The Search Engine executes
the query using the keyword and semantic indices (3b). These
indices are linked to the workflow metadata in the Metadata
Repository. The result is a list of links pointing at the relevant
workflows, presented to the user at the interface (4b-5b).

Storing and indexing semantic annotations is a requirement
for query processing in our system. Usually, these tasks tend
to be expensive in time and computational resources, but they
improve search quality. Moreover, they are calibrated/executed
with less frequency than queries. Subsection III-A presents
algorithms to create semantic annotations based on detection
of ontology concepts in the values of the metadata fields of
workflows. Subsection III-B present details about the semantic



inverted index . Finally, Subsection III-C presents the semantic
search.

A. Semantic Annotations

Our system uses the Semantic Annotator to create the
semantic annotations by combining the workflow metadata
in the Metadata Repository and the ontologies available in
the Ontology Repository. The Semantic annotator uses the
SEMANTIC ANNOTATION algorithm (see Fig. 4), which
is inspired by the Open Biomedical Annotator [18]. Our
algorithm receives as input the metadata of workflows to
be annotated, a list of ontologies (including ontology terms,
ontology concepts, and relationships), and a list of options
for semantic expansion. It stores the resulting semantic anno-
tations in the Repository of Semantic Annotations. We create
semantic annotations associating many ontology concepts with
a workflow through the occurs− in relationship. C represents
the context or provenance information such as creation date
of the annotation.

The algorithm starts by creating a dictionary of ontology
terms, which includes labels and synonyms (lines 4-12). Next,
the algorithm iterates over the list of workflow metadata and
extracts the text that belongs to each metadata field. This text
is used as input for the TEXT ANNOTATION algorithm (see
Fig. 5), which identifies the ontology concepts that are in the
text and creates semantic annotations (including annotations
obtained by semantic expansion - lines 13-19). Finally, the
semantic annotations are stored in the Repository of Semantic
Annotations.

In more detail, the TEXT ANNOTATION algorithm (see
Fig. 5) receives as input a text, a dictionary of ontology terms
(including labels and synonyms), and a list of options for
semantic expansion. Its output is a list of semantic annotations
with the ontology concepts detected in the input text and their
corresponding semantically expanded annotations according to
the input options. The algorithm starts by sorting the dictionary
of ontology terms by the length of the ontology terms in
descending order (line 3). We give priority to larger strings
because they probably have more semantic content than shorter
strings. Moreover, we should avoid overlapping semantic
annotations in the text as suggested in [25]. For example,
consider a string “a nucleic acid sequence” that belongs to
some metadata value of a workflow. If our system annotates
that string with the ontology term “nucleic acid sequence”
(EDAM:data 2977), then it should not create an annotation
with the ontology term “sequence” (EDAM:data 2044) on the
same string because this causes an overlap. Overlap can be
avoided by replacing reoccurring terms by blanks. A given
substring cannot be annotated by more than one ontology term,
thus avoiding overlapping (lines 4-13). Finally, the algorithm
returns semantic annotations with the corresponding semantic
expansion (line 14).

The SEM EXPANSION algorithm (see Fig. 6) expands an
initial semantic annotation using the super/sub class structure
of the ontologies. It receives as input a semantic annotation
and a list of options for semantic expansion and returns a

Require: W is the metadata of workflows to be annotated,
O is a list of Ontologies, and Opt is a list of options for
semantic expansion

1: function SEMANTIC ANNOTATION(W,O,Opt)
2: D ← ∅
3: SA← ∅
4: for each ontology ∈ O do
5: for each term ∈ ontology do
6: label← term.label
7: D.add(label)
8: for each synonym ∈ term do
9: D.add(synonym)

10: end for
11: end for
12: end for
13: for each wm ∈W do
14: for each field ∈ wm.fields() do
15: t← wm[field].getV alue()
16: sa← TEXT ANNOTATION(t,D,Opt)
17: SA.add(sa)
18: end for
19: end for
20: storeAnnotations(SA)
21: end function

Fig. 4. Semantic Annotation Algorithm

Require: T is the free text, D is a list of ontology terms, and
Opt is a list of options for semantic expansion

1: function TEXT ANNOTATION(T,D,Opt)
2: SA← ∅
3: D ← sortByLength(D)
4: for each d ∈ D do
5: if d ∈ T then
6: sa← (d, occurs− in, T, C)
7: SA.add(sa)
8: se← SEM EXPANSION(sa,Opt)
9: SA.add(se)

10: w ← createWildcard(d,WHITE SPACE)
11: replace(T, d, w)
12: end if
13: end for
14: return SA
15: end function

Fig. 5. Semantic Annotations from Free Text Algorithm



Require: sa is a semantic annotation and Opt is a list of
options for semantic expansion

1: function SEM EXPANSION(sa,Opt)
2: SE ← ∅
3: if Opt.has semantic generalization then
4: g ← generalization(sa,Opt.g size, C)
5: SE.addList(g)
6: end if
7: if Opt.has semantic specialization then
8: s← specialization(sa,Opt.s size, C)
9: SE.addList(s)

10: end if
11: if Opt.has sdist expansion then
12: sde← sdist expansion(sa,Opt.sd size, C)
13: SE.addList(sde)
14: end if
15: return SE
16: end function

Fig. 6. Semantic Expansion Algorithm

list of semantic annotations expanded from the original one.
Options are generalization (lines 3-6), specialization (lines 7-
10), and semantic distance expansion (lines 11-14). General-
ization (resp. specialization) creates new semantic annotations
with the same structure of the initial semantic annotation but
replacing the ontology concept associated with its superclasses
(resp. subclasses) in the ontology. The parameter g size rep-
resents the number of superclasses that will be included in the
semantic expansion (resp. s size for number of subclasses).
Semantic distance expansion creates new semantic annotations
with the same structure of the initial semantic annotation but
replacing the ontology concept associated with its neighbors
in the ontology. The parameter sd size represents the number
of edges that separate the original ontology concept from the
ontology concepts that will be included in the expansion.

For example, in the case of generalization, consider a
metadata string “...gene ids for that chromosome” that
belongs to the description of a workflow with title
“chicken ensembl gene id”1. Our system detects the on-
tology term “chromosome” that belongs to the ontology
concept EDAM:topic 0654 and creates a semantic annota-
tion (EDAM : topic 0654, occurs − in,myExperiment :
902, {date : “2017 − 05 − 04”}). Next, the system finds
that EDAM:topic 0077 is the superclass of EDAM:topic 0654
and creates another semantic annotation (EDAM :
topic 0077, occurs − in,myExperiment : 902, {date :
“2017− 05− 04”}), which is result of replacing the ontology
concept in the initial semantic annotation by one of its super-
classes in the ontology (in this case, the immediate superclass).

1http://www.myexperiment.org/workflows/902

B. Semantic Indexing

This subsection provides details about the construction of
semantic inverted indexes. Our algorithm is a modification of
the general algorithm for creating an inverted index proposed
by Manning et al [26] and works as follows:

• Collect the workflow metadata.
• Remove the strings that represent an ontology concept in

the workflow metadata and include a list of ontology con-
cept identifiers extracted from the semantic annotations.

• Tokenize the text in each value of the workflow metadata
fields. This step is done by splitting the text in words and
considering each word as a token. In this step, ontology
concept identifiers are considered as words.

• Perform NLP preprocessing. This step is necessary to
decrease the number of tokens to be processed, e.g.,
stemming, removing punctuation, removing stop words,
converting strings to lowercase.

• Index the workflow metadata associating each term to a
list of workflow identifiers. If a workflow identifier is in
the list, it means the term is contained in the workflow
metadata.

Though similar to the algorithm proposed by Manning et al
[26], we introduced a step before tokenizing the text because
we need to include semantics in the inverted index. The
inverted index is considered to be one of the most efficient
structures for supporting text search [26].

In addition to the advantages offered by the semantic search,
replacing strings by their ontology concept identifiers reduces
the size of the dictionary used in the inverted index because
many words can be mapped into one ontology concept. More-
over, some ontology terms contain more than one word. The
next subsection explains our semantic search and its interaction
with the semantic inverted index.

C. Semantic Search

The semantic search algorithm uses a two-step approach:
Step 1. The algorithm receives the same dictionary of

ontology terms used to semantically annotate the workflow
metadata. After that, the algorithm uses the dictionary to
find ontology concepts in the user query. If some ontology
concept is detected, then it is replaced by the ontology concept
identifier.

Step 2. The algorithm tokenizes the query and uses the
semantic inverted index to find the workflows associated with
the tokens in the query. Moreover, it ranks the results using
TF-IDF.

This search approach allows to find relevant workflows,
even when the user uses words that are not present in the
workflow metadata.

IV. IMPLEMENTATION

We developed the WorkflowHunt prototype (available at
http://www.workflowhunt.com) with MySQL as the underly-
ing DBMS, and myExperiment as the External Repository. We
use EDAM and CHEMINF ontologies to semantically annotate
myExperiment workflow metadata. EDAM is an ontology



Fig. 7. Database Schema – indices omitted.

for bioinformatics information, including operations, types of
data, topics, and formats [19]. CHEMINF is an ontology for
chemical information, including terms, and algorithms used in
chemistry [27]. Fig. 7 shows the repositories’ schemas. Ta-
bles (“ontology”, “ontology concept”, and “ontology term”)
belong to the Ontology Repository. Tables (“tag”, “tag wf”,
and “workflow”) belong to the Metadata Repository.

The ontology concepts and terms (see Fig. 7) were collected
using the Ontology Lookup Service [28]. This service allows
querying, browsing, and navigating over a database that inte-
grates several biomedical ontologies and related vocabulary.
We used WordNet [29] as an additional source of synonyms
to complement the ontology terms collected via Ontology
Lookup Service. Ontology concepts are associated to one
ontology and include the Internationalized Resource Identifier
(IRI) and the IRI of its superclass for eventual generalization
of semantic annotations. Ontology terms are stored in table
“ontology term” and are associated with one ontology con-
cept. Such terms include a text, the term type (e.g., synonym,
or labels), and the source (e.g., Ontology Lookup Service, or
WordNet).

MyExperiment provides an API2 to collect the workflow
metadata (title, description, tags, etc.) from its repository in
XML format. The Web Crawler (see Fig. 3) collects such
information and the Metadata Collector transforms the raw
metadata to store a subset of the available metadata (id, title,
description, tags, and SWMS) in the table “workflow” (see
Fig. 7). However, tags are stored in the “tag” table and they
are linked to the “workflow” table via the “tag wf” table.

2http://wiki.myexperiment.org/index.php/Developer:API

The Semantic Annotator uses the SEMAN-
TIC ANNOTATION algorithm, which takes input data
from “ontology term”, “workflow”, “tag wf”, and “tag”
tables to populate the “semantic annotation” table. The
“semantic annotation” table stores the metadata type of the
field (e.g., title, description, or tag), the annotation type –
e.g., direct annotation or semantic expansion (generalization,
specialization, or distance expansion). Additionally, the
system stores the distance between the original ontology
concept detected and the ontology concept used in the
annotation. Distance equals zero for direct annotations.

We used ElasticSearch to create and store our inverted
index and semantic inverted index. ElasticSearch [30] is a
project based on Lucene and provides distributed and scalable
search using inverted indexes, and full-text search or term-
based search. ElasticSearch manages our Index Generator, and
Search Engine. The indices link to the information in the
“workflow” table.

The Search Interface was built with PHP (framework
CodeIgniter) and Bootstrap to allow testing our system in
a user-friendly manner. Finally, logs are stored in a MySQL
database, recording the interactions between the user and our
system for future improvements.

Fig. 8 shows a semantic search of the query “chromosomes”
in WorkflowHunt, which retrieves 77 workflows. Tabs “Key-
word” and “Semantics”, respectively allow the scientist to exe-
cute keyword or semantic search. For each workflow retrieved,
WorkflowHunt shows the semantic annotations by clicking on
“READ MORE”. Moreover, scientists can compare the results
by clicking on the “Compare results” link. This feature was
used to facilitate the analysis of results in the case study.



Fig. 8. Semantic-based search results.

V. CASE STUDY

The case study is based on real data collected from the
myExperiment repository through the process explained in
Section IV. We implemented the system using two ontologies
(CHEMINF and EDAM). Those ontologies contain 3,045
ontology concepts linked to a dictionary of 5,057 ontology
terms. After the annotation process, we got 27,697 seman-
tic annotations (51.5% by direct annotation and 48.5% by
semantic expansion - generalization). Such annotations were
extracted from 15,054 metadata fields (title, description, and
tags) that belong to 2,873 workflows.

We compared WorkflowHunt (keyword search and semantic
search) with the retrieval system provided by myExperiment
(see Table I and Table II) to analyze the cases for which it
is convenient to use each system. We show a small subset of
the comparison tables for space reasons; however, such tables
keep the gist of our findings. For an extended version of the
comparison tables, please visit the GitHub of the project 3.

Table I shows a general comparison about the number of
workflows returned by each system given a query. Table II
presents a fine-grained comparison to know the number of
workflows that are returned by one system and others not.
Both tables allow us to analyze different cases where a system
outperforms the others.

Let q be a scientist’s query, and A, B, and C sets of
workflows defined as follows:

A = set of workflows retrieved using the keyword search
provided by myExperiment given the query q

B = set of workflows retrieved using the keyword search
provided by WorkflowHunt given the query q

3https://github.com/jbeleno/workflowhunt

C = set of workflows retrieved using the semantic search
provided by WorkflowHunt given the query q

The search comparisons allow us to analyze six cases:
Case 1. (A − B) 6= ∅: This case occurs when given a

query, a search in myExperiment returns workflows that the
keyword search in WorkflowHunt does not (queries 2, 3 and 4,
see table II). The main reason is that myExperiment indexes
more metadata than WorkflowHunt4. For example, consider
query 2: “Ecology”, which produces 5 workflows that belong
to (A − B). After an analysis, we found that in most of
them like the “Age specific analysis”5 workflow contained the
string “... Journal of Ecology” in the descriptions of some
workflow inputs. At the moment, WorkflowHunt just indexes
title, description, and tags.

Case 2. (B − C) 6= ∅: This case occurs when a keyword
search in WorkflowHunt returns workflows that the semantic
search in WorkflowHunt does not (queries 2 and 3, see table
II). The main reason is that the semantic search in Work-
flowHunt replaces substrings in the query that are detected
as ontology concepts. Such substrings can have more than
one word, which means that a semantic search query can
have fewer tokens than a keyword search in WorkflowHunt.
Moreover, keyword search in WorkflowHunt does not consider
the position of the words in the query, and semantic search in
WorkflowHunt does. For example, consider the query “Path-
way simulation”, which produces 140 workflows that belong
to (B −C). We found that there are no semantic annotations
in WorkflowHunt associated to “Pathway simulation” (ontol-
ogy concept EDAM:operation 3562). Nevertheless, keyword
search in WorkflowHunt returned 140 workflows because the

4https://goo.gl/STIQWR
5http://www.myexperiment.org/workflows/3286.html



TABLE I
COMPARISON AMONG DIFFERENT SEARCH APPROACHES

Query Search Methods

Identifier Query ‖A‖ = ‖myExp. search results‖ ‖B‖ = ‖WH keyword search results‖ ‖C‖ = ‖WH semantic search results‖

1 Chromosomes 1 1 77

2 Ecology 24 19 42

3 Pathway simulation 19 140 0

4 Enzymes 16 8 11

TABLE II
DESCRIPTION OF RESULTS AMONG DIFFERENT SEARCH APPROACHES

Query Identifier

Set description 1 2 3 4

‖A ∩B‖ 1 19 17 8

‖B ∩ C‖ 1 18 0 8

‖C ∩A‖ 1 21 0 9

‖A ∩B ∩ C‖ 1 18 0 8

‖A−B‖ 0 5 2 8

‖A− C‖ 0 3 19 7

‖B − C‖ 0 1 140 0

‖C −B‖ 76 24 0 3

‖C −A‖ 76 21 0 2

‖B −A‖ 0 0 123 0

‖A− (B ∪ C)‖ 0 2 2 7

‖B − (C ∪A)‖ 0 0 123 0

‖C − (A ∪B)‖ 76 21 0 2

metadata of those workflows contains the words “Pathway”
and “simulation”, but such words could appear in different
order, in different metadata fields of the same workflow or
could be separated by several words.

Case 3. (A − C) 6= ∅: This case occurs when a keyword
search in myExperiment returns workflows that the semantic
search in WorkflowHunt does not. This case summarizes
the reasons given in Case 1 and 2: myExperiment indexes
more metadata fields, semantic search in WorkflowHunt uses
fewer tokens than keyword search, and keyword search in
myExperiment has lax rules about the position of the words
given in the query to match against the workflow metadata.
This case occurs e.g., with queries “Pathway simulation” and
“Enzymes”.

Case 4. (B − A) 6= ∅: This case occurs when a keyword
search in WorkflowHunt returns workflows that the keyword
search in myExperiment does not. The main reason is that
WorkflowHunt has a lower threshold in the number of words
that should be matched against the workflow metadata than
the myExperiment keyword search. This case occurs with the
query “Pathway Simulation”, where 123 workflows belong to

(B−A). For example, the workflow “Rank Phenotype Terms”6

is in the set because it has the word “pathway” in the workflow
metadata. However, it does not have the word “simulation” in
the metadata.

Case 5. (C − A) 6= ∅: This case occurs when a semantic
search in WorkflowHunt returns workflows that the keyword
search in WorkflowHunt does not. The main reason is that
semantic search in WorkflowHunt allows finding concepts with
similar meaning and not just keywords. Therefore, the results
are semantically similar to what is searched. For example,
consider the query “chromosomes”, where keyword search
in myExperiment returns 1 workflow. The string “chromo-
somes” represents the ontology concept EDAM:topic 0654
that is linked to many ontology terms: “DNA”, “Ancient
DNA”, “DNA analysis”, “Chromosomes”, “deoxyribonucleic
acid”, “desoxyribonucleic acid”, and “chromosome”. Hence,
semantic search in WorkflowHunt finds workflows that match
with such ontology terms in the workflow metadata, returning
77 workflows.

Case 6. (C − B) 6= ∅: This case occurs when a semantic
search in WorkflowHunt returns workflows that the keyword
search in WorkflowHunt does not. The reason and example
are the same than the presented in Case 5.

The cases where the difference between sets is empty ((A−
B) = ∅, (A−C) = ∅, (B−C) = ∅, (C−B) = ∅, (C−A) = ∅,
and (B − A) = ∅, ) are not interesting because the systems
return the same set of workflows for a query.

Some of the conclusions given about set A are based on
reverse engineering applied in myExperiment and a study of
the source code of that website7.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the design and implementation of
the WorkflowHunt retrieval system for scientific workflow
repositories, which allows searching using a keyword-based
interface powered by semantic knowledge extracted from
domain ontologies. This system contributes to helping sci-
entists in workflow reuse and re-purpose, and experiment
replication, expanding the search options in scientific workflow
repositories.Our implementation is validated on the 2,873
myExperiment workflows.

6http://www.myexperiment.org/workflows/854.html
7https://github.com/myExperiment/myExperiment



There remains the following question – which is best,
WorkflowHunt or dedicated repository interfaces? First, Work-
flowHunt is generic, and thus can be used for other repositories
that publish their metadata (e.g., via an API) – and thus
supports hunt across a set of repositories. Second, our case
study section just comments on the number of retrieved
workflows, but not in their suitability to the query – for this,
we need the experts that submitted the query to answer that
question. Third, the flexibility provided by semantic search
allows tailoring queries to distinct domains – even to the
point of letting scientists provide their own customized domain
ontology.

WorkflowHunt is online and there is space for improvement.
For example, the inclusion of a knowledge base per scientific
domain or the insertion of instances in ontologies allows
creation of more complex indexes and queries like those imple-
mented in Broccoli [31], [32]. For semantic annotations, part
of our future work involves interacting with domain experts to
better choose the appropriate ontology terms to use in those
annotations. Also, we can use NLP and machine learning to
automatically detect the scientific domain of a workflow and
use the correct ontology to annotate it. Finally, we can use
the approach in [10] to take advantage of workflow structure
and create automatic annotations with similar structure as
presented in [4].

We also need to validate system use with domain experts.
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